Computational Statistics

1. exercise session, 29.1.2010
2. (More conjugate analysis.) We observe the number of deaths y_{i} during one year due to a certain disease in a number of cities $i=1, \ldots, n$ with known populations $x_{i} \times 100000$ people. We are interested in the (disease-specific) death rate θ expressed as cases per year and per 100000 people.

We model the data as the observed values of random variables Y_{i}, where

$$
\left[Y_{i} \mid \Theta=\theta\right] \sim \operatorname{Poi}\left(x_{i} \theta\right), \quad i=1, \ldots, n
$$

independently. The prior is $\operatorname{Gam}(a, b)$ with known parameters $a>0$ and $b>0$.
a) Give a formula for the likelihood.
b) Find the posterior distribution.
2. Pareto distribution with parameters $k, a>0$ has the cdf

$$
F(x)= \begin{cases}1-\left(\frac{k}{x}\right)^{a}, & x \geq k \\ 0, & x<k\end{cases}
$$

How does one simulate this distribution using the inverse transform?
3. Let X be a random variable with discrete distrubution and the pmf

$$
f(x)= \begin{cases}0.3, & \text { when } x=0 \\ 0.2, & \text { when } x=1, \\ 0.5, & \text { when } x=2\end{cases}
$$

Calculate the distribution function and draw it. (It should be a right continuous step function.) Further, calculate the quantile function (using the formula for the generalized inverse function) and draw it. (It should also be a step function. Is it right continuous or left continuos?)

Check that the inverse transform gives the obvious simulation algorithm: we break the unit interval into three subintervals with lengths $0.3,0.2$ and 0.5 , which we label $0,1,2$, respectively. We simulate $U \sim \operatorname{Uni}(0,1)$ and then return the label of that subinterval, into which U falls.
4. Suppose that the random variable $X>0$ has a continuous distribution. Give an expression for f_{Y} in terms of f_{X}, when
a) $Y=X^{1 / r} / b$, where $b, r>0$.
b) $Y=\ln X$.
5. Let U be a continuous random variable with $0<U<1$ and define X as the logit of $U, X=\operatorname{logit}(U)$, where

$$
\operatorname{logit}(p)=\ln \frac{p}{1-p}, \quad 0<p<1
$$

Determine an expression for the density of X in terms of the density of U.
Remarks: (1) If p is the probability of an event happening, then the odds of that event happening (as opposed it not happening) are $p /(1-p)$, so $\operatorname{logit}(p)$ is the same as log-odds. (2) If $U \sim \operatorname{Uni}(0,1)$, then X has the (standard) logistic distribution.

