
Chapter 7

MCMC algorithms

7.1 Introduction

In a complicated Bayesian statistical model it may be very difficult to analyze
the mathematical form of the posterior and it may be very difficult to draw
an i.i.d. sample from it. Fortunately, it is often easy to generate a correlated
sample, which approximately comes from the posterior distribution. (In this
context, the word correlated means not independent). However, we would very
much prefer to have an i.i.d. sample from the posterior, instead. After one
has available a sample, one can estimate posterior expectations and posterior
quantiles using the same kind of techniques that are used with i.i.d. samples.
This is the idea behind Markov chain Monte Carlo (MCMC) methods.

In this chapter we will introduce the basic MCMC sampling algorithms that
are used in practical problems. The emphasis is on trying to understand what
one needs to do in order to implement the algorithms. In Chapter 11 we will see
why these algorithms work using certain concepts from the theory of Markov
chains in a general state space.

There are available computer programs that can implement an MCMC sim-
ulation automatically. Perhaps the most famous such program is the BUGS
system (Bayesian inference Using Gibbs Sampling), which has several concrete
implementations, most notably WinBUGS and OpenBUGS. You can analyze
most of the models of interest easily using BUGS. What the user of BUGS
needs to do is to write the description of the model in a format that BUGS
understands, read the data into the program, and then let the program do the
simulation. Once the simulation has finished, one can let the program produce
various summaries of the posterior. Using such a tool, it is simple to experiment
with different priors and different likelihoods for the same data.

However, in this chapter the emphasis is on understanding how you can write
your own MCMC programs. Why would this be of interest?

• If you have not used MCMC before, you get a better understanding of the
methods if you try to implement (some of) them yourself.

• For some models, the automated tools fail. Sometimes you can, however,
rather easily design and implement a MCMC sampler yourself, once you
understand the basic principles. (In some cases, however, designing an
efficient MCMC sampler can be an almost impossibly difficult task.)

84

March 29, 2010

• Sometimes you want to have more control over the sampling algorithm
than is provided by the automated tools. In some cases implementation
details can make a big difference to the efficiency of the method.

The most famous MCMC methods are the Metropolis–Hastings sampler and
the Gibbs sampler. Where do these names come from?

• Nicholas (Nick) Metropolis (1915–1999) was an American mathematician,
physicist and pioneer of computing, who was born in Greece. He published
the Metropolis sampler in 1953 jointly with two husband-and-wife teams,
namely A.W. and M.N. Rosenbluth and A.H. and E. Teller. At that time
the theory of general state space Markov chains was largely unexplored. In
spite of this, the authors managed to give a heuristic proof for the validity
of the method.

• W. Keith Hastings (1930–) is a Canadian statistician, who published
the Metropolis–Hastings sampler in 1970. It is a generalization of the
Metropolis sampler. Hastings presented his algorithm using a discrete
state space formalism, since the theory of general state space Markov
chains was then known only to some specialists in probability theory.
Hastings’ article did not have a real impact on statisticians until much
later.

• The name Gibbs sampler was introduced by the brothers S. and D. Geman
in an article published in 1984. Related ideas were published also by other
people at roughly the same time. The method is named after the American
mathematician and physicist J. Willard Gibbs (1893–1903), who studied
thermodynamics and statistical physics, but did not have anything to do
with MCMC.

In the late 1980’s and early 1990’s there was an explosion in the number
of studies, where people used MCMC methods in Bayesian inference. Now
there was available enough computing power to apply the methods, and besides,
the theory of general state space Markov chains had matured so that readable
expositions of the theory were available.

Nowadays, many statisticians routinely use the concept of a Markov chain
which evolves in a general state space. Unfortunately, their mathematical theory
is still explained only in a handful of text books.

7.2 Basic ideas of MCMC

MCMC algorithms are based on the idea of a Markov chain which evolves in
discrete time. A Markov chain is a stochastic process

θ(0), θ(1), θ(2), . . .

Here θ(i) (the state of the process at time i) is a RV whose values lie in a state
space, which usually is a subset of some Euclidean space Rd. The state space
is the same for all times i. We write the time index as a superscript so that we
can index the components θ(i) using a subscript.

Markov chains have the following Markov property: the distribution of
the next state θ(i+1) depends on the history θ(0), θ(1), . . . , θ(i) only through the

85

March 29, 2010

present state θ(i). The Markov chains used in MCMC methods are homoge-
neous: the conditional distribution of θ(i+1) given θ(i) does not depend on the
index i.

The following algorithm shows how one can simulate a Markov chain. Intu-
itively, a Markov chain is nothing else but the mathematical idealization of this
simulation algorithm.

Algorithm 14: Simulating a Markov chain.

Generate θ(0) from a given initial distribution;1

for i = 0, 1, 2, . . . do2

Compute the next state θ(i+1) using some rule, where you can use the3

present state θ(i) (but no earlier states) and freshly generated random
numbers.

end4

If the rule for calculating the next state does not change depending on the
value of the loop index i, then the generated Markov chain is homogeneous.

Some (but not all) Markov chains have an invariant distribution (or a
stationary distribution or equilibrium distribution), which can be defined as
follows. If the initial state of the chain θ(0) follows the invariant distribution,
then also all the subsequent states θ(i) follow it.

