
Computational Statistics
4. exercise session, 19.2.2010

1. (A “Rao-Blackwellized” density estimate.) Suppose we generate a sample
(Xi, Yi), i = 1, . . . , N for a two-dimensional continuous distribution. Suppose also
that the conditional density fX|Y is available. Now we explore two approaces for
estimating the marginal density fX of variable X. The first approach is to apply a
nonparametric density estimation method (such as a density histogram or a kernel
estimate) to the values (Xi), which (of course) come from the marginal density fX .
The second approach is to notice that

fX(x) =

∫
fX,Y (x, y) dy =

∫
fX|Y (x | y) fY (y) dy ≈ 1

N

N∑
i=1

fX|Y (x | Yi).

The last approximation is ordinary Monte Carlo integration, since (Yi) is a sample
from the marginal density fY . Some call this approach “Rao-Blackwellization”
since it is similar in spirit to conditioning (but not literally the same).

Begin by simulating n = 100 values using the following code

n <- 100

k <- 4

y <- rgamma(n, k/2, k/2)

x <- rnorm(n, 0, sd = 1 / sqrt(y))

Pretend that you do not notice that the marginal distribution of X is the t distri-
bution with k = 4 degrees of freedom.

Now, estimate fX by plotting a probability density histogram and a kernel
density estimate of the simulated x values. In R, the kernel density estimate can
be drawn with

plot(density(x), xlim = c(-10, 10))

You can also try to change the bandwidth of the kernel estimate manually, e.g.,
plot(density(x, bw = 0.5), xlim = c(-10, 10)). Secondly, draw a Rao–Blackwellized
density estimate of fX(x) on the interval (−10, 10). (You need to set up a grid on
that interval and calculate the average of normal density values evaluated on the
grid.)

2. Let Z ∼ N(0, 1). Estimate I = E|Z|2.3 firstly, by naive Monte Carlo
integration, and secondly by using Z2 as the control variate (obviously, EZ2 = 1).



Calculate also Monte Carlo standard errors for the two methods. Use a moderate-
sized Monte Carlo sample (e.g., N = 10000) and a separate, smaller pilot sample
for the control variate method. (The expectation I can be expressed using the
gamma function, but you are not expected to do that in this problem.)

3. (Using importance sampling for rare event simulation.) Estimate

P (Z ≥ 5), where Z ∼ N(0, 1)

firstly by naive Monte Carlo, where you simulate from N(0, 1), and secondly by
importance sampling, where you generate the draws with

Xi = 5 + Yi, where Yi ∼ Exp(5).

(This choice is inspired by our previous analysis of the truncated normal distri-
bution.) Use N = 10000. Estimate the Monte Carlo standard error for both
methods.

4. (A good and a bad instrumental density in importance sampling). Sup-
pose that X ∼ N(0, 102) and that we want to estimate I = EX2 (= 100) using
importance sampling.

Calculate the estimate of I and also its (Monte Carlo) standard error, when
the instrumental distribution is

• the Cauchy distribution,

• the standard normal distribution N(0, 1).

Use a moderate sample size such as N = 10000.
To understand concretely why the first approach succeeds and the second ap-

proach fails miserably, check what is the maximum value of |Xi| that you obtained
in your two samples.

5. To understand theoretically what went wrong while trying to use N(0, 1)
as the instrumental distribution in the previous problem, find for which values of
σ > 0 the integral ∫ ∞

−∞
x4 f(x)2

g(x | σ)
dx

is finite, when f(x) = N(x | 0, 102) and g(x) = N(x | 0, σ2). The variance of the
importance sampling estimator is finite only in that range.

Hint: if a > 0, then
∫∞
−∞ |x|

a exp(−bx2) dx <∞ if and only if b > 0.
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