
Chapter 6

Approximations

6.1 The grid method

When one is confronted with a low-dimensional problem with a continuous pa-
rameter, then it is usually easy to approximate the posterior density at a dense
grid of points that covers the relevant part of the parameter space. We discuss
the method for a one-dimensional parameter θ.

We suppose that the posterior is available in the unnormalized form

fΘ|Y (θ | y) =
1
c(y)

q(θ | y),

where we know how to evaluate the unnormalized density q(θ | y), but do not
necessarily know the value of the normalizing constant c(y).

Instead of the original parameter space, we consider a finite interval [a, b],
which should cover most of the mass of the posterior distribution. We divide
[a, b] evenly into N subintervals

Bi = [a+ (i− 1)h, a+ ih], i = 1, . . . , N.

The width h of one subinterval is

h =
b− a
N

.

Let θi be the midpoint of the i’th subinterval,

θi = a+ (i− 1
2

)h, i = 1, . . . , N.

We use the midpoint rule for numerical integration. This means that we ap-
proximate the integral over the i’th subinterval of any function g by the rule∫

Bi

g(θ) dθ ≈ hg(θi).

Using the midpoint rule on each of the subintervals, we get the following
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approximation for the normalizing constant

c(y) =
∫
q(θ | y) dθ ≈

∫ b

a

q(θ | y) dθ =
N∑
i=1

∫
Bi

q(θ | y) dθ

≈ h
N∑
i=1

q(θi | y)

Using this approximation, we can approximate the value of the posterior density
at the point θi,

fΘ|Y (θi | y) =
1
c(y)

q(θi | y) ≈ 1
h

q(θi | y)∑N
j=1 q(θj | y)

. (6.1)

We also obtain approximations for the posterior probabilities of the subintervals,

P (Θ ∈ Bi | Y = y) =
∫
Bi

fΘ|Y (θ | y) dθ ≈ hfΘ|Y (θi | y)

≈ q(θi | y)∑N
j=1 q(θj | y)

.
(6.2)

These approximations can be surprisingly accurate even for moderate val-
ues of N provided we are able to identify an interval [a, b], which covers the
essential part of posterior distribution. The previous formulas give means for
plotting the posterior density and simulating from it. This is the grid method
for approximating or simulating the posterior distribution.

• First evaluate the unnormalized posterior density q(θ | y) at a regular
grid of points θ1, . . . , θN with spacing h. The grid should cover the main
support of the posterior density.

• If you want to plot the posterior density, normalize these values by dividing
by their sum and additionally by the bin width h as in eq. (6.1). This gives
an approximation to the posterior ordinates p(θi | y) at the grid points θi.

• If you want a sample from the posterior, sample with replacement from
the grid points θi with probabilities proportional to the numbers q(θi | y),
cf. (6.2).

The midpoint rule is considered a rather crude method of numerical inte-
gration. In the numerical analysis literature, there are available much more
sophisticated methods of numerical integration (or numerical quadrature) and
they can be used in a similar manner. Besides dimension one, these kinds of
approaches can be used in dimensions two or three. However, as the dimen-
sionality of the parameter space grows, computing at every point in a dense
multidimensional grid becomes more and more expensive.

6.2 Normal approximation to the posterior

We can try to approximate a multivariate posterior density by a multivariate
normal density based on the behavior of the posterior density at its mode.
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This approximation can be quite accurate, when the sample sizes is large, and
when the posterior is unimodal. We will call the resulting approximation a
normal approximation to the posterior, but the result is sometimes also called
Laplace approximation or modal approximation. A normal approximation can
be used directly as an approximate description of the posterior. However, such
an approximation can be utilized also indirectly, e.g., to form a good proposal
distribution for the Metropolis–Hastings method.

We first discuss normal approximation in the univariate situation. The sta-
tistical model has a single parameter θ, which has a continuous distribution.
Let the unnormalized posterior density be given by q(θ | y). The normalizing
constant of the posterior density can be unknown. We consider the case, where
θ 7→ q(θ | y) is unimodal: i.e., it has only one local maximum. We suppose
that we have located the mode θ̂ of q(θ | y). Actually, θ̂ depends on the data
y, but we suppress this dependence in our notation. Usually we would have to
run some numerical optimization algorithm in order to find the mode.

The basic idea of the method is to use the second degree Taylor polynomial
of the logarithm of the posterior density centered on the mode θ̂,

log fΘ|Y (θ | y) ≈ log fΘ|Y (θ̂ | y) + b(θ − θ̂)− 1
2
A(θ − θ̂)2, (6.3)

where

b =
∂

∂θ
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

=
∂

∂θ
log q(θ | y)

∣∣∣∣
θ=θ̂

= 0,

and

A = − ∂2

∂θ2
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

= − ∂2

∂θ2
log q(θ | y)

∣∣∣∣
θ=θ̂

.

Notice the following points.

• The first and higher order (partial) derivatives with respect to θ of log q(θ | y)
and log fΘ|Y (θ | y) agree, since these function differ only by an additive
constant (which depends on y but not on θ).

• The first order term of the Taylor expansion disappears, since θ̂ is also the
mode of log fΘ|Y (θ | y).

• A ≥ 0, since θ̂ is a maximum of q(θ | y). For the following, we need to
assume that A > 0.

Taking the exponential of the second degree Taylor approximation (6.3), we
see that we may approximate the posterior by the function

πapprox(θ) ∝ exp
(
−A

2
(θ − θ̂)2

)
,

at least in the vicinity of the mode θ̂. Luckily, we recognize that πapprox(θ)
is an unnormalized form of the density of the normal distribution with mean
θ̂ and variance 1/A. The end result is that the posterior distribution can be
approximated with the normal distribution

N

(
θ̂,

1

−L′′(θ̂)

)
, (6.4)
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where
L(θ) = log q(θ | y)

and L′′(θ̂) is the second derivative of L(θ) evaluated at the mode θ̂.
The multivariate analog of the result starts with the second degree expansion

of the log-posterior centered on the mode θ̂,

log fΘ|Y (θ | y) ≈ log fΘ|Y (θ̂ | y) + 0− 1
2

(θ − θ̂)TA(θ − θ̂),

where A is minus the Hessian matrix of L(θ) = log q(θ | y) evaluated at the
mode,

Aij = − ∂2

∂θi∂θj
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

= − ∂2

∂θi∂θj
L(θ)

∣∣∣∣
θ=θ̂

= −
[

∂2

∂θ ∂θT
L(θ)

]
ij

The first degree term of the expansion vanishes, since θ̂ is the mode of the log-
posterior. Here A is at least positively semidefinite, since θ̂ is a maximum. If A
is positively definite, we can proceed with the normal approximation.

Exponentiating, we find out that approximately (at least in the vicinity of
the mode)

fΘ|Y (θ | y) ∝ exp
(
−1

2
(θ − θ̂)TA(θ − θ̂)

)
.

Therefore we can approximate the posterior with the corresponding multivariate
normal distribution with mean θ̂ and covariance matrix given by A−1, i.e., the
approximating normal distribution is

N

(
θ̂,
(
−L′′(θ̂)

)−1
)
, (6.5)

where L′′(θ̂) is the Hessian matrix of L(θ) = log q(θ | y) evaluated at the mode
θ̂. The precision matrix of the approximating normal distribution is minus the
Hessian of the log-posterior (evaluated at the mode), and hence the covariance
matrix is minus the inverse of the Hessian.

If the (unnormalized) posterior has K modes θ̂1, . . . , θ̂K , which are well sep-
arated, then Gelman et al. [1, Ch. 12.2] propose that the posterior could be
approximated by the normal mixture

1
C

K∑
k=1

q(θ̂k | y) exp
(
−1

2
(θ − θ̂k)T [−L′′(θ̂k)](θ − θ̂k)

)
. (6.6)

This approximation is reasonable, if

j 6= k ⇒ exp
(
−1

2
(θ̂j − θ̂k)T [−L′′(θ̂k)](θ̂j − θ̂k)

)
≈ 0

The normalizing constant in the normal mixture approximation (6.6) is

C =
K∑
k=1

q(θ̂k | y) (2π)d/2(det(−L′′(θ̂k))−1/2,

where d is the dimensionality of θ.
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Before using the normal approximation, it is often advisable to reparameter-
ize the model so that the transformed parameters are defined on the whole real
line and have roughly symmetric distributions. E.g., one can use logarithms of
positive parameters and apply the logit function to parameters which take val-
ues on the interval (0, 1). The normal approximation is then constructed for the
transformed parameters, and the approximation can then be translated back to
the original parameter space. One must, however, remember to multiply by the
appropriate Jacobians.

Example 6.1. We consider the unnormalized posterior

q(θ | y) = θy4 (1− θ)y2+y3 (2 + θ)y1 , 0 < θ < 1,

where y = (y1, y2, y3, y4) = (13, 1, 2, 3). The mode and the second derivative of
L(θ) = log q(θ | y) evaluated at the mode are given by

θ̂ ≈ 0.677, L′′(θ̂) ≈ −37.113.

(The mode θ̂ can be found by solving a quadratic equation.) The resulting
normal approximation in the original parameter space is N(0.677, 1/37.113).

We next reparametrize by defining φ as the logit of θ,

φ = logit(θ) = ln
θ

1− θ
⇔ θ =

eφ

1 + eφ
.

The given unnormalized posterior for θ transforms to the following unnormalized
posterior for φ,

q̃(φ | y) = q(θ | y)
∣∣∣∣ dθdφ

∣∣∣∣
=
(

eφ

1 + eφ

)y4 ( 1
1 + eφ

)y2+y3 (2 + 3eφ

1 + eφ

)y1 eφ

(1 + eφ)2
.

The mode and the second derivative of L̃(φ) = log q̃(φ | y) evaluated at the
mode are given by

φ̂ ≈ 0.582, L̃′′(φ̂) ≈ −2.259.

(Also φ̂ can be found by solving a quadratic.) This results in the normal ap-
proximation N(0.582, 1/2.259) for the logit of θ.

When we translate that approximation back to the original parameter space,
we get the approximation

fΘ|Y (θ | y) ≈ N(φ | 0.582, 1/2.259)
∣∣∣∣dφdθ

∣∣∣∣ ,
i.e.,

fΘ|Y (θ | y) ≈ N(logit(θ) | 0.582, 1/2.259)
1

θ(1− θ)
.

Both of these approximations are plotted in Figure 6.1 together with the
true posterior density (whose normalizing constant can be found exactly using
computer algebra). 4
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Figure 6.1: The exact posterior density (solid line) together with its normal
approximation (dashed line) and the approximation based on the normal ap-
proximation for the logit of θ. The last approximation is markedly non-normal
on the original scale, and it is able to capture the skewness of the true posterior
density.

6.3 Posterior expectations using Laplace approx-
imation

Laplace showed in the 1770’s how one can form approximations to integrals of
highly peaked positive functions by integrating analytically a suitable normal
approximation. We will now apply this idea to build approximations to posterior
expectations. We assume that the posterior density is highly peaked while the
function h, whose posterior expectation we seek is relatively flat. To complicate
matters, the posterior density is typically known only in the unnormalized form
q(θ | y), and then

E[h(Θ) | Y = y] =
∫
h(θ) q(θ | y) dθ∫
q(θ | y) dθ

. (6.7)

Tierney and Kadane [5] approximated separately the numerator and the denom-
inator of eq. (6.7) using Laplace’s method, and analyzed the resulting error.

To introduce the idea of Laplace’s approximation (or Laplace’s method),
consider a highly peaked function L(θ) of a scalar variable θ such that L(θ) has
a unique mode (i.e., a maximum) at θ̂. Suppose that g(θ) is a function, which
varies slowly. We seek an approximation to the integral

I =
∫
g(θ) eL(θ) dθ. (6.8)

Heuristically, the integrand is negligible when we go far away from θ̂, and so we
should be able to approximate the integral I by a simpler integral, where we
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take into account only the local behavior of L(θ) around its mode. To this end,
we first approximate L(θ) by its second degree Taylor polynomial centered at
the mode θ̂,

L(θ) ≈ L(θ̂) + 0 · (θ − θ̂) +
1
2
L′′(θ̂)(θ − θ̂)2.

Since g(θ) is slowly varying, we may approximate the integrand as follows

g(θ) eL(θ) ≈ g(θ̂) exp
(
L(θ̂)− 1

2
τ2(θ − θ̂)2)

)
,

where
τ2 = −L′′(θ̂).

For the following, we must assume that L′′(θ̂) < 0. Integrating the approxima-
tion, we obtain

I ≈
∫
g(θ̂) eL(θ̂) exp(−1

2
τ2(θ − θ̂)2) dθ

=
√

2π
τ

g(θ̂) eL(θ̂)

This is Laplace’s approximation. (Actually, it is only the leading term in a
Laplace expansion, which is an asymptotic expansion for the integral.)

To handle the multivariate result, we use the normalizing constant of the
Nd(µ,Q−1) distribution to evaluate the integral∫

exp
(
−1

2
(x− µ)TQ(x− µ)

)
dx =

(2π)d/2√
detQ

. (6.9)

This result is valid for any symmetric and positive definite d × d matrix Q.
Integrating the multivariate second degree approximation of g(θ) exp(L(θ)), we
obtain

I =
∫
g(θ) eL(θ) dθ ≈ (2π)d/2√

det(Q)
g(θ̂) eL(θ̂), (6.10)

where d is the dimensionality of θ, and Q is minus the Hessian of L evaluated
at the mode,

Q = −L′′(θ̂),
and we must assume that the d× d matrix Q is positively definite.

Using these tools, we can approximate the posterior expectation (6.7) in
several different ways. One idea is to approximate the numerator by choosing

g(θ) = h(θ), eL(θ) = q(θ | y)

in eq. (6.10), and then to approximate the denominator by choosing

g(θ) ≡ 1, eL(θ) = q(θ | y).

These choices yield the approximation

E[h(Θ) | Y = y] ≈

(2π)d/2√
det(Q)

h(θ̂) eL(θ̂)

(2π)d/2√
det(Q)

eL(θ̂)

= h(θ̂), (6.11)
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where
θ̂ = arg maxL(θ), Q = −L′′(θ̂).

Here we need a single maximization, and do not need to evaluate the Hessian
at all.

A less obvious approach is to choose

g(θ) ≡ 1, eL(θ) = h(θ) q(θ | y)

to approximate the numerator, and

g(θ) ≡ 1, eL(θ) = q(θ | y)

to approximate the denominator. Here we need to assume that h is a positive
function, i.e., h > 0. The resulting approximation is

E[h(Θ) | Y = y] ≈
(

det(Q)
det(Q∗)

)1/2
h(θ̂∗) q(θ̂∗ | y)

q(θ̂ | y)
, (6.12)

where
θ̂∗ = arg max[h(θ) q(θ | y)], θ̂ = arg max q(θ | y).

and Q∗ and Q are the minus Hessians

Q∗ = −L∗
′′
(θ̂∗), Q = −L′′(θ̂),

where
L∗(θ) = log(h(θ) q(θ | y)), L(θ) = log q(θ | y).

We need two separate maximizations and need to evaluate two Hessians for this
approximation.

Tierney and Kadane analyzed the errors committed in these approximations
in the situation, where we have n (conditionally) i.i.d. observations, and the
sample size n grows. The first approximation (6.11) has relative error of or-
der O(n−1), while the second approximation (6.12) has relative error of order
O(n−2). That is,

E[h(Θ) | Y = y] = h(θ̂)
(
1 +O(n−1)

)
and

E[h(Θ) | Y = y] =
(

det(Q)
det(Q∗)

)1/2
h(θ̂∗) q(θ̂∗ | y)

q(θ̂ | y)

(
1 +O(n−2)

)
.

Hence the second approximation is much more accurate (at least asymptoti-
cally).

6.4 Posterior marginals using Laplace approxi-
mation

Tierney and Kadane discuss also an approximation to the marginal posterior,
when the parameter vector θ is composed of two vector components θ = (φ, ψ).
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The form of the approximation is easy to derive, and was earlier discussed
by Leonard [2]. However, Tierney and Kadane [5, Sec. 4] were the first to
analyze the error in this Laplace approximation. We first derive the form of the
approximation, and then make some comments on the error terms based on the
discussion of Tierney and Kadane.

Let q(φ, ψ | y) be an unnormalized form of the posterior density, based on
which we try to approximate the normalized marginal posterior p(φ | y). Let
the dimensions of φ and ψ be d1 and d2, respectively. We have

p(φ | y) =
∫
p(φ, ψ | y) dψ =

∫
exp(log p(φ, ψ | y)) dψ,

where p(φ, ψ | y) is the normalized posterior. The main difference with approx-
imating a posterior expectation is the fact, that now we are integrating only
over the component(s) ψ of θ = (φ, ψ).

Fix the value of φ for the moment. Let ψ∗(φ) be the maximizer of the
function

ψ 7→ log p(φ, ψ | y),

and let Q(φ) be minus the Hessian matrix of this function evaluated at ψ =
ψ∗(φ). Notice that we can equally well calculate ψ∗(φ) and Q(φ) as the maxi-
mizer and minus the d2× d2 Hessian matrix of ψ 7→ log q(φ, ψ | y), respectively,

ψ∗(φ) = arg max
ψ

(log q(φ, ψ | y)) = arg max
ψ

q(φ, ψ | y) (6.13)

Q(φ) = −
[

∂2

∂ψ ∂ψT
log q(φ, ψ | y)

]
|ψ=ψ∗(φ)

. (6.14)

For fixed φ, we have the second degree Taylor approximation in ψ,

log p(φ, ψ | y) ≈ log p(φ, ψ∗(φ) | y)− 1
2

(ψ − ψ∗(φ))TQ(φ)(ψ − ψ∗(φ)), (6.15)

and we assume that matrix Q(φ) is positive definite.
Next we integrate the exponential function of the approximation (6.15) with

respect to ψ, with the result

p(φ | y) ≈ p(φ, ψ∗(φ) | y) (2π)d2/2 (detQ(φ))−1/2.

To evaluate this approximation, we need the normalizing constant of the unnor-
malized posterior q(φ, ψ | y), which we obtain by another Laplace approxima-
tion, and the end result is

p(φ | y) ≈ (2π)−d1/2 q(φ, ψ∗(φ) | y)

√
detQ

detQ(φ)
, (6.16)

where Q is minus the (d1 + d2)× (d1 + d2) Hessian of the function

(φ, ψ) 7→ log q(φ, ψ | y)

evaluated at the MAP, the maximum point of the same function. However, it
is often enough to approximate the functional form of the marginal posterior.
When considered as a function of φ, we have, approximately,

p(φ | y) ∝ q(φ, ψ∗(φ) | y) (detQ(φ))−1/2. (6.17)
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The unnormalized Laplace approximation (6.17) can be given another inter-
pretation (see, e.g., [3, 4]). By the multiplication rule,

p(φ | y) =
p(φ, ψ | y)
p(ψ | φ, y)

∝ q(φ, ψ | y)
p(ψ | φ, y)

.

This result is valid for any choice of ψ. Let us now form a normal approximation
for the denominator for a fixed value of φ, i.e.,

p(ψ | φ, y) ≈ N(ψ | ψ∗(φ), Q(φ)−1).

However, this approximation is accurate only in the vicinity of the mode ψ∗(φ),
so let us use it only at the mode. The end result is the following approximation,

p(φ | y) ∝
[

q(φ, ψ | y)
N(ψ | ψ∗(φ), Q(φ)−1)

]
|ψ=ψ∗(φ)

= (2π)d2/2 det(Q(φ))−1/2 q(φ, ψ∗(φ) | y)

∝ q(φ, ψ∗(φ) | y) (detQ(φ))−1/2,

which is the same as the unnormalized Laplace approximation (6.17) to the
marginal posterior of φ.

Tierney and Kadane show that the relative error in the approximation (6.16)
is of the order O(n−1), when we have n (conditionally) i.i.d. observations, and
that most of the error comes from approximating the normalizing constant.
They argue that the approximation (6.17) captures the correct functional form
of the marginal posterior with relative error O(n−3/2) and recommend that
one should therefore use the unnormalized approximation (6.17), which can
then be normalized by numerical integration, if need be. For instance, if we
want to simulate from the approximate marginal posterior, then we can use the
unnormalized approximation (6.17) directly, together with accept–reject, SIR
or the grid-based simulation method of Sec. 6.1. See the articles by H. Rue and
coworkers [3, 4] for imaginative applications of these ideas.

Another possibility for approximating the marginal posterior would be to
build a normal approximation to the joint posterior, and then marginalize.
However, a normal approximation to the marginal posterior would only give the
correct result with absolute error of order O(n−1/2), so the accuracies of both of
the Laplace approximations are much better. Since the Laplace approximations
yield good relative instead of absolute error, the Laplace approximations main-
tain good accuracy also in the tails of the densities. In contrast, the normal
approximation is accurate only in the vicinity of the mode.

Example 6.2. Consider normal observations

[Yi | µ, τ ] i.i.d.∼ N(µ,
1
τ

), i = 1, . . . , n,

together with the non-conjugated prior

p(µ, τ) = p(µ) p(τ) = N(µ | µ0,
1
ψ0

) Gam(τ | a0, b0).

The full conditional of µ is readily available,

p(µ | τ, y) = N(µ | µ1,
1
ψ1

)
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where

ψ1 = ψ0 + nτ ψ1 µ1 = ψ0 µ0 + τ

n∑
i=1

yi

The mode of the full conditional p(µ | τ, y) is

µ∗(τ) = µ1 =
ψ0 µ0 + τ

∑n
i=1 yi

ψ0 + nτ
.

We now use this knowledge to build a Laplace approximation to the marginal
posterior of τ .

Since, as a function of µ,

p(µ, τ | y) ∝ p(µ | τ, y),

µ∗(τ) is also the mode of p(µ, τ | y) for any τ . We also need the second derivative

∂2

∂µ2
(log p(µ, τ | y)) =

∂2

∂µ2
(log p(µ | τ, y)) = −ψ1,

for µ = µ∗(τ), but the derivative does not in this case depend on the value of
µ at all. An unnormalized form of the Laplace approximation to the marginal
posterior of τ is therefore

p(τ | y) ∝ q(µ∗(τ), τ | y)√
ψ1

, where q(µ, τ | y) = p(y | µ, τ) p(µ) p(τ).

In this toy example, the Laplace approximation (6.17) for the functional
form of the marginal posterior p(τ | µ) is exact, since by the multiplication rule,

p(τ | y) =
p(µ, τ | y)
p(µ | τ, y)

for any choice of µ, in particular for µ = µ∗(τ). Here the numerator is known
only in an unnormalized form.

Figure 6.2 (a) illustrates the result using data y = (−1.4,−1.6,−2.4, 0.7, 0.6)
and hyperparameters µ0 = 0, ψ0 = 0.5, a0 = 1, b0 = 0.1. The unnormalized
(approximate) marginal posterior has been drawn using the grid method of
Sec. 6.1. Figure 6.2 (b) shows an i.i.d. sample drawn from the approximate
posterior

p̃(τ | y) p(µ | τ, y),

where p̃(τ | y) is a histogram approximation to the true marginal posterior
p(τ | y), which has been sampled using the grid method.

4
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Figure 6.2: (a) Marginal posterior density of τ and (b) a sample drawn from the
approximate joint posterior together with contours of the true joint posterior
density.
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Chapter 7

MCMC algorithms

7.1 Introduction

In a complicated Bayesian statistical model it may be very difficult to analyze
the mathematical form of the posterior and it may be very difficult to draw
an i.i.d. sample from it. Fortunately, it is often easy to generate a correlated
sample, which approximately comes from the posterior distribution. (In this
context, the word correlated means not independent). However, we would very
much prefer to have an i.i.d. sample from the posterior, instead. After one
has available a sample, one can estimate posterior expectations and posterior
quantiles using the same kind of techniques that are used with i.i.d. samples.
This is the idea behind Markov chain Monte Carlo (MCMC) methods.

In this chapter we will introduce the basic MCMC sampling algorithms that
are used in practical problems. The emphasis is on trying to understand what
one needs to do in order to implement the algorithms. In Chapter 11 we will see
why these algorithms work using certain concepts from the theory of Markov
chains in a general state space.

There are available computer programs that can implement an MCMC sim-
ulation automatically. Perhaps the most famous such program is the BUGS
system (Bayesian inference Using Gibbs Sampling), which has several concrete
implementations, most notably WinBUGS and OpenBUGS. You can analyze
most of the models of interest easily using BUGS. What the user of BUGS
needs to do is to write the description of the model in a format that BUGS
understands, read the data into the program, and then let the program do the
simulation. Once the simulation has finished, one can let the program produce
various summaries of the posterior. Using such a tool, it is simple to experiment
with different priors and different likelihoods for the same data.

However, in this chapter the emphasis is on understanding how you can write
your own MCMC programs. Why would this be of interest?

• If you have not used MCMC before, you get a better understanding of the
methods if you try to implement (some of) them yourself.

• For some models, the automated tools fail. Sometimes you can, however,
rather easily design and implement a MCMC sampler yourself, once you
understand the basic principles. (In some cases, however, designing an
efficient MCMC sampler can be an almost impossibly difficult task.)
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• Sometimes you want to have more control over the sampling algorithm
than is provided by the automated tools. In some cases implementation
details can make a big difference to the efficiency of the method.

The most famous MCMC methods are the Metropolis–Hastings sampler and
the Gibbs sampler. Where do these names come from?

• Nicholas (Nick) Metropolis (1915–1999) was an American mathematician,
physicist and pioneer of computing, who was born in Greece. He published
the Metropolis sampler in 1953 jointly with two husband-and-wife teams,
namely A.W. and M.N. Rosenbluth and A.H. and E. Teller. At that time
the theory of general state space Markov chains was largely unexplored. In
spite of this, the authors managed to give a heuristic proof for the validity
of the method.

• W. Keith Hastings (1930– ) is a Canadian statistician, who published
the Metropolis–Hastings sampler in 1970. It is a generalization of the
Metropolis sampler. Hastings presented his algorithm using a discrete
state space formalism, since the theory of general state space Markov
chains was then known only to some specialists in probability theory.
Hastings’ article did not have a real impact on statisticians until much
later.

• The name Gibbs sampler was introduced by the brothers S. and D. Geman
in an article published in 1984. Related ideas were published also by other
people at roughly the same time. The method is named after the American
mathematician and physicist J. Willard Gibbs (1893–1903), who studied
thermodynamics and statistical physics, but did not have anything to do
with MCMC.

In the late 1980’s and early 1990’s there was an explosion in the number
of studies, where people used MCMC methods in Bayesian inference. Now
there was available enough computing power to apply the methods, and besides,
the theory of general state space Markov chains had matured so that readable
expositions of the theory were available.

Nowadays, many statisticians routinely use the concept of a Markov chain
which evolves in a general state space. Unfortunately, their mathematical theory
is still explained only in a handful of text books.

7.2 Basic ideas of MCMC

MCMC algorithms are based on the idea of a Markov chain which evolves in
discrete time. A Markov chain is a stochastic process

θ(0), θ(1), θ(2), . . .

Here θ(i) (the state of the process at time i) is a RV whose values lie in a state
space, which usually is a subset of some Euclidean space Rd. The state space
is the same for all times i. We write the time index as a superscript so that we
can index the components θ(i) using a subscript.

Markov chains have the following Markov property: the distribution of
the next state θ(i+1) depends on the history θ(0), θ(1), . . . , θ(i) only through the
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present state θ(i). The Markov chains used in MCMC methods are homoge-
neous: the conditional distribution of θ(i+1) given θ(i) does not depend on the
index i.

The following algorithm shows how one can simulate a Markov chain. Intu-
itively, a Markov chain is nothing else but the mathematical idealization of this
simulation algorithm.

Algorithm 14: Simulating a Markov chain.

Generate θ(0) from a given initial distribution;1

for i = 0, 1, 2, . . . do2

Compute the next state θ(i+1) using some rule, where you can use the3

present state θ(i) (but no earlier states) and freshly generated random
numbers.

end4

If the rule for calculating the next state does not change depending on the
value of the loop index i, then the generated Markov chain is homogeneous.

Some (but not all) Markov chains have an invariant distribution (or a
stationary distribution or equilibrium distribution), which can be defined as
follows. If the initial state of the chain θ(0) follows the invariant distribution,
then also all the subsequent states θ(i) follow it.

If a Markov chain has an invariant distribution, then (under certain regu-
larity conditions) the distribution of the state θ(i) converges to that invariant
distribution (in a certain sense). Under certain regularity conditions, such a
chain is ergodic, which ensures that an arithmetic average (or an ergodic av-
erage) of the form

1
N

N∑
i=1

h(θ(i))

converges, almost surely, to the corresponding expectation calculated under the
invariant distribution as N → ∞. That is, the ergodic theorem for Markov
chains then states that the strong law of large numbers holds, i.e.,

lim
N→∞

1
N

N∑
i=1

h(θ(i))→ Efh(Θ) =
∫
h(θ)f(θ) dθ, (7.1)

where f is the density of the invariant distribution. This will then hold for
all functions h for which the expectation Efh(Θ) exists, so the convergence
is as strong as in the strong law of large numbers for i.i.d. sequences. There
are also more advanced forms of ergodicity (geometric ergodicity and uniform
ergodicity), which a Markov chain may either have or not have.

Under still more conditions, Markov chains also satisfy a central limit theo-
rem, which characterizes the speed of convergence in the ergodic theorem. The
central limit theorem for Markov chains is of the form

√
N

(
1
N

N∑
i=1

h(θ(i))− Efh(Θ)

)
d−→ N(0, σ2

h).

The speed of convergence is of the same order of N as in the central limit
theorem for i.i.d. sequences. However, estimating the variance σ2

h in the central
limit theorem is lot trickier than with i.i.d. sequences.
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After this preparation, it is possible to explain the basic idea of MCMC
methods. The idea is to set up an ergodic Markov chain which has the posterior
distribution as its invariant distribution. Doing this is often surprisingly easy.
Then one simulates values

θ(0), θ(1), θ(2), . . .

of the chain. When t is sufficiently large, then θ(t) and all the subsequent states
θ(t+i), i ≥ 1 follow approximately the posterior distribution. The time required
for the chain to approximately achieve its invariant distribution is called the
burn-in. After the initial burn-in period has been discarded, the subsequent
values

θ(t), θ(t+1), θ(t+2), . . .

can be treated as a dependent sample from the posterior distribution, and we can
calculate posterior expectations, quantiles and other summaries of the posterior
distribution based on this sample.

After the burn-in period we need to store the simulated values of the chain
for later use. So, for a scalar parameter we need a vector to store the results,
for a vector parameter we need a matrix to store the results and so on. To save
space, one often decides to thin the sequences by keeping only every kth value
of each sequence and by discarding the rest.

Setting up some MCMC algorithm for a given posterior is usually easy.
However, the challenge is to find an MCMC algorithm which converges rapidly
and then explores efficiently the whole support of the posterior distribution.
Then one can get a reliable picture of the posterior distribution after stopping
the simulation after a reasonable number of iterations.

In practice one may want to try several approaches for approximate posterior
inference in order to become convinced that the posterior inferences obtained
with MCMC are reliable. One can, e.g., study simplified forms of the statis-
tical model (where analytical developments or maximum likelihood estimation
or other asymptotic approximations to Bayesian estimation may be possible),
simulate several chains which are initialized from different starting points and
are possibly computed with different algorithms, and compute approximations
to the posterior.

7.3 The Metropolis–Hastings algorithm

Now we consider a target distribution with density π(θ), which may be available
only in an unnormalized form π̃(θ). Usually the target density is the posterior
density of a Bayesian statistical model,

π(θ) = p(θ | y).

Actually we only need to know an unnormalized form of the posterior, which is
given, e.g., in the form of prior times likelihood,

π̃(θ) = p(θ) p(y | θ).

The density π(θ) may be a density in the generalized sense, so we may have a
discrete distribution for some components of θ and a continuous distribution for
others.
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For the Metropolis–Hastings algorithm we need a proposal density q(θ′ | θ),
from which we are able to simulate. (Some authors call the proposal density
the jumping density or candidate generating density.) As a function of θ′, the
proposal density q(θ′ | θ) is a density on the parameter space for each value of
θ. When the current state of the chain is θ = θ(i), we propose a value for the
next state from the distribution with density

θ′ 7→ q(θ′ | θ)

The proposed value θ′ is then accepted or rejected in the algorithm. If the
proposal is accepted, then the next state θ(i+1) is taken to be θ′, but otherwise
the chain stays in the same state, i.e., θ(i+1) is assigned the current state θ(i).

The acceptance condition has to be selected carefully so that we get the tar-
get distribution as the invariant distribution of the chain. The usual procedure
works as follows. We calculate the value of the Metropolis–Hastings ratio (M–H
ratio)

r = r(θ′, θ) =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ),

(7.2)

where θ = θ(i) is the current state and θ′ is the proposed state. Then we generate
a value u from the standard uniform Uni(0, 1). If u < r, then we accept the
proposal and otherwise reject it. For the analysis of the algorithm, it is essential
to notice that the probability of accepting the proposed θ′, when the current
state is θ, is given by

Pr(proposed value is accepted | θ(i) = θ, θ′) = min(1, r(θ′, θ)). (7.3)

We need here the minimum of one and the M–H ratio, since the M–H ratio may
very well be greater than one.

Some explanations are in order.

• The denominator of the M–H ratio (7.2) is the joint density of the proposal
θ′ and the current state θ, when the current state already follows the
posterior.

• The numerator is of the same form as the denominator, but θ and θ′ have
exchanged places.

• If π(θ(0)) > 0, then the denominator of the M–H ratio is always strictly
positive during the algorithm. When i = 0 this follows from the obser-
vation that q(θ′ | θ(0)) has to be positive, since θ′ is generated from that
density. Also π(θ(1)) has to be positive, thanks to the form of the accep-
tance test. The rest follows by induction.

• We do not need to know the normalizing constant of the target distribu-
tion, since it cancels in the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

(7.4)

• If the target density is a posterior distribution, then the M–H ratio is given
by

r =
fY |Θ(y | θ′) fΘ(θ′) q(θ | θ′)
fY |Θ(y | θ) fΘ(θ) q(θ′ | θ)

. (7.5)
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• Once you know what the notation is supposed to mean, you can use an
abbreviated notation for the M–H ratio, such as

r =
p(θ′ | y) q(θ | θ′)
p(θ | y) q(θ′ | θ)

.

Here, e.g., p(θ′ | y) is the value of the posterior density evaluated at the
proposal θ′.

An explanation of why the target distribution is the invariant distribution of
the resulting Markov chain will be given in Chapter 11. Then it will become
clear, that other formulas in place of eq. (7.2) would work, too. However, the
formula (7.2) is known to be optimal (in a certain sense), and therefore it is the
one that is used in practice.

In the Metropolis–Hastings algorithm the proposal density can be selected
otherwise quite freely, but we must be sure that we can reach (with positive
probability) any reasonably possible region in the parameter space starting from
any initial state θ(0) with a finite number of steps. This property is called
irreducibility of the Markov chain.

Algorithm 15: The Metropolis–Hastings algorithm.

Input: An initial value θ(0) such that π̃(θ(0)) > 0 and the number of
iterations N .

Result: Values simulated from a Markov chain which has as its invariant
distribution the distribution corresponding to the unnormalized
density π̃(θ).

for i = 0, 1, 2, . . . , N do1

θ ← θ(i);2

Generate θ′ from q(· | θ) and u from Uni(0, 1);3

Calculate the M–H ratio4

r =
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

Set5

θ(i+1) ←

{
θ′, if u < r

θ, otherwise.

end6

Algorithm 15 sums up the Metropolis–Hastings algorithm. When imple-
menting the algorithm, one easily comes across problems, which arise because
of underflow or overflow in the calculation of the M–H ratio r. Most of such
problems can be cured by calculating with logarithms. E.g., when the target
distribution is a posterior distribution, then one should first calculate s = log r
by

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(θ | θ′))− log(q(θ′ | θ))
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and only then calculate r = exp(s). Additionally, one might want cancel com-
mon factors from r before calculating its logarithm.

Implementing some Metropolis–Hastings algorithm for any given Bayesian
statistical model is usually straightforward. However, finding a proposal distri-
bution which allows the chain to converge quickly to the target distribution and
allows it to explore the parameter space efficiently may be challenging.

7.4 Concrete Metropolis–Hastings algorithms

In the Metropolis–Hastings algorithm, the proposal θ′ is in practice produced by
running a piece of code, which can use the current state θ(i), freshly generated
random numbers from any distribution and arbitrary arithmetic operations. We
must be able to calculate the density of the proposal θ′, when the current state
is equal to θ. This is then q(θ′ | θ), which we must be able to evaluate. Or at
least we must be able to calculate the value of the ratio

q(θ | θ′)/q(θ′ | θ).

Different choices for the proposal density correspond to different choices for the
needed piece of code. The resulting Metropolis–Hastings algorithms are named
after the properties of the proposal distribution.

7.4.1 The independent Metropolis–Hastings algorithm

In the independent M–H algorithm (other common names: independence chain
independence sampler), the proposal density is a fixed density, say s(θ′), which
does not depend on the value of the current state. In the corresponding piece
of code, we only need to generate the value θ′ from the proposal distribution.

If the proposal distribution happens to be the target distribution, then every
proposal will be accepted, and as a result we will get an i.i.d. sample from the
target distribution.

In order to to sample the target distribution properly with the independent
M–H algorithm, the proposal density s must be positive everywhere, where the
target density is positive. If there exist a majorizing constant M , such that

π(θ) ≤Ms(θ) ∀θ,

then the resulting chain can be shown to have good ergodic properties, but if
this condition fails, then the convergence properties of the chain can be bad.
(In the independent M–H algorithm one does not need to know the value of
M .) This implies that the proposal density should be such that the accept–
reject method or importance sampling using that proposal distribution would
be possible, too. In particular, the tails of the proposal density s should be at
least as heavy as the tails of the target density. Finding such proposal densities
may be difficult in high-dimensional problems.

7.4.2 Symmetric proposal distribution

If the proposal density is symmetric in that

q(θ′ | θ) = q(θ | θ′), ∀θ, θ′,
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then the proposal density cancels from the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π(θ′)
π(θ)

.

This the sampling method that was originally proposed by Metropolis. Propos-
als leading to a higher value for the target density are automatically accepted,
and other proposals may be accepted or rejected. Later Hastings generalized
the method for non-symmetric proposal densities.

7.4.3 Random walk Metropolis–Hastings

Suppose that g is a density on the parameter space an that we calculate the
proposal as follows,

generate w from density g and set θ′ ← θ + w.

Then the proposal density is

q(θ′ | θ) = g(θ′ − θ).

This kind of a proposal is called a random walk proposal. If the density g is
symmetric, i.e.,

g(−w) = g(w) ∀w,

then the proposal density q(θ′ | θ) is also symmetric, and thus cancels from the
M–H ratio. In the case of a symmetric random walk proposal, one often speaks
of the random walk Metropolis (RWM) algorithm.

Actually, a random walk is a stochastic process of the form Xt+1 = Xt+wt,
where the random variables wt are i.i.d. Notice that the stochastic process
produced by the random walk M–H algorithm is not a random walk, since the
proposals can either be accepted or rejected.

The symmetric random walk Metropolis–Hastings algorithm (also known
as the random walk Metropolis algorithm) is one of the most commonly used
forms of the Metropolis–Hastings method. The most commonly used forms for
g are the multivariate normal or multivariate Student’s t density centered at the
origin. This is, of course, appropriate only for continuous posterior distributions.

Often one selects the covariance matrix of the proposal distribution as

aC,

where C is an approximation to the covariance matrix of the target distribution
(in Bayesian inference C is an approximation to the posterior covariance ma-
trix) and the scalar a is a tuning constant which should be calibrated carefully.
These kind of proposal distributions work well when the posterior distribution
is approximately normal. One sometimes needs to reparametrize the model in
order to make this approach work better.

The optimal value of a and the corresponding optimal acceptance rate has
been derived theoretically, when the target density is a multivariate normal
Nd(µ,C) and the random walk proposal is Nd(0, aC), see [13]. The scaling
constant a should be about (2.38)2/d when d is large. The corresponding ac-
ceptance rate (the number of accepted proposals divided by the total number
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of proposals) is from around 0.2 (for high-dimensional problems) to around 0.4
(in dimensions one or two). While these results have been derived using the
very restrictive assumption that the target density is a multivariate normal, the
results anyhow give rough guidelines for calibrating a in a practical problem.

How and why should one try to control the acceptance rate in the random
walk M–H algorithm? If the acceptance rate is too low, then the chain is not
able to move, and the proposed updating steps are likely to be too large. In this
case one could try a smaller value for a. However, a high acceptance rate may
also signal a problem, since then the updating steps may be too small. This
may lead to the situation where the chain explores only a small portion of the
parameter space. In this case one should try a larger value for a. From the
convergence point of view, too high acceptance rate is a bigger problem. A low
acceptance rate is a problem only from the computing time point of view.

In order to calibrate the random walk M–H algorithm, one needs an estimate
of its acceptance rate. A simple-minded approach is just to keep track of the
number of accepted proposals. A better approach is to calculate the average of
the acceptance probabilities,

1
N

n∑
i=1

min(1, ri),

where ri is the M–H ratio in the ith iteration.
In practice, one can try to tune a iteratively, until the acceptance rate is

acceptable. The tuning iterations are discarded, and the MCMC sample on
which the inference is based is calculated using the fixed proposal distribution,
whose scale a is the selected value. Fixing the proposal distribution is necessary,
since the theory of the Metropolis–Hastings algorithm requires a homogeneous
Markov chain, i.e., a proposal density q(θ′ | θ) which does not depend on the
iteration index.

Recently, several researchers have developed adaptive MCMC algorithms,
where the proposal distribution is allowed to change all the time during the
iterations, see [1] for a review. Be warned that the design of valid adpative
MCMC algorithms is subtle and that their analysis requires tools which are
more difficult than the general state space Markov chain theory briefly touched
upon in Chapter 11.

Example 7.1. Let us try the random walk chain for the target distribution
N(0, 1) by generating the increment from the normal distribution N(0, σ2) us-
ing the following values for the variance: a) σ2 = 4 b) σ2 = 0.1 c) σ2 = 40.
In situation a) the chain is initialized far away in the tails of the target dis-
tribution, but nevertheless it quickly finds its way to the main portion of the
target distribution and then explores it efficiently. Such a chain is said to mix
well. In situations b) and c) the chains are initialized at the center of the target
distribution, but the chains mix less quickly. In situation b) the step length is
too small, but almost all proposals get accepted. In situation c) the algorithm
proposes too large steps, almost all of which get rejected. Figure 7.1 presents
trace plots (or time series plots) of the chain in the three situations.

4
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Figure 7.1: Trace plots of the random walk chain using the three different
proposal distributions.
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7.4.4 Langevin proposals

Unlike a random walk, the Langevin proposals introduce a drift which moves
the chain towards the modes of the posterior distribution. When the current
state is θ, the proposal θ′ is generated with the rule

θ′ = θ +
σ2

2
∇(log π(θ)) + σ ε, ε ∼ Np(0, I).

Here
∇(log π(θ)) = ∇(log π̃(θ))

is the gradient of the (unnormalized) posterior density. Here σ > 0 is a tuning
parameter. The proposal distribution is motivated by stochastic differential
equation, which has π as its stationary distribution.

This proposal is then accepted or rejected using the ordinary Metropolis–
Hastings rule, where the proposal density is

q(θ′ | θ) = Np(θ′ | θ +
σ2

2
∇(log π(θ)), σ2I).

7.4.5 Reparametrization

Suppose that the posterior distribution of interest is a continuous distribution
and that we have implemented functions for calculating the log-prior and the log-
likelihood in terms of the parameter θ. Now we want to consider a diffeomorphic
reparametrization

φ = g(θ) ⇔ θ = h(φ).

Typical reparametrizations one might consider are taking the logarithm of a
positive parameter or calculating the logit function of a parameter constrained to
the interval (0, 1). What needs to be done in order to implement the Metropolis–
Hastings algorithm for the new parameter vector φ?

First of all, we need a proposal density q(φ′ | φ) and the corresponding code.
We also need to work out how to compute the Jacobian

Jh(φ) =
∂θ

∂φ

or the Jacobian
Jg(θ) =

∂φ

∂θ
.

The M–H ratio, when we propose φ′ and the current value is φ, is given by

r =
fΦ|Y (φ′ | y) q(φ | φ′)
fΦ|Y (φ | y) q(φ′ | φ)

=
fΘ|Y (θ′ | y) |Jh(φ′)| q(φ | φ′)
fΘ|Y (θ | y) |Jh(φ)| q(φ′ | φ)

=
fY |Θ(y | θ′) fΘ(θ′) q(φ | φ′)
fY |Θ(y | θ) fΘ(θ) q(φ′ | φ)

|Jh(φ′)|
|Jh(φ)|
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here θ′ = h(φ′) and θ = h(φ). Here the Jacobian arises from transforming the
proposal density from θ space to φ space. Sometimes it is more convenient to
work with the Jacobian Jg, but this is easy, since

Jg(θ) =
1

Jh(φ)
.

Above we viewed the Jacobians as arising from expressing the proposal dis-
tribution in φ space instead of θ space. An alternative interpretation is that we
have transformed the prior from θ parameterization to φ parametrization. Both
viewpoints yield the same formulas.

In order to calculate the logarithm of the M–H ratio, we need to do the
following.

• Calculate the θ and θ′ values corresponding to the current φ and proposed
φ′ values.

• Calculate the log-likelihood and log-prior using the values θ and θ′.

• Calculate the logarithm s of the M–H ratio as

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(φ | φ′))− log(q(φ′ | φ))

+ log(|Jh(φ′)|)− log(|Jh(φ)|).

Finally, calculate r = exp(s).

• The difference of the logarithms of the absolute Jacobians can be calcu-
lated either on the φ scale or on the θ scale by using the identity

log(|Jh(φ′)|)− log(|Jh(φ)|) = log(|Jg(θ)|)− log(|Jg(θ′)|).

7.4.6 State-dependent mixing of proposal distributions

Let θ be the current state of the chain. Suppose that the proposal θ′ is drawn
from a proposal density, which is selected randomly from a list of alternatives

q(θ′ | θ, j), j = 1, . . .K,

What is more, the selection probabilities may depend on the current state, as
follows.

• Draw j from the pmf β(· | θ), j = 1, . . . ,K.

• Draw θ′ from the density q(θ′ | θ, j) which corresponds to the selected j.

• Accept the proposed value θ′ as the new state, if U < r, where U ∼
Uni(0, 1), and

r =
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

. (7.6)

Otherwise the chain stays at θ.
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This formula (7.6) for the M–H ratio r is contained in Green’s article [6],
which introduced the reversible jump MCMC method. The algorithm could be
called the Metropolis–Hastings–Green algorithm.

The lecturer does know any trick for deriving formula (7.6) from the M–H
ratio of the ordinary M–H algorithm. The beauty of formula (7.6) lies in the
fact that one only needs to evaluate q(θ′ | θ, j) and q(θ | θ′, j) for the proposal
density which was selected. A straightforward application of the M–H algorithm
would require one to evaluate these densities for all of the K possibilities.

If the selection probabilities β(j | θ) do not actually depend on θ, then they
cancel from the M–H ratio. In this case (7.6) is easily derived from the ordinary
M–H algorithm.

7.5 Gibbs sampler

One of the best known ways of setting up an MCMC algorithm is Gibbs sam-
pling, which is now discussed supposing that the target distribution is a posterior
distribution. However, the method can be applied to any target distribution,
when the full conditional distributions of the target distribution are available.

Suppose that the parameter vector has been divided into components

θ = (θ1, θ2, . . . , θd),

where θj need not be a scalar. Suppose also that the posterior full conditional
distributions of each of the components are available in the sense that we know
how to simulate them. This is the case when the statistical model exhibits
conditional conjugacy with respect to all of the components θj . Then the basic
idea behind Gibbs sampling is that we simulate successively each component
θj from its (posterior) full conditional distribution. It is convenient to use the
abbreviation θ−j for the vector, which contains all the other components of θ
but θj , i.e.

θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd). (7.7)

Then the posterior full conditional of θj is

p(θj | θ−j , y) = fΘj |Θ−j ,Y (θj | θ−j , y). (7.8)

A convenient shorthand notation for the posterior full conditional is

p(θj | ·),

where the dot denotes all the other random variables except θj .
The most common form of the Gibbs sampler is the systematic scan Gibbs

sampler, where the components are updated in a fixed cyclic order. It is also
possible to select at random which component to update next. In that case one
has the random scan Gibbs sampler.

Algorithm 16 presents the systematic scan Gibbs sampler, when we update
the components using the order 1, 2, . . . , d. In the algorithm i is the time index
of the Markov chain. One needs d updates to get from θ(i) to θ(i+1). To
generate the j’th component, θ(i+1)

j , one uses the most recent values for the other
components, some of which have already been updated. I.e., when the value for
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θ
(i+1)
j is generated, it is generated from the corresponding full conditional using

the following values for the other components,

θcur
−j = (θ(i+1)

1 , . . . , θ
(i+1)
j−1 , θ

(i)
j+1, . . . , θ

(i)
d ).

Algorithm 16: Systematic scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0 and the number
of iterations N .

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0)
1

for i = 0, 1, . . . , N do2

for j = 1, . . . , d do3

draw a new value for the jth component θcur
j of θcur from the4

posterior full conditional fΘj |Θ−j ,Y (θj | θcur
−j , y)

end5

θ(i+1) ← θcur
6

end7

Usually the updating steps for the components of θ are so heterogeneous,
that the inner loop is written out in full. E.g., in the case of three components,
θ = (φ, ψ, τ), the actual implementation would probably look like the follow-
ing algorithm 17. This algorithm also demonstrates, how one can write the
algorithm using the abbreviated notation for conditional densities.

Algorithm 17: Systematic scan Gibbs sampler for three components θ =
(φ, ψ, τ) given initial values for all the components except the one that gets
updated the first.
ψcur ← ψ0; τ cur ← τ0;1

for i = 0, 1, . . . , N do2

draw φcur from p(φ | ψ = ψcur, τ = τ cur, y);3

draw ψcur from p(ψ | φ = φcur, τ = τ cur, y);4

draw τ cur from p(τ | φ = φcur, ψ = ψcur, y);5

φi+1 ← φcur; ψi+1 ← ψcur; τi+1 ← τ cur;6

end7

Algorithm 18 presents the random scan Gibbs sampler. Now one time step
of the Markov chain requires only one update of a randomly selected component.
In the random scan version, one can have different probabilities for updating the
different components of θ, and this freedom can be useful for some statistical
models.

If the statistical model exhibits conditional conjugacy with respect to all the
components of θ, then the Gibbs sampler is easy to implement and is the method
of choice for many statisticians. One only needs random number generators for
all the posterior full conditionals, and these are easily available for the standard
distributions. An appealing feature of the method is the fact that one does not
need to choose the proposal distribution as in the Metropolis–Hastings sampler;
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Algorithm 18: Random scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0, the number of
iterations N and a probability vector β1, . . . , βd: each βj > 0 and
β1 + · · ·+ βd = 1.

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0);1

for i = 0, 1, . . . , N do2

select j from {1, . . . , d} with probabilities (β1, . . . , βd);3

draw a new value for the component θcur
j from the posterior full4

conditional fΘj |Θ−j ,Y (θj | θcur
−j , y);

θ(i+1) ← θcur;5

end6

the proposals of the Gibbs sampler are somehow automatically tuned to the
target posterior. However, if some of the components of θ are strongly correlated
in the posterior, then the convergence of the Gibbs sampler suffers. So one
might want to reparametrize the model so that the transformed parameters are
independent in their posterior. Unfortunately, most reparametrizations destroy
the conditional conjugacy properties on which the attractiveness of the Gibbs
sampler depends.

The name Gibbs sampling is actually not quite appropriate. Gibbs studied
distributions arising in statistical physics (often called Gibbs distributions or
Boltzmann distributions), which have densities of the form

f(x1, . . . , xd) ∝ exp
(
− 1
kT

E(x1, . . . , xd)
)
,

where (x1, . . . , xd) is the state of physical system, k is a constant, T is the tem-
perature of the system, and E(x1, . . . , xd) > 0 is the energy of the system. The
Geman brothers used a computational method (simulated annealing), where
a computational parameter corresponding to the the temperature of a Gibbs
distribution was gradually lowered towards zero. At each temperature the dis-
tribution of the system was simulated using the Gibbs sampler. This way they
could obtain the configurations of minimal energy in the limit. The name Gibbs
sampling was selected in order to emphasize the relationship with the Gibbs dis-
tributions. However, when the Gibbs sampler is applied to posterior inference,
the temperature parameter is not needed, and therefore the reason for the name
Gibbs has disappeared. Many authors have pointed this out this deficiency and
proposed alternative names for the sampling method, but none of them have
stuck.

7.6 Componentwise updates in the Metropolis–
Hastings algorithm

Already Metropolis et al. and Hastings pointed out that one can use compo-
nentwise updates in the Metropolis–Hastings algorithm. This sometimes called
single-site updating.
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When the parameter vector is divided into d components

θ = (θ1, θ2, . . . , θd),

one needs d proposal densities

θ′j 7→ qj(θ′j | θcur), j = 1, . . . , d,

which may all be different.
When it is time to update the jth component, we do a single Metropolis–

Hastings step. When the current value of the parameter vector is θcur, we
propose the vector θ′, where the jth component is drawn from the proposal
density qj(θj | θcur), and the rest of the components of θ′ are equal to those of
the current value θcur. Then the proposal is accepted or rejected using the M–H
ratio

r =
p(θ′ | y) qj(θcur

j | θ′)
p(θcur | y) qj(θ′j | θcur)

(7.9)

The vectors θ′ and θcur differ only in the jth place, and therefore one can write
the M–H ratio (for updating the jth component) also in the form

r =
p(θ′j | θ′−j , y) qj(θcur

j | θ′)
p(θcur

j | θcur
−j , y) qj(θ′j | θcur)

(7.10)

Although eqs. (7.9) and (7.10) are equivalent, notice that in eq. (7.9) we have
the M–H ratio when we regard the joint posterior as the target distribution,
but eq. (7.10) seems to be the M–H ratio, when the target is the posterior full
conditional of component j. If one then selects as qj the posterior full conditional
of the component θj for each j, then the Gibbs sampler ensues.

One can use this procedure either a systematic or a random scan sampler,
as is the case with the Gibbs sampler. The resulting algorithm is often called
the Metropolis–within–Gibbs sampler. (The name is illogical: the Gibbs sam-
pler is a special case of the Metropolis–Hastings algorithm with componentwise
updates.) This is also a very popular MCMC algorithm, since then one does
not have to design a single complicated multivariate proposal density but p sim-
pler proposal densities, many of which may be full conditional densities of the
posterior.

Small modifications in the implementation can sometimes make a big differ-
ence to the efficiency of the sampler. One important decision is how to divide the
parameter vector into components. This is called blocking or grouping. As a
general rule, the less dependent the components are in the posterior, the better
the sampler. Therefore it may be a good idea to combine highly correlated
components into a single block, with is then updated as a single entity.

It is sometimes useful to update the whole vector jointly using a single
Metropolis–Hastings acceptance test, even if the proposed value is build up
component by component taking advantage of conditional conjugacy proper-
ties. These and other ways of improving the performance of MCMC algorithms
in the context of specific statistical models are topics of current research.

7.7 Analyzing MCMC output

After the MCMC algorithm has been programmed and tested, the user should
investigate the properties of the algorithm for the particular problem he or she
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is trying to solve. There are available several tools, e.g., for

• diagnosing convergence

• estimating Monte Carlo standard errors.

We discuss some of the simpler tools.
A trace plot of a parameter φ is a plot of the iterates φ(t) against the

iteration number t. These are often examined for each of the components of
the parameter vector, and sometimes also for selected scalar functions of the
parameter vector. A trace plot is also called a sample path, a history plot or
a times series plot. If the chain mixes well, then the trace plots move quickly
away from their starting values and they wiggle vigorously in the region sup-
ported by the posterior. In that case one may select the length of the burn-in
by examining trace plots. (This is not foolproof, since the chain may only have
converged momentarily to some neighborhood of a local maximum of the poste-
rior.) If the chain mixes poorly, then the traces will remain nearly constant for
many iterations and the state may seem to wander systematically towards some
direction. Then one may need a huge number of iterations before the traces
show convergence.

An autocorrelation plot is a plot of the autocorrelation of the sequence
φ(t) at different iteration lags. These can be produced for all the interesting
components of θ, but one should reject the burn-in before estimating the auto-
correlation so that one analyzes only that part of the history where the chain
is approximately stationary. The autocorrelation function (acf) of a stationary
sequence of RVs (Xi) at lag k is defined by

R(k) =
E[(Xi − µ)(Xi+k − µ)]

σ2
, k = 0, 1, 2, . . . ,

where µ = EXi, σ2 = varXi, and the assumption of stationarity entails that µ,
σ2 and R(k) do not depend on index i. For an i.i.d. sequence the autocorrelation
function is one at lag zero and zero otherwise. A chain that mixes slowly exhibits
slow decay of the autocorrelation as the lag increases. When there are more than
one parameter, one may also examine cross-correlations between the parameters.

There exist tools for convergence diagnostics, which try to help in decid-
ing whether the chain has already approximately reached its stationary distri-
bution and in selecting the length of the burn-in period. E.g., in the approach of
Gelman and Rubin, the chain is run many times starting from separate starting
values dispersed over the support of the posterior. After the burn-in has been
discarded, one calculates statistics which try to check whether all the chains
have converged to the same distribution. In some other approches one needs
to simulate only a single chain and one compares the behaviour of the chain in
the beginning and in the end of the simulation run. Such convergence diagnos-
tic are available in the coda R package and in the boa R package. However,
convergence diagnostic tools can not prove that the chain has converged. They
only help you to detect obvious cases of non-convergence.

If the chain seems to have converged, then it is of interest to estimate stan-
dard errors for the scalar parameters. The naive estimate (which is correct for
i.i.d. sampling) would be to calculate the sample standard deviation of the last
L iterations divided by

√
L (after the burn-in has been discarded). However,
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MCMC iterates are typically positively correlated, and therefore this would un-
derestimate severely the standard error.

A simple method for estimating the standard errors for posterior expecta-
tions

E[h(Θ) | Y = y]

is the method of batch means [8], where the L last iterates are divided into
a non-overlapping batches of length b. Then one computes the mean h̄j of the
values h(θ(t)) inside each of the batches j = 1, . . . , a and estimates the standard
error of the grand mean h̄ as the square roof of

1
a

1
a− 1

a∑
j=1

(h̄j − h̄)2,

where h̄ is the grand mean calculated from all the the L last iterates h(θ(t)). The
idea here is to treat the batch means as i.i.d. random variables whose expected
value is the posterior expectation. One should perhaps select the batch length
as a function of the simulation length, e.g., with the rule b = b

√
Lc.

7.8 Example

Consider the two dimensional normal distribution N(0,Σ) as the target distri-
bution, where

Σ =
[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, −1 < ρ < 1, σ1, σ2 > 0,

and ρ is nearly one. Of course, it is possible to sample this two-variate normal
distribution directly. However, we next apply MCMC algorithms to this highly
correlated toy problem in order to demonstrate properties of the Gibbs sampler
and a certain Metropolis–Hastings sampler.

The full conditionals of the target distribution are given by

[Θ1 | Θ2 = θ2] ∼ N
(
ρσ1
σ2
θ2, (1− ρ2)σ2

1

)
[Θ2 | Θ1 = θ1] ∼ N

(
ρσ2
σ1
θ1, (1− ρ2)σ2

2

)
,

and these are easy to simulate. We now suppose that

ρ = 0.99, σ1 = σ2 = 1.

Figure 7.2 shows the ten first steps of the Gibbs sampler, when all the component
updates (“half-steps” of the sampler) are shown. Since ρ is almost one, the Gibbs
sampler is forced to take small steps, and it takes a long time for it to explore
the main support of the target distribution.

Another strategy would be to generate the proposal in two stages as follows.
We first draw θ′1 from some convenient proposal distribution, e.g., by the random
walk proposal

θ′1 = θcur
1 + w,
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Figure 7.2: The first ten iterations of the Gibbs sampler. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.
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Figure 7.3: The first ten iterations of the Metropolis–Hastings sampler. Notice
the sampler produced less than ten distinct θ values. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.
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where w is generated from (say) N(0, 4). Then we draw θ′2 from the full condi-
tional distribution of θ2 conditioning on the proposed value θ′1. Then the overall
proposal density is given by

q((θ′1, θ
′
2) | (θcur

1 , θcur
2 )) = N(θ′1 − θcur

1 | 0, 4)N(θ′2 |
ρσ2

σ1
θ′1, (1− ρ2)σ2

2)

We then either accept or reject the transition from θcur to θ′ using the ordinary
acceptance rule of the Metropolis–Hastings sampler. This algorithm explores
the target distribution much more efficiently, as can be guessed from Figure 7.3,
which shows the first ten iterations of the sampler. The random walk proposal
gives the component θ1 freedom to explore the parameter space, and then the
proposal from the full conditional for θ2 draws the proposed pair into the main
support of the target density.

Figure 7.4 shows the traces of the components using the two algorithms.
The Metropolis–Hastings sampler seems to mix better than the Gibbs sam-
pler, since there seems to be less dependence between the consecutive simu-
lated values. Figure 7.5 shows the autocorrelation plots for the two components
using the two different samplers. The autocorrelation functions produced by
the Gibbs sampler decay more slowly than those produced by the Metropolis–
Hastings sampler, and this demonstrates that we obtain better mixing with the
Metropolis–Hastings sampler.

7.9 Literature

The original references on the Metropolis sampler, the Metropolis–Hastings sam-
pler and the Gibbs sampler are [9, 7, 4]. The article by Gelfand and Smith [3]
finally convinced the statistical community about the usefulness of these meth-
ods in Bayesian inference. The book [5] contains lots of information on MCMC
methods and their applications.

The books by Nummelin [11] or Meyn and Tweedie [10] can be consulted
for the theory of Markov chains in a general state space. The main features of
the general state space theory are explained in several sources, including [2, Ch.
14] or [12, Ch. 6].
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Figure 7.4: Sampler traces for the two components θ1 and θ2 using the Gibbs
sampler and the Metropolis–Hastings sampler.
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Figure 7.5: Sampler autocorrelation functions for the two components θ1 and
θ2 using the Gibbs sampler and the Metropolis–Hastings sampler.
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Chapter 8

Auxiliary Variable Models

8.1 Introduction

We are interested in an actual statistical model, with joint distribution

pact(y, θ) = pact(y | θ) pact(θ),

but where the posterior pact(θ | y) is awkward to sample from. Suppose we are
able to reformulate the original model by introducing a new random variable Z
such that the marginal distribution of (y, θ) in the new model is the same as
the joint distribution of (y, θ) in the original model, i.e., we assume that∫

paug(y, θ, z) dz = pact(y, θ). (8.1)

When this is the case, we can forget the distinction between the actual model
pact(·) and the augmented model paug(·) and use the generic symbol p(·) to de-
note the densities calculated under either of the models. Here the augmentation
parameter, the auxiliary variable, the latent variable or the latent data Z can
be anything. However, it requires ingenuity and insight to come up with useful
auxiliary variables.

Sometimes it is possible to sample much more efficiently from p(θ, z | y) than
from p(θ | y). In such a case we can sample from the posterior p(θ, z | y), and
we get a sample from the marginal posterior of θ by ignoring the z components
of the (θ, z) sample. If both the full conditionals p(θ | z, y) and p(z | θ, y) are
available in the sense that we know how to sample from these distribution, then
implementing the Gibbs sampler is straightforward.

8.2 Slice sampler

Suppose we want to simulate from a distribution having the unnormalized den-
sity q(θ). By the fundamental theorem of simulation, this is equivalent to sim-
ulating (θ, z) from the uniform distribution under the graph of q, i.e., from
Uni(A), the uniform distribution on the set

A = {(θ, z) : 0 < z < q(θ)}.
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This distribution has the unnormalized density

p(θ, z) ∝ 1A(θ, z) = 1(0,q(θ))(z) = 1(0 < z < q(θ))

The full conditional of Z is proportional to the joint density, considered as
a function of z, i.e.,

p(z | θ) ∝ p(θ, z) ∝ 1(0 < z < q(θ)),

and this an unnormalized density of the uniform distribution on the interval
(0, q(θ)).

Similarly, the full conditional of θ is the uniform distribution on the set
(depending on z), where

1(0 < z < q(θ)) = 1,

since the joint density is constant on this set. That is, the full conditional of θ
is the uniform distribution on the set

B(z) = {θ : q(θ) > z}.

The resulting Gibbs sampler is called the slice sampler (for the distribution
determined by q). The slice sampler is attractive, if the uniform distribution on
the set B(z) is easy to simulate.

Example 8.1. Let us consider the truncated standard normal distribution
corresponding to the unnormalized density

q(θ) = exp
(
−1

2
θ2

)
1(α,∞)(θ),

where the truncation point α > 0.
We can get a correlated sample θ1, θ2, . . . from this distribution as follows.

1. Pick an initial value θ0 > α.

2. For i = 1, 2 . . .

• Draw zi from Uni(0, q(θi−1)).
• Draw θi from Uni(α,

√
−2 ln zi).

4

Simulating the uniform in the set B(z) may turn out to be unwieldy. Usually,
the target density can be decomposed into a product of functions,

p(θ | y) ∝
n∏
i=1

qi(θ).

Then one may try the associated augmentation, where one introduces n auxiliary
variables Zi such that, conditionally on θ, the Zi have independently the uniform
distribution on (0, qi(θ)). In the augmented model, the full conditional of θ is
the uniform distribution on the set

C(z) = ∩ni=1{θ : qi(θ) > zi},

and this may be easier to simulate. Typically, the more auxiliary variables one
introduces, the slower is the mixing of the resulting chain.
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8.3 Missing data problems

In many experiments the posterior distribution is easy to summarize if all the
planned data are available. However, if some of the observations are missing,
then the posterior is more complex. Let Z be the missing data and let y be the
observed data. The full conditional

p(θ | z, y)

is the posterior from the complete data, and it is of a simple form (by assump-
tion). Often also the full conditional of the missing data

p(z | θ, y)

is easy to sample from. Then it is straightforward to use the Gibbs sampler.
Here the joint distribution in the reformulated model is

paug(y, θ, z) = pact(θ) paug(y, z | θ).

In order to check the equivalence of the original and of the reformulated model,
see (8.1), it is sufficient to check that∫

paug(y, z | θ) dz = pact(y | θ).

Example 8.2. Let us consider the famous genetic linkage example, where we
have the multinomial likelihood

p(y | θ) = Mult
(

(y1, y2, y3, y4) | n,
(

1
2

+
θ

4
,

1
4

(1− θ), 1
4

(1− θ), θ
4

))
.

Here 0 < θ < 1, and y = (y1, y2, y3, y4), where the yj :s are the observed fre-
quencies of the four categories. We take the uniform prior Uni(0, 1) for θ. The
posterior is not of a standard form.

However, suppose that the first category with frequency y1 is an amalga-
mation of two subclasses with probabilities θ/4 and 1/2, but the distinction
between the subclasses has not been observed. Let Z be the frequency of the
first subclass (with class probability θ/4). Then the frequency of the second
subclass (with class probability 1/2) is y1 − Z. Our reformulated model states
that

p(z, y | θ) = p(z, y1, y2, y3, y4 | θ) =

Mult
(

(z, y1 − z, y2, y3, y4) | n,
(

1
4
θ,

1
2
,

1
4

(1− θ), 1
4

(1− θ), 1
4
θ

))
Let us check that the reformulated model and the original model are equiv-

alent. If we combine the frequencies X11 and X12 in the the multinomial distri-
bution

(X11, X12, X2, X3, X4) ∼ Mult(n, (p11, p12, p2, p3, p4)),

then we obtain the multinomial distribution

(X11 +X12, X2, X3, X4) ∼ Mult(n, (p11 + p12, p2, p3, p4)),
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and this is obvious when one thinks of the repeated sampling definition of the
multinomial distribution. This shows that our original model and the reformu-
lated model are equivalent.

The posterior of θ given the complete data consisting of y and z is given by

p(θ | y, z) ∝ p(y, z | θ) p(θ)

∝
(

1
4
θ

)z (1
2

)y1−z (1
4

(1− θ)
)y2 (1

4
(1− θ)

)y3 (1
4
θ

)y4
∝ θz+y4 (1− θ)y2+y3 .

This is an unnormalized density of the beta distribution Be(z+y4+1, y2+y3+1),
which can be sampled directly.

The full conditional of Z is trickier to recognize. Notice that Z is an integer
such that 0 ≤ Z ≤ y1. It is critical to notice that the normalizing constant of
the multinomial pmf p(z, y | θ) depends on z. While you can omit from the
likelihood any terms which depend only on the observed data, you must keep
those terms which depend on the unknowns: parameters or missing data.

As a function of z,

p(z | θ, y) ∝ p(z, y | θ) p(θ) = p(z, y | θ)

=
n!

z! (y1 − z)! y2! y3! y4!

(
1
4
θ

)z (1
2

)y1−z (1
4

(1− θ)
)y2 (1

4
(1− θ)

)y3 (1
4
θ

)y4
∝ y1!
z! (y1 − z)!

(
θ

4

)z (1
2

)y1−z
=
(
y1

z

)( θ
4

θ
4 + 1

2

)z (
1
2

θ
4 + 1

2

)y1−z (
θ

4
+

1
2

)z+y1−z
∝
(
y1

z

)(
θ

2 + θ

)z (
1− θ

2 + θ

)y1−z
, z = 0, 1, . . . , y1.

From this we see that the full conditional of Z is the binomial Bin(y1, θ/(2+θ)),
which we also are able to simulate directly. Gibbs sampling in the reformulated
model is straightforward. 4

8.4 Probit regression

We now consider a regression model, where each of the responses is binary: zero
of one. In other words, each of the responses has the Bernoulli distribution (the
binomial distribution with sample size one). Conditionally on the parameter
vector θ, the responses Yi are assumed to be independent, and Yi is assumed to
have success probability

qi(θ) = P (Yi = 1 | θ),

which is a function of the parameter vector θ. That is, the model assumes that

[Yi | θ]
ind∼ B(qi(θ)), i = 1, . . . , n,

where B(p) is the Bernoulli distribution with success probability 0 ≤ p ≤ 1.
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We assume that the success probability of the i’th response depends on θ
and on the value of the covariate vector xi for the i’th case. The covariate
vector consists of observed characteristics which might influence the probability
of success. We would like to model the success probability in terms of a linear
predictor, which is the inner product xTi θ of the covariate vector and the pa-
rameter vector. For instance, if we have observed a single explanatory scalar
variable ti connected with ther response yi, then the linear predictor could be

xTi θ = α+ β ti, xi = (1, ti), θ = (α, β).

Notice that we typically include the constant ”1” in the covariate vector.
The linear predictor is not constrained to the range [0, 1] of the probability

parameter, and therefore we need to map the values of the linear predictor into
that range. The standard solution is to posit that

qi(θ) = F (xTi θ), i = 1, . . . , n.

where F is the cumulative distribution function of some continuous distribution.
Here F can be called a link function. Since 0 ≤ F ≤ 1, here qi(θ) is a valid
probability parameter for the Bernoulli distribution for any value of θ.

In probit regression we take F = Φ, where Φ is the cdf of the standard
normal N(0, 1), i.e., we assume that

qi(θ) = P (Yi = 1 | θ) = Φ(xTi θ), i = 1, . . . , n. (8.2)

We can complete the Bayesian model by taking as our prior, e.g., the normal
distribution with mean µ0 and precision matrix Q0,

p(θ) = N(θ | µ0, Q
−1
o ).

An even more popular choice for the link function in binary regression is the
logit link, which corresponds to the choice

F (u) =
eu

1 + eu
= logit−1(u).

The probit and logit regression models belong to the class of generalized lin-
ear models (GLMs). The logit link has a special status in binary regression,
since the logit link happens to be what is known as the canonical link function.
The maximum likelihood estimate (MLE) for probit or logit regression can be
calculated with standard software, e.g., using the function glm of R.

We can write the likelihood for probit or logit regression immediately, i.e.,

p(y | θ) =
n∏
i=1

p(yi | θ),

where
p(yi | θ) = F (xTi θ)

yi
(
1− F (xTi θ)

)1−yi
, i = 1, . . . , n.

Posterior inference can be based directly on this expression. Gibbs sampling
seems impossible, but a suitable MCMC algorithm could be, e.g., the indepen-
dence sampler with a multivariate Student’s t distribution, whose center and
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covariance matrix are selected based on the MLE and its approximate covari-
ance matrix, which can be calculated with standard software.

From now on, we will discuss the probit regression model, and its well-known
auxiliary variable reformulation, due to Albert and Chib [1]. Let us introduce
n latent variables (i.e., unobserved random variables)

[Zi | θ]
ind∼ N(xTi θ, 1), i = 1, . . . , n.

This notation signifies that the Zi’s are independent, conditionally on θ. We
may represent the latent variables Zi using n i.i.d. random variables εi ∼ N(0, 1)
(which are independent of everything else),

Zi = xTi θ + εi, i = 1, . . . , n.

Consider n RVs Yi which are defined by

Yi = 1(Zi > 0) =

{
1, when Zi > 0,
0, otherwise.

Conditionally on θ, the random variables Yi are independent, Yi takes on the
value zero or one, and

P (Yi = 1 | θ) = P (Zi > 0 | θ) = P (xTi θ + εi > 0) = P (−εi < xTi θ) = Φ(xTi θ).

Here we used the fact that −εi ∼ N(0, 1) which follows from the symmetry of the
standard normal. Therefore the marginal distribution of Y = (Y1, . . . , Yn) given
θ is the same as in the original probit regression model (8.2). Our reformulated
model has the structure

paug(y, θ, z) = pact(θ) paug(y, z | θ),

and we have just argued that∫
paug(y, z | θ) dz = pact(y | θ).

This shows that our reformulated model is equivalent with the original probit
regression model.

The reformulated probit regression model has the following hierarchical struc-
ture,

Θ ∼ N(µ0, Q
−1
0 ) (8.3)

[Z | Θ = θ] ∼ N(Xθ, I) (8.4)
Y = 1+(Z), (8.5)

where X is the known design matrix with ith row equal to xTi , Z is the column
vector of latent variables, and 1+(Z) means the vector

1+(Z) =

1(Z1 > 0)
...

1(Zn > 0)

 ,
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where we write 1(Zi > 0) for the indicator 1(0,∞)(Zi). Therefore we can regard
the original probit regression model as a missing data problem where we have a
normal regression model on the latent data Z = (Z1, . . . , Zn) and the observed
responses Yi are incomplete in that we only observe whether Zi > 0 or Zi ≤ 0.

The joint distribution of the reformulated model can be expressed as

p(θ, y, z) = p(θ) p(z | θ) p(y | z),

where

p(y | z) =
n∏
i=1

p(yi | zi),

and further

p(yi | zi) = 1(yi = 1(zi > 0)) = 1(zi > 0) 1(yi = 1) + 1(zi ≤ 0) 1(yi = 0).

(Yi is a deterministic function of Zi. The preceding representation is possible,
since Yi has a discrete distribution.)

The full conditional of θ is easy, since

p(θ | z, y) ∝ p(θ, y, z) ∝ p(θ) p(z | θ),

but this is the same as the posterior for a linear regression model, which is given
by a certain multivariate normal distribution N(µ1, Q

−1
1 ), whose parameters µ1

and Q1 depend on the conditioning variables z and y. It is easy to derive
expressions for µ1 and Q1.

The other full conditional distribution is also easy to derive. As a function
of z, we have

p(z | θ, y) ∝ p(z | θ) p(y | z) =
n∏
i=1

N(zi | xTi θ, 1) p(yi | zi)

This is a distribution, where the components Zi are independent, and follow
truncated normal distributions, i.e.,

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi > 0), if yi = 1,
[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi ≤ 0), if yi = 0.

Notice that the side of the truncation for Zi depends on the value of the bi-
nary response yi. Simulating the full conditional distribution p(z | θ, y) is
also straightforward, since we only have to draw independently n values from
truncated normal distributions with known parameters and known semi-infinite
truncation intervals. Since all the needed full conditional distributions are eas-
ily simulated, implementing the Gibbs sampler is straightforward in the latent
variable reformulation.

What is the practical benefit of the latent variable reformulation of the
probit regression model? In the original formulation of the probit regression
model, the components of θ are dependent in their posterior. MCMC sampling
will be inefficient unless we manage to find a proposal distribution which is
adapted to the form of the posterior distribution. After the reformulation,
Gibbs sampling becomes straightforward. In the latent variable reformulation,
most of the dependencies in the posterior are transferred to the multivariate
normal distribution p(θ | z, y), where they are easy to handle. The components
of Z are independent in the other needed full conditional distribution p(z | θ, y).
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8.5 Scale mixtures of normals

Student’s t distribution with ν > 0 degrees of freedom can be expressed as a
scale mixture of normal distributions as follows. If

Λ ∼ Gam(ν/2, ν/2), and [W | Λ = λ] ∼ N(0,
1
λ

),

then the marginal distribution of W is tν . We can use this property to eliminate
Student’s t distribution from any statistical model.

Albert and Chib considered approximating the logit link with the tν link in
binary regression. The logit link is already well approximated by the probit link
in the sense that

logit−1(u) ≈ Φ
(√

π

8
u

)
,

when u is near zero. Here the scaling factor
√
π/8 has been selected so that

the derivatives of the two curves are equal for u = 0. The approximation is not
perfect away from zero. However, if one uses the distribution function Fν of the
tν distribution (e.g., with ν = 8 degrees of freedom), then one can choose the
value of the scaling factor s so that we have a much better approximation

logit−1(u) ≈ Fν(su)

for all real u. Making use of the scaling factor s, we can switch between a logit
regression model and its tν regression approximation.

We now consider, how we can reformulate the binary regression model which
has the tν link, i.e.,

[Yi | θ]
ind∼ B(Fν(xTi θ)), i = 1, . . . , n. (8.6)

Here the degrees of freedom parameter ν is fixed. Also this reformulation is due
to Albert and Chib [1].

The first step is to notice that we can represent the responses as

Yi = 1(Zi > 0), where Zi = xTi θ +Wi, i = 1, . . . , n,

where Wi ∼ tν are i.i.d. and independent of everything else. This holds since

P (Zi > 0 | θ) = P (xTi θ +Wi > 0) = P (−Wi < xTi θ) = Fν(xTi θ).