If a Markov chain has an invariant distribution, then (under certain regu-
larity conditions) the distribution of the state θ(i) converges to that invariant
distribution (in a certain sense). Under certain regularity conditions, such a
chain is ergodic, which ensures that an arithmetic average (or an ergodic av-
erage) of the form

1
N

N∑
i=1

h(θ(i))

converges, almost surely, to the corresponding expectation calculated under the
invariant distribution as N → ∞. That is, the ergodic theorem for Markov
chains then states that the strong law of large numbers holds, i.e.,

lim
N→∞

1
N

N∑
i=1

h(θ(i))→ Efh(Θ) =
∫
h(θ)f(θ) dθ, (7.1)

where f is the density of the invariant distribution. This will then hold for
all functions h for which the expectation Efh(Θ) exists, so the convergence
is as strong as in the strong law of large numbers for i.i.d. sequences. There
are also more advanced forms of ergodicity (geometric ergodicity and uniform
ergodicity), which a Markov chain may either have or not have.

Under still more conditions, Markov chains also satisfy a central limit theo-
rem, which characterizes the speed of convergence in the ergodic theorem. The
central limit theorem for Markov chains is of the form

√
N

(
1
N

N∑
i=1

h(θ(i))− Efh(Θ)

)
d−→ N(0, σ2

h).

The speed of convergence is of the same order of N as in the central limit
theorem for i.i.d. sequences. However, estimating the variance σ2

h in the central
limit theorem is lot trickier than with i.i.d. sequences.

86

March 29, 2010

After this preparation, it is possible to explain the basic idea of MCMC
methods. The idea is to set up an ergodic Markov chain which has the posterior
distribution as its invariant distribution. Doing this is often surprisingly easy.
Then one simulates values

θ(0), θ(1), θ(2), . . .

of the chain. When t is sufficiently large, then θ(t) and all the subsequent states
θ(t+i), i ≥ 1 follow approximately the posterior distribution. The time required
for the chain to approximately achieve its invariant distribution is called the
burn-in. After the initial burn-in period has been discarded, the subsequent
values

θ(t), θ(t+1), θ(t+2), . . .

can be treated as a dependent sample from the posterior distribution, and we can
calculate posterior expectations, quantiles and other summaries of the posterior
distribution based on this sample.

After the burn-in period we need to store the simulated values of the chain
for later use. So, for a scalar parameter we need a vector to store the results,
for a vector parameter we need a matrix to store the results and so on. To save
space, one often decides to thin the sequences by keeping only every kth value
of each sequence and by discarding the rest.

Setting up some MCMC algorithm for a given posterior is usually easy.
However, the challenge is to find an MCMC algorithm which converges rapidly
and then explores efficiently the whole support of the posterior distribution.
Then one can get a reliable picture of the posterior distribution after stopping
the simulation after a reasonable number of iterations.

In practice one may want to try several approaches for approximate posterior
inference in order to become convinced that the posterior inferences obtained
with MCMC are reliable. One can, e.g., study simplified forms of the statis-
tical model (where analytical developments or maximum likelihood estimation
or other asymptotic approximations to Bayesian estimation may be possible),
simulate several chains which are initialized from different starting points and
are possibly computed with different algorithms, and compute approximations
to the posterior.

7.3 The Metropolis–Hastings algorithm

Now we consider a target distribution with density π(θ), which may be available
only in an unnormalized form π̃(θ). Usually the target density is the posterior
density of a Bayesian statistical model,

π(θ) = p(θ | y).

Actually we only need to know an unnormalized form of the posterior, which is
given, e.g., in the form of prior times likelihood,

π̃(θ) = p(θ) p(y | θ).

The density π(θ) may be a density in the generalized sense, so we may have a
discrete distribution for some components of θ and a continuous distribution for
others.

87

March 29, 2010

For the Metropolis–Hastings algorithm we need a proposal density q(θ′ | θ),
from which we are able to simulate. (Some authors call the proposal density
the jumping density or candidate generating density.) As a function of θ′, the
proposal density q(θ′ | θ) is a density on the parameter space for each value of
θ. When the current state of the chain is θ = θ(i), we propose a value for the
next state from the distribution with density

θ′ 7→ q(θ′ | θ)

The proposed value θ′ is then accepted or rejected in the algorithm. If the
proposal is accepted, then the next state θ(i+1) is taken to be θ′, but otherwise
the chain stays in the same state, i.e., θ(i+1) is assigned the current state θ(i).

The acceptance condition has to be selected carefully so that we get the tar-
get distribution as the invariant distribution of the chain. The usual procedure
works as follows. We calculate the value of the Metropolis–Hastings ratio (M–H
ratio)

r = r(θ′, θ) =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ),

(7.2)

where θ = θ(i) is the current state and θ′ is the proposed state. Then we generate
a value u from the standard uniform Uni(0, 1). If u < r, then we accept the
proposal and otherwise reject it. For the analysis of the algorithm, it is essential
to notice that the probability of accepting the proposed θ′, when the current
state is θ, is given by

Pr(proposed value is accepted | θ(i) = θ, θ′) = min(1, r(θ′, θ)). (7.3)

We need here the minimum of one and the M–H ratio, since the M–H ratio may
very well be greater than one.

Some explanations are in order.

• The denominator of the M–H ratio (7.2) is the joint density of the proposal
θ′ and the current state θ, when the current state already follows the
posterior.

• The numerator is of the same form as the denominator, but θ and θ′ have
exchanged places.

• If π(θ(0)) > 0, then the denominator of the M–H ratio is always strictly
positive during the algorithm. When i = 0 this follows from the obser-
vation that q(θ′ | θ(0)) has to be positive, since θ′ is generated from that
density. Also π(θ(1)) has to be positive, thanks to the form of the accep-
tance test. The rest follows by induction.

• We do not need to know the normalizing constant of the target distribu-
tion, since it cancels in the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

(7.4)

• If the target density is a posterior distribution, then the M–H ratio is given
by

r =
fY |Θ(y | θ′) fΘ(θ′) q(θ | θ′)
fY |Θ(y | θ) fΘ(θ) q(θ′ | θ)

. (7.5)

88

March 29, 2010

• Once you know what the notation is supposed to mean, you can use an
abbreviated notation for the M–H ratio, such as

r =
p(θ′ | y) q(θ | θ′)
p(θ | y) q(θ′ | θ)

.

Here, e.g., p(θ′ | y) is the value of the posterior density evaluated at the
proposal θ′.

An explanation of why the target distribution is the invariant distribution of
the resulting Markov chain will be given in Chapter 11. Then it will become
clear, that other formulas in place of eq. (7.2) would work, too. However, the
formula (7.2) is known to be optimal (in a certain sense), and therefore it is the
one that is used in practice.

In the Metropolis–Hastings algorithm the proposal density can be selected
otherwise quite freely, but we must be sure that we can reach (with positive
probability) any reasonably possible region in the parameter space starting from
any initial state θ(0) with a finite number of steps. This property is called
irreducibility of the Markov chain.

Algorithm 15: The Metropolis–Hastings algorithm.

Input: An initial value θ(0) such that π̃(θ(0)) > 0 and the number of
iterations N .

Result: Values simulated from a Markov chain which has as its invariant
distribution the distribution corresponding to the unnormalized
density π̃(θ).

for i = 0, 1, 2, . . . , N do1

θ ← θ(i);2

Generate θ′ from q(· | θ) and u from Uni(0, 1);3

Calculate the M–H ratio4

r =
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

Set5

θ(i+1) ←

{
θ′, if u < r

θ, otherwise.

end6

Algorithm 15 sums up the Metropolis–Hastings algorithm. When imple-
menting the algorithm, one easily comes across problems, which arise because
of underflow or overflow in the calculation of the M–H ratio r. Most of such
problems can be cured by calculating with logarithms. E.g., when the target
distribution is a posterior distribution, then one should first calculate s = log r
by

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(θ | θ′))− log(q(θ′ | θ))

89

March 29, 2010

and only then calculate r = exp(s). Additionally, one might want cancel com-
mon factors from r before calculating its logarithm.

Implementing some Metropolis–Hastings algorithm for any given Bayesian
statistical model is usually straightforward. However, finding a proposal distri-
bution which allows the chain to converge quickly to the target distribution and
allows it to explore the parameter space efficiently may be challenging.

7.4 Concrete Metropolis–Hastings algorithms

In the Metropolis–Hastings algorithm, the proposal θ′ is in practice produced by
running a piece of code, which can use the current state θ(i), freshly generated
random numbers from any distribution and arbitrary arithmetic operations. We
must be able to calculate the density of the proposal θ′, when the current state
is equal to θ. This is then q(θ′ | θ), which we must be able to evaluate. Or at
least we must be able to calculate the value of the ratio

q(θ | θ′)/q(θ′ | θ).

Different choices for the proposal density correspond to different choices for the
needed piece of code. The resulting Metropolis–Hastings algorithms are named
after the properties of the proposal distribution.

7.4.1 The independent Metropolis–Hastings algorithm

In the independent M–H algorithm (other common names: independence chain
independence sampler), the proposal density is a fixed density, say s(θ′), which
does not depend on the value of the current state. In the corresponding piece
of code, we only need to generate the value θ′ from the proposal distribution.

If the proposal distribution happens to be the target distribution, then every
proposal will be accepted, and as a result we will get an i.i.d. sample from the
target distribution.

In order to to sample the target distribution properly with the independent
M–H algorithm, the proposal density s must be positive everywhere, where the
target density is positive. If there exist a majorizing constant M , such that

π(θ) ≤Ms(θ) ∀θ,

then the resulting chain can be shown to have good ergodic properties, but if
this condition fails, then the convergence properties of the chain can be bad.
(In the independent M–H algorithm one does not need to know the value of
M .) This implies that the proposal density should be such that the accept–
reject method or importance sampling using that proposal distribution would
be possible, too. In particular, the tails of the proposal density s should be at
least as heavy as the tails of the target density. Finding such proposal densities
may be difficult in high-dimensional problems.

7.4.2 Symmetric proposal distribution

If the proposal density is symmetric in that

q(θ′ | θ) = q(θ | θ′), ∀θ, θ′,

90

March 29, 2010

then the proposal density cancels from the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π(θ′)
π(θ)

.

This the sampling method that was originally proposed by Metropolis. Propos-
als leading to a higher value for the target density are automatically accepted,
and other proposals may be accepted or rejected. Later Hastings generalized
the method for non-symmetric proposal densities.

7.4.3 Random walk Metropolis–Hastings

Suppose that g is a density on the parameter space an that we calculate the
proposal as follows,

generate w from density g and set θ′ ← θ + w.

Then the proposal density is

q(θ′ | θ) = g(θ′ − θ).

This kind of a proposal is called a random walk proposal. If the density g is
symmetric, i.e.,

g(−w) = g(w) ∀w,

then the proposal density q(θ′ | θ) is also symmetric, and thus cancels from the
M–H ratio. In the case of a symmetric random walk proposal, one often speaks
of the random walk Metropolis (RWM) algorithm.

Actually, a random walk is a stochastic process of the form Xt+1 = Xt+wt,
where the random variables wt are i.i.d. Notice that the stochastic process
produced by the random walk M–H algorithm is not a random walk, since the
proposals can either be accepted or rejected.

The symmetric random walk Metropolis–Hastings algorithm (also known
as the random walk Metropolis algorithm) is one of the most commonly used
forms of the Metropolis–Hastings method. The most commonly used forms for
g are the multivariate normal or multivariate Student’s t density centered at the
origin. This is, of course, appropriate only for continuous posterior distributions.

Often one selects the covariance matrix of the proposal distribution as

aC,

where C is an approximation to the covariance matrix of the target distribution
(in Bayesian inference C is an approximation to the posterior covariance ma-
trix) and the scalar a is a tuning constant which should be calibrated carefully.
These kind of proposal distributions work well when the posterior distribution
is approximately normal. One sometimes needs to reparametrize the model in
order to make this approach work better.

The optimal value of a and the corresponding optimal acceptance rate has
been derived theoretically, when the target density is a multivariate normal
Nd(µ,C) and the random walk proposal is Nd(0, aC), see [13]. The scaling
constant a should be about (2.38)2/d when d is large. The corresponding ac-
ceptance rate (the number of accepted proposals divided by the total number

91

March 29, 2010

of proposals) is from around 0.2 (for high-dimensional problems) to around 0.4
(in dimensions one or two). While these results have been derived using the
very restrictive assumption that the target density is a multivariate normal, the
results anyhow give rough guidelines for calibrating a in a practical problem.

How and why should one try to control the acceptance rate in the random
walk M–H algorithm? If the acceptance rate is too low, then the chain is not
able to move, and the proposed updating steps are likely to be too large. In this
case one could try a smaller value for a. However, a high acceptance rate may
also signal a problem, since then the updating steps may be too small. This
may lead to the situation where the chain explores only a small portion of the
parameter space. In this case one should try a larger value for a. From the
convergence point of view, too high acceptance rate is a bigger problem. A low
acceptance rate is a problem only from the computing time point of view.

In order to calibrate the random walk M–H algorithm, one needs an estimate
of its acceptance rate. A simple-minded approach is just to keep track of the
number of accepted proposals. A better approach is to calculate the average of
the acceptance probabilities,

1
N

n∑
i=1

min(1, ri),

where ri is the M–H ratio in the ith iteration.
In practice, one can try to tune a iteratively, until the acceptance rate is

acceptable. The tuning iterations are discarded, and the MCMC sample on
which the inference is based is calculated using the fixed proposal distribution,
whose scale a is the selected value. Fixing the proposal distribution is necessary,
since the theory of the Metropolis–Hastings algorithm requires a homogeneous
Markov chain, i.e., a proposal density q(θ′ | θ) which does not depend on the
iteration index.

Recently, several researchers have developed adaptive MCMC algorithms,
where the proposal distribution is allowed to change all the time during the
iterations, see [1] for a review. Be warned that the design of valid adpative
MCMC algorithms is subtle and that their analysis requires tools which are
more difficult than the general state space Markov chain theory briefly touched
upon in Chapter 11.

Example 7.1. Let us try the random walk chain for the target distribution
N(0, 1) by generating the increment from the normal distribution N(0, σ2) us-
ing the following values for the variance: a) σ2 = 4 b) σ2 = 0.1 c) σ2 = 40.
In situation a) the chain is initialized far away in the tails of the target dis-
tribution, but nevertheless it quickly finds its way to the main portion of the
target distribution and then explores it efficiently. Such a chain is said to mix
well. In situations b) and c) the chains are initialized at the center of the target
distribution, but the chains mix less quickly. In situation b) the step length is
too small, but almost all proposals get accepted. In situation c) the algorithm
proposes too large steps, almost all of which get rejected. Figure 7.1 presents
trace plots (or time series plots) of the chain in the three situations.

4

92

March 29, 2010

Figure 7.1: Trace plots of the random walk chain using the three different
proposal distributions.

0 200 400 600 800 1000

−
10

−
4

0

a)

0 200 400 600 800 1000

−
3

−
1

1
3

b)

0 200 400 600 800 1000

−
3

−
1

1
3

c)

93

March 29, 2010

7.4.4 Langevin proposals

Unlike a random walk, the Langevin proposals introduce a drift which moves
the chain towards the modes of the posterior distribution. When the current
state is θ, the proposal θ′ is generated with the rule

θ′ = θ +
σ2

2
∇(log π(θ)) + σ ε, ε ∼ Np(0, I).

Here σ > 0 is a tuning parameter and

∇(log π(θ)) = ∇(log π̃(θ))

is the gradient of the logarithm of the (unnormalized) posterior density. The
proposal distribution is motivated by a stochastic differential equation, which
has π as its stationary distribution.

This proposal is then accepted or rejected using the ordinary Metropolis–
Hastings rule, where the proposal density is

q(θ′ | θ) = Np(θ′ | θ +
σ2

2
∇(log π(θ)), σ2I).

7.4.5 Reparametrization

Suppose that the posterior distribution of interest is a continuous distribution
and that we have implemented functions for calculating the log-prior and the log-
likelihood in terms of the parameter θ. Now we want to consider a diffeomorphic
reparametrization

φ = g(θ) ⇔ θ = h(φ).

Typical reparametrizations one might consider are taking the logarithm of a
positive parameter or calculating the logit function of a parameter constrained to
the interval (0, 1). What needs to be done in order to implement the Metropolis–
Hastings algorithm for the new parameter vector φ?

First of all, we need a proposal density q(φ′ | φ) and the corresponding code.
We also need to work out how to compute one of the Jacobians

Jh(φ) =
∂θ

∂φ
or Jg(θ) =

∂φ

∂θ
.

In φ-space the target density is given by the change of variables formula

fΦ|Y (φ | y) = fΘ|Y (θ | y)
∣∣∣∣ ∂θ∂φ

∣∣∣∣ = fΘ|Y (θ | y) |Jh(φ)| ,

where θ = h(φ).
The M–H ratio, when we propose φ′ and the current value is φ, is given by

r =
fΦ|Y (φ′ | y) q(φ | φ′)
fΦ|Y (φ | y) q(φ′ | φ)

=
fΘ|Y (θ′ | y) |Jh(φ′)| q(φ | φ′)
fΘ|Y (θ | y) |Jh(φ)| q(φ′ | φ)

=
fY |Θ(y | θ′) fΘ(θ′) q(φ | φ′)
fY |Θ(y | θ) fΘ(θ) q(φ′ | φ)

|Jh(φ′)|
|Jh(φ)|

94

March 29, 2010

here θ′ = h(φ′) and θ = h(φ). Sometimes it is more convenient to work with
the Jacobian Jg, but this is easy, since

Jg(θ) =
1

Jh(φ)
.

Above we viewed the Jacobians as arising from expressing the target density
using the new φ parametrization instead of the old θ parametrization. An
alternative interpretation is that we should express the proposal density in θ
space instead of φ space and then use the ordinary formula for M–H ratio. Both
viewpoints yield the same formulas.

In order to calculate the logarithm of the M–H ratio, we need to do the
following.

• Calculate the θ and θ′ values corresponding to the current φ and proposed
φ′ values.

• Calculate the log-likelihood and log-prior using the values θ and θ′.

• Calculate the logarithm s of the M–H ratio as

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(φ | φ′))− log(q(φ′ | φ))

+ log(|Jh(φ′)|)− log(|Jh(φ)|).

Finally, calculate r = exp(s).

• The difference of the logarithms of the absolute Jacobians can be calcu-
lated either on the φ scale or on the θ scale by using the identity

log(|Jh(φ′)|)− log(|Jh(φ)|) = log(|Jg(θ)|)− log(|Jg(θ′)|).

7.4.6 State-dependent mixing of proposal distributions

Let θ be the current state of the chain. Suppose that the proposal θ′ is drawn
from a proposal density, which is selected randomly from a list of alternatives

q(θ′ | θ, j), j = 1, . . .K,

What is more, the selection probabilities may depend on the current state, as
follows.

• Draw j from the pmf β(· | θ), j = 1, . . . ,K.

• Draw θ′ from the density q(θ′ | θ, j) which corresponds to the selected j.

• Accept the proposed value θ′ as the new state, if U < r, where U ∼
Uni(0, 1), and

r =
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

. (7.6)

Otherwise the chain stays at θ.

95

March 29, 2010

This formula (7.6) for the M–H ratio r is contained in Green’s article [6],
which introduced the reversible jump MCMC method. The algorithm could be
called the Metropolis–Hastings–Green algorithm.

The lecturer does know any trick for deriving formula (7.6) from the M–H
ratio of the ordinary M–H algorithm. The beauty of formula (7.6) lies in the
fact that one only needs to evaluate q(θ′ | θ, j) and q(θ | θ′, j) for the proposal
density which was selected. A straightforward application of the M–H algorithm
would require one to evaluate these densities for all of the K possibilities.

If the selection probabilities β(j | θ) do not actually depend on θ, then they
cancel from the M–H ratio. In this case (7.6) is easily derived from the ordinary
M–H algorithm.

7.5 Gibbs sampler

One of the best known ways of setting up an MCMC algorithm is Gibbs sam-
pling, which is now discussed supposing that the target distribution is a posterior
distribution. However, the method can be applied to any target distribution,
when the full conditional distributions of the target distribution are available.

Suppose that the parameter vector has been divided into components

θ = (θ1, θ2, . . . , θd),

where θj need not be a scalar. Suppose also that the posterior full conditional
distributions of each of the components are available in the sense that we know
how to simulate them. This is the case when the statistical model exhibits
conditional conjugacy with respect to all of the components θj . Then the basic
idea behind Gibbs sampling is that we simulate successively each component
θj from its (posterior) full conditional distribution. It is convenient to use the
abbreviation θ−j for the vector, which contains all the other components of θ
but θj , i.e.

θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd). (7.7)

Then the posterior full conditional of θj is

p(θj | θ−j , y) = fΘj |Θ−j ,Y (θj | θ−j , y). (7.8)

A convenient shorthand notation for the posterior full conditional is

p(θj | ·),

where the dot denotes all the other random variables except θj .
The most common form of the Gibbs sampler is the systematic scan Gibbs

sampler, where the components are updated in a fixed cyclic order. It is also
possible to select at random which component to update next. In that case one
has the random scan Gibbs sampler.

Algorithm 16 presents the systematic scan Gibbs sampler, when we update
the components using the order 1, 2, . . . , d. In the algorithm i is the time index
of the Markov chain. One needs d updates to get from θ(i) to θ(i+1). To
generate the j’th component, θ(i+1)

j , one uses the most recent values for the other
components, some of which have already been updated. I.e., when the value for

96

March 29, 2010

θ
(i+1)
j is generated, it is generated from the corresponding full conditional using

the following values for the other components,

θcur
−j = (θ(i+1)

1 , . . . , θ
(i+1)
j−1 , θ

(i)
j+1, . . . , θ

(i)
d).

Algorithm 16: Systematic scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0 and the number
of iterations N .

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0)
1

for i = 0, 1, . . . , N do2

for j = 1, . . . , d do3

draw a new value for the jth component θcur
j of θcur from the4

posterior full conditional fΘj |Θ−j ,Y (θj | θcur
−j , y)

end5

θ(i+1) ← θcur
6

end7

Usually the updating steps for the components of θ are so heterogeneous,
that the inner loop is written out in full. E.g., in the case of three components,
θ = (φ, ψ, τ), the actual implementation would probably look like the follow-
ing algorithm 17. This algorithm also demonstrates, how one can write the
algorithm using the abbreviated notation for conditional densities.

Algorithm 17: Systematic scan Gibbs sampler for three components θ =
(φ, ψ, τ) given initial values for all the components except the one that gets
updated the first.
ψcur ← ψ0; τ cur ← τ0;1

for i = 0, 1, . . . , N do2

draw φcur from p(φ | ψ = ψcur, τ = τ cur, y);3

draw ψcur from p(ψ | φ = φcur, τ = τ cur, y);4

draw τ cur from p(τ | φ = φcur, ψ = ψcur, y);5

φi+1 ← φcur; ψi+1 ← ψcur; τi+1 ← τ cur;6

end7

Algorithm 18 presents the random scan Gibbs sampler. Now one time step
of the Markov chain requires only one update of a randomly selected component.
In the random scan version, one can have different probabilities for updating the
different components of θ, and this freedom can be useful for some statistical
models.

If the statistical model exhibits conditional conjugacy with respect to all the
components of θ, then the Gibbs sampler is easy to implement and is the method
of choice for many statisticians. One only needs random number generators for
all the posterior full conditionals, and these are easily available for the standard
distributions. An appealing feature of the method is the fact that one does not
need to choose the proposal distribution as in the Metropolis–Hastings sampler;

97

March 29, 2010

Algorithm 18: Random scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0, the number of
iterations N and a probability vector β1, . . . , βd: each βj > 0 and
β1 + · · ·+ βd = 1.

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0);1

for i = 0, 1, . . . , N do2

select j from {1, . . . , d} with probabilities (β1, . . . , βd);3

draw a new value for the component θcur
j from the posterior full4

conditional fΘj |Θ−j ,Y (θj | θcur
−j , y);

θ(i+1) ← θcur;5

end6

the proposals of the Gibbs sampler are somehow automatically tuned to the
target posterior. However, if some of the components of θ are strongly correlated
in the posterior, then the convergence of the Gibbs sampler suffers. So one
might want to reparametrize the model so that the transformed parameters are
independent in their posterior. Unfortunately, most reparametrizations destroy
the conditional conjugacy properties on which the attractiveness of the Gibbs
sampler depends.

The name Gibbs sampling is actually not quite appropriate. Gibbs studied
distributions arising in statistical physics (often called Gibbs distributions or
Boltzmann distributions), which have densities of the form

f(x1, . . . , xd) ∝ exp
(
− 1
kT

E(x1, . . . , xd)
)
,

where (x1, . . . , xd) is the state of physical system, k is a constant, T is the tem-
perature of the system, and E(x1, . . . , xd) > 0 is the energy of the system. The
Geman brothers used a computational method (simulated annealing), where
a computational parameter corresponding to the the temperature of a Gibbs
distribution was gradually lowered towards zero. At each temperature the dis-
tribution of the system was simulated using the Gibbs sampler. This way they
could obtain the configurations of minimal energy in the limit. The name Gibbs
sampling was selected in order to emphasize the relationship with the Gibbs dis-
tributions. However, when the Gibbs sampler is applied to posterior inference,
the temperature parameter is not needed, and therefore the reason for the name
Gibbs has disappeared. Many authors have pointed this out this deficiency and
proposed alternative names for the sampling method, but none of them have
stuck.

7.6 Componentwise updates in the Metropolis–
Hastings algorithm

Already Metropolis et al. and Hastings pointed out that one can use componen-
twise updates in the Metropolis–Hastings algorithm. This is sometimes called
single-site updating.

98

March 29, 2010

When the parameter vector is divided into d components

θ = (θ1, θ2, . . . , θd),

one needs d proposal densities

θ′j 7→ qj(θ′j | θcur), j = 1, . . . , d,

which may all be different.
When it is time to update the jth component, we do a single Metropolis–

Hastings step. When the current value of the parameter vector is θcur, we
propose the vector θ′, where the jth component is drawn from the proposal
density qj(θj | θcur), and the rest of the components of θ′ are equal to those of
the current value θcur. Then the proposal is accepted or rejected using the M–H
ratio

r =
p(θ′ | y) qj(θcur

j | θ′)
p(θcur | y) qj(θ′j | θcur)

(7.9)

The vectors θ′ and θcur differ only in the jth place, and therefore one can write
the M–H ratio (for updating the jth component) also in the form

r =
p(θ′j | θcur

−j , y) qj(θcur
j | θ′)

p(θcur
j | θcur

−j , y) qj(θ′j | θcur)
, (7.10)

where we used the multiplication rule to express the joint posterior as

p(θ | y) = p(θ−j | y) p(θj | θ−j , y)

both in the numerator and in the denominator, and then cancelled the common
factor p(θcur

−j | y). Although eqs. (7.9) and (7.10) are equivalent, notice that
in eq. (7.9) we have the M–H ratio when we regard the joint posterior as the
target distribution, but in eq. (7.10) we have ostensibly the M–H ratio, when
the target is the posterior full conditional of component j. If one then selects
as qj the posterior full conditional of the component θj for each j, then each
proposal is accepted and the Gibbs sampler ensues.

One can use this procedure either a systematic or a random scan sampler,
as is the case with the Gibbs sampler. The resulting algorithm is often called
the Metropolis–within–Gibbs sampler. (The name is illogical: the Gibbs sam-
pler is a special case of the Metropolis–Hastings algorithm with componentwise
updates.) This is also a very popular MCMC algorithm, since then one does
not have to design a single complicated multivariate proposal density but p sim-
pler proposal densities, many of which may be full conditional densities of the
posterior.

Small modifications in the implementation can sometimes make a big differ-
ence to the efficiency of the sampler. One important decision is how to divide the
parameter vector into components. This is called blocking or grouping. As a
general rule, the less dependent the components are in the posterior, the better
the sampler. Therefore it may be a good idea to combine highly correlated
components into a single block, with is then updated as a single entity.

It is sometimes useful to update the whole vector jointly using a single
Metropolis–Hastings acceptance test, even if the proposed value is build up
component by component taking advantage of conditional conjugacy proper-
ties. These and other ways of improving the performance of MCMC algorithms
in the context of specific statistical models are topics of current research.

99

March 29, 2010

7.7 Analyzing MCMC output

After the MCMC algorithm has been programmed and tested, the user should
investigate the properties of the algorithm for the particular problem he or she
is trying to solve. There are available several tools, e.g., for

• diagnosing convergence

• estimating Monte Carlo standard errors.

We discuss some of the simpler tools.
A trace plot of a parameter φ is a plot of the iterates φ(t) against the

iteration number t. These are often examined for each of the components of
the parameter vector, and sometimes also for selected scalar functions of the
parameter vector. A trace plot is also called a sample path, a history plot or
a times series plot. If the chain mixes well, then the trace plots move quickly
away from their starting values and they wiggle vigorously in the region sup-
ported by the posterior. In that case one may select the length of the burn-in
by examining trace plots. (This is not foolproof, since the chain may only have
converged momentarily to some neighborhood of a local maximum of the poste-
rior.) If the chain mixes poorly, then the traces will remain nearly constant for
many iterations and the state may seem to wander systematically towards some
direction. Then one may need a huge number of iterations before the traces
show convergence.

An autocorrelation plot is a plot of the autocorrelation of the sequence
φ(t) at different iteration lags. These can be produced for all the interesting
components of θ, but one should reject the burn-in before estimating the auto-
correlation so that one analyzes only that part of the history where the chain
is approximately stationary. The autocorrelation function (acf) of a stationary
sequence of RVs (Xi) at lag k is defined by

R(k) =
E[(Xi − µ)(Xi+k − µ)]

σ2
, k = 0, 1, 2, . . . ,

where µ = EXi, σ2 = varXi, and the assumption of stationarity entails that µ,
σ2 and R(k) do not depend on index i. For an i.i.d. sequence the autocorrelation
function is one at lag zero and zero otherwise. A chain that mixes slowly exhibits
slow decay of the autocorrelation as the lag increases. When there are more than
one parameter, one may also examine cross-correlations between the parameters.

There exist tools for convergence diagnostics, which try to help in decid-
ing whether the chain has already approximately reached its stationary distri-
bution and in selecting the length of the burn-in period. E.g., in the approach of
Gelman and Rubin, the chain is run many times starting from separate starting
values dispersed over the support of the posterior. After the burn-in has been
discarded, one calculates statistics which try to check whether all the chains
have converged to the same distribution. In some other approches one needs
to simulate only a single chain and one compares the behaviour of the chain in
the beginning and in the end of the simulation run. Such convergence diagnos-
tic are available in the coda R package and in the boa R package. However,
convergence diagnostic tools can not prove that the chain has converged. They
only help you to detect obvious cases of non-convergence.

100

March 29, 2010

If the chain seems to have converged, then it is of interest to estimate stan-
dard errors for the scalar parameters. The naive estimate (which is correct for
i.i.d. sampling) would be to calculate the sample standard deviation of the last
L iterations divided by

√
L (after the burn-in has been discarded). However,

MCMC iterates are typically positively correlated, and therefore this would un-
derestimate severely the standard error.

A simple method for estimating the standard errors for posterior expecta-
tions

E[h(Θ) | Y = y]

is the method of batch means [8], where the L last iterates are divided into
a non-overlapping batches of length b. Then one computes the mean h̄j of the
values h(θ(t)) inside each of the batches j = 1, . . . , a and estimates the standard
error of the grand mean h̄ as the square roof of

1
a

1
a− 1

a∑
j=1

(h̄j − h̄)2,

where h̄ is the grand mean calculated from all the the L last iterates h(θ(t)). The
idea here is to treat the batch means as i.i.d. random variables whose expected
value is the posterior expectation. One should perhaps select the batch length
as a function of the simulation length, e.g., with the rule b = b

√
Lc.

7.8 Example

Consider the two dimensional normal distribution N(0,Σ) as the target distri-
bution, where

Σ =
[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, −1 < ρ < 1, σ1, σ2 > 0,

and ρ is nearly one. Of course, it is possible to sample this two-variate normal
distribution directly. However, we next apply MCMC algorithms to this highly
correlated toy problem in order to demonstrate properties of the Gibbs sampler
and a certain Metropolis–Hastings sampler.

The full conditionals of the target distribution are given by

[Θ1 | Θ2 = θ2] ∼ N
(
ρσ1
σ2
θ2, (1− ρ2)σ2

1

)
[Θ2 | Θ1 = θ1] ∼ N

(
ρσ2
σ1
θ1, (1− ρ2)σ2

2

)
,

and these are easy to simulate. We now suppose that

ρ = 0.99, σ1 = σ2 = 1.

Figure 7.2 shows the ten first steps of the Gibbs sampler, when all the component
updates (“half-steps” of the sampler) are shown. Since ρ is almost one, the Gibbs
sampler is forced to take small steps, and it takes a long time for it to explore
the main support of the target distribution.

101

March 29, 2010

Figure 7.2: The first ten iterations of the Gibbs sampler. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.

−1.5 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
5

Gibbs sampler

theta1

th
et

a2

102

March 29, 2010

Figure 7.3: The first ten iterations of the Metropolis–Hastings sampler. Notice
the sampler produced less than ten distinct θ values. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●●●●●

●●

●

●

MH sampler

theta1

th
et

a2

103

March 29, 2010

Another strategy would be to generate the proposal in two stages as follows.
We first draw θ′1 from some convenient proposal distribution, e.g., by the random
walk proposal

θ′1 = θcur
1 + w,

where w is generated from (say) N(0, 4). Then we draw θ′2 from the full condi-
tional distribution of θ2 conditioning on the proposed value θ′1. Then the overall
proposal density is given by

q((θ′1, θ
′
2) | (θcur

1 , θcur
2)) = N(θ′1 − θcur

1 | 0, 4)N(θ′2 |
ρσ2

σ1
θ′1, (1− ρ2)σ2

2)

We then either accept or reject the transition from θcur to θ′ using the ordinary
acceptance rule of the Metropolis–Hastings sampler. This algorithm explores
the target distribution much more efficiently, as can be guessed from Figure 7.3,
which shows the first ten iterations of the sampler. The random walk proposal
gives the component θ1 freedom to explore the parameter space, and then the
proposal from the full conditional for θ2 draws the proposed pair into the main
support of the target density.

Figure 7.4 shows the traces of the components using the two algorithms.
The Metropolis–Hastings sampler seems to mix better than the Gibbs sam-
pler, since there seems to be less dependence between the consecutive simu-
lated values. Figure 7.5 shows the autocorrelation plots for the two components
using the two different samplers. The autocorrelation functions produced by
the Gibbs sampler decay more slowly than those produced by the Metropolis–
Hastings sampler, and this demonstrates that we obtain better mixing with the
Metropolis–Hastings sampler.

7.9 Literature

The original references on the Metropolis sampler, the Metropolis–Hastings sam-
pler and the Gibbs sampler are [9, 7, 4]. The article by Gelfand and Smith [3]
finally convinced the statistical community about the usefulness of these meth-
ods in Bayesian inference. The book [5] contains lots of information on MCMC
methods and their applications.

The books by Nummelin [11] or Meyn and Tweedie [10] can be consulted
for the theory of Markov chains in a general state space. The main features of
the general state space theory are explained in several sources, including [2, Ch.
14] or [12, Ch. 6].

Bibliography

[1] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive MCMC.
Statistics and Computing, 18:343–373, 2008.

[2] Krishna B. Athreya and Soumendra N. Lahiri. Measure Theory and Prob-
ability Theory. Springer Texts in Statistics. Springer, 2006.

[3] A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calcu-
lating marginal densities. Journal of the American Statistical Association,
85:398–409, 1990.

104

March 29, 2010

Figure 7.4: Sampler traces for the two components θ1 and θ2 using the Gibbs
sampler and the Metropolis–Hastings sampler.

0 200 400 600 800

−
2

0
1

2
3

Gibbs sampler: theta1

Iteration

0 200 400 600 800

−
2

0
1

2

Gibbs sampler: theta2

Iteration

0 200 400 600 800

−
4

−
2

0
2

MH sampler: theta1

Iteration

0 200 400 600 800

−
4

−
2

0
2

MH sampler: theta2

Iteration

Sampler traces

105

March 29, 2010

Figure 7.5: Sampler autocorrelation functions for the two components θ1 and
θ2 using the Gibbs sampler and the Metropolis–Hastings sampler.

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

theta1

Lag

A
ut

oc
or

re
la

tio
n Gibbs

Sampler Lag−Autocorrelations

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

theta1

Lag

A
ut

oc
or

re
la

tio
n MH

Sampler Lag−Autocorrelations

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

theta2

Lag

A
ut

oc
or

re
la

tio
n Gibbs

Sampler Lag−Autocorrelations

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

theta2

Lag

A
ut

oc
or

re
la

tio
n MH

Sampler Lag−Autocorrelations

106

March 29, 2010

[4] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:721–741, 1984.

[5] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain
Monte Carlo in Practice. Chapman & Hall, 1996.

[6] Peter J. Green. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika, 82:711–732, 1995.

[7] W. Hastings. Monte Carlo sampling methods using Markov chains and
their application. Biometrika, 57:97–109, 1970.

[8] Averll M. Law and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, Inc., 2nd edition, 1991.

[9] N. Metropolis, A. Rosenbluth, , M. Rosenbluth, A. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[10] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability.
Springer, 1993.

[11] Esa Nummelin. General Irreducible Markov Chains and Nonnegative Op-
erators. Cambridge University Press, 1984.

[12] Christian P. Robert and George Casella. Monte Carlo Statistical Methods.
Springer, second edition, 2004.

[13] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling for various
Metropolis–Hastings algorithms. Statistical Science, 16(4):351–367, 2001.

107