Here we used the fact that −Wi ∼ tν which follows from symmetry of the t
distribution. Besides, the Zi’s are independent, conditionally on θ. Next we
eliminate the tν distribution by introducing n i.i.d. latent variables Λi, each
having the Gam(ν/2, ν/2) distribution. If we choose N(µ0, Q

−1
0 ) as the prior

for Θ, then we end up with the following hierarchical model

Θ ∼ N(µ0, Q
−1
0 ), (8.7)

Λi
i.i.d.∼ Gam(ν/2, ν/2), i = 1, . . . , n (8.8)

[Z | Θ = θ,Λ = λ] ∼ N
(
Xθ, [diag(λ1, . . . , λn)]−1

)
, (8.9)

Y = 1+(Z). (8.10)
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This reformulation is equivalent with the original model (8.6).
The full conditionals in the reformulated model are easy to derive. The

full conditional of θ is a multivariate normal. The full conditional of Λ =
(Λ1, . . . ,Λn) is the distribution of n independent gamma distributed variables
with certain parameters. The full conditional of Z is, once again, a distribution,
where the components are independent and have truncated normal distributions.

Another well-known distribution, which can be expressed as a scale mix-
ture of normal distributions is the Laplace distribution (the double exponential
distribution), which has the density

1
2

e−|y|, y ∈ R .

If Y has the Laplace distribution, then it can be expressed as follows

V ∼ Exp(1/2) and [Y | V = v] ∼ N(0, v).

This relationship can be used to eliminate the Laplace distribution from any
statistical model.

Even the logistic distribution with distribution function logit−1(z) can be
expressed as a scale mixture of normals, but then one needs the Kolmogorov-
Smirnov distribution, whose density and distribution function are, however,
available only as series expansions. Using this device, one can reformulate the
logistic regression model exactly using the Kolmogorov-Smirnov distribution,
multivariate normal distribution and truncation.

8.6 Literature

The slice sampler was proposed by Neal [4]. The data augmentation in the
genetic linkage example is from the article by Tanner and Wong [5], who bor-
rowed the idea from earlier work on the EM algorithm. The auxiliary variable
formulation of probit regression was proposed by Albert and Chib [1]. Also the
reformulation of the t link is from this article. Scale mixtures of normals were
characterized by Andrews and Mallows [2]. Holmes and Held have managed to
use the exact reformulation of the logit link as a scale mixture of normals [3].
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Chapter 9

The EM Algorithm

The EM (Expectation–Maximization) algorithm is an iterative method for find-
ing the mode of a marginal posterior density. It can also be used for finding
the mode of a marginal likelihood function. The idea is to replace the original
maximization problem by a sequence of simpler optimization problems. In many
examples the maximizers of the simple problems can be obtained in closed form.

Often the EM algorithm is applied in an auxiliary variable (latent variable)
formulation p(y, θ, z) of the original model p(y, θ), where θ is the parameter of
interest, and Z is the auxiliary variable (or latent variable or missing data).
Then the marginal posterior of θ, namely

p(θ | y) =
∫
p(θ, z | y) dz,

is the posterior in the original model, and the marginal likelihood of θ, namely

p(y | θ) =
∫
p(y, z | θ) dz

is the likelihood in the original model. In such a case the EM algorithm can be
used to find the posterior mode or the MLE (maximum likelihood estimate) of
the original model.

9.1 Formulation of the EM algorithm

Let Z be the auxiliary variable and θ the parameter of interest. Often the
auxiliary variable can be interpreted as missing data. The EM algorithm can be
formulated either for the mode of the marginal posterior of θ or for the mode of
the marginal likelihood of θ. In both cases one defines a function, usually called
Q, which depends on two variables, θ and θ0, where θ0 stands for the current
guess of the parameter vector θ0. The function Q(θ | θ0) is defined as a certain
expected value.

The EM algorithm alternates between two steps: first one calculates the Q
function given the current guess θ0 for the parameter vector (E-step), and then
one maximizes Q(θ | θ0) with respect to θ in order to define the new guess
for θ (M-step). This procedure is repeated until a fixed point of Q is obtained
(or some other termination criterion is satisfied). This idea is formalized in
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algorithm 19. There arg max denotes the maximizing argument (maximum
point) of the function it operates on. If the maximizer is not unique, we may
select any global maximizer.

Algorithm 19: The EM algorithm.

Input: An initial value θ(0).
k ← 0;1

repeat2

(E-step) Calculate the function Q(θ | θ(k));3

(M-step) Maximize Q(θ | θ(k)) with respect to θ:4

θ(k+1) ← arg max
θ

Q(θ | θ(k))

Set k ← k + 15

until the termination criterion is satisfied ;6

Return the last calculated value θ(k);7

Next we define the function Q for the two different objectives. When we want
to calculate the mode of the (marginal) posterior density, we define Q(θ | θ0)
as the expected value of the log joint posterior density, conditioned on the data
and on the current value θ0,

Q(θ | θ0) = E [log p(θ, Z | y) | θ0, y]

= E
[
log fΘ,Z|Y (θ, Z | y) | Θ = θ0, Y = y

]
=
∫

log fΘ,Z|Y (θ, z | y) fZ|Θ,Y (z | θ0, y) dz.

(9.1)

The only random object in the above expected value is Z, and we use its dis-
tribution conditioned on the current value θ0 and the data y.

When we want to calculate the mode of the (marginal) likelihood of θ, we
define Q(θ | θ0) as the expected complete-data log-likelihood, conditioning on
the data and on the current value θ0,

Q(θ | θ0) = E [log p(y, Z | θ) | θ0, y]

= E
[
log fY,Z|Θ(y, Z | θ) | Θ = θ0, Y = y

]
=
∫

log fY,Z|Θ(y, z | θ) fZ|Θ,Y (z | θ0, y) dz.

(9.2)

The Q function is defined as an expectation of a sum of a number terms.
Luckily, we can treat all of the terms which do not depend on θ as constants.
Namely, in the M-step we select a maximum point of the function θ 7→ Q(θ | θ0),
and the ignored constants only shift the object function but do not change the
location of the maximum point. That is, the functions

Q(θ | θ0) and Q(θ | θ0) + c(θ0, y)

achieve their maxima at the same points, when the “constant” c(θ0, y) does not
depend on the variable θ. In particular, we can ignore any factors which depend
solely on the observed data y.
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The maximization problem (M-step) can be solved in closed form in many
cases where the joint posterior (or complete data likelihood) belongs to the
exponential family. Then the E- and M-steps boil down to the following steps:
finding the expectations (given the current θ0) of the sufficient statistics (which
now depend on the missing data Z), and maximizing the resulting function with
respect to the parameters θ.

If the maximizer cannot be solved analytically, then instead of the maximum
point one can (in the M-step) select any value θ(k+1) such that

Q(θ(k+1) | θ(k)) > Q(θ(k) | θ(k)).

The resulting algorithm is then called the generalized EM algorithm (GEM).
We will show later that the logarithm of the marginal posterior

log fΘ|Y (θ(k) | y)

increases monotonically during the iterations of the EM or the GEM algorithms,
if one defines Q by (9.1). On the other hand, if one defines Q by (9.2), then the
log marginal likelihood

log fY |Θ(y | θ(k))

increases monotonically during the iterations. If these functions can be calcu-
lated easily, then a good check of the correctness of the implementation is to
check that they indeed increase at each iteration.

Because of this monotonicity property, the EM algorithm converges to some
local mode of the object function (except in some artificially constructed cases).
If the object function has multiple modes, then one can try to find all of them by
starting the EM iterations at many points scattered throughout the parameter
space.

9.2 EM algorithm for probit regression

We return to the latent variable reformulation of the probit regression problem,
i.e.,

Θ ∼ N(µ0, R
−1
0 )

[Z | Θ = θ] ∼ N(Xθ, I)
Y = 1+(Z),

where X is the known design matrix, Z is the column vector of latent variables,
and 1+(Z) is the vector of indicators 1(Yi > 0). We use the symbols φ and Φ
for the density and df of the standard normal N(0, 1), and use R0 to denote the
precision matrix of the prior.

We have already obtained the distribution of the latent variables given θ and
the data, p(z | θ, y). In it, the latent variables Zi are independent and have the
following truncated normal distributions

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi > 0), if yi = 1,
[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi ≤ 0), if yi = 0.
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Now the joint posterior is

p(θ, z | y) ∝ p(y, θ, z) = p(y | z) p(z | θ) p(θ).

Here p(y | z) is simply the indicator of the constraints y = 1+(z). For any y
and z values which satisfy the constraints y = 1+(z), the log joint posterior is
given by

log p(θ, z | y) = log p(z | θ) + log p(θ) + c1

= −1
2

(θ − µ0)TR0(θ − µ0)− 1
2

(z −Xθ)T (z −Xθ) + c2

= −1
2

(θ − µ0)TR0(θ − µ0)− 1
2
zT z + θTXT z − 1

2
θTXTXθ + c2

where the constants ci depends on the data y and the known hyperparameters,
but not on z, θ or θ0.

Since now

Q(θ | θ0) = E[log p(θ, Z | y) | Θ = θ0, Y = y],

at first sight it may appear that we need to calculate both the expectations

v(θ0) = E[ZTZ | Θ = θ0, Y = y], and m(θ0) = E[Z | Θ = θ0, Y = y],

but on further thought we notice that we actually need only the expectation
m(θ0). This is so, since the term containing zT z in log p(θ, z | y) does not
depend on θ. In the maximization of Q(θ | θ0) its expectation therefore only
shifts the object function but does not affect the location of the maximizer.

Let us next solve the maximizer of θ 7→ Q(θ | θ0) and then check which
quantities need to be calculated. In the following, ci is any quantity, which
does not depend on the variable θ (but may depend on y, θ0 or the known
hyperparameters).

Q(θ | θ0) = E[log p(θ, Z | y) | Θ = θ0, Y = y]

= −1
2

(θ − µ0)TR0(θ − µ0)− 1
2
θTXTXθ + θTXTm(θ0) + c3

= −1
2
θT (R0 +XTX)θ + θT

[
R0µ0 +XTm(θ0)

]
+ c4

(9.3)

We now make the following observations.

1. The matrix R0 + XTX is symmetric and positive definite. Symmetry is
obvious, and for any v 6= 0,

vT (R0 +XTX)v = vTR0v + vTXTXv > 0,

since vTR0v > 0 and vTXTXv = (Xv)T (Xv) ≥ 0.

2. If the matrix K is symmetric and positive definite, then the maximizer of
the quadratic form

−1
2

(θ − a)TK(θ − a)

is a, since the quadratic form vanishes if and only if θ = a.
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3. The preceding quadratic form can developed as

−1
2

(θ − a)TK(θ − a) = −1
2
θTKθ + θTKa+ constant.

Therefore, the maximum point of

−1
2
θTKθ + θT b+ c,

where K is assumed to be symmetric and positive definite, is

θ = K−1b.

(An alternative way to derive the formula for the maximum point is to
equate the gradient −Kθ+ b of the quadratic function to the zero vector,
and to observe that the Hessian −K is negative definite.)

Based on the preceding observations, the maximizer of θ 7→ Q(θ | θ0) given
in eq. (9.3) is given by

θ1 = (R0 +XTX)−1(R0µ0 +XTm(θ0)). (9.4)

However, we still need to calculate a concrete formula for the vector

m(θ0) = E[Z | Θ = θ0, Y = y].

We need a formula for the expected value of the truncated normal distribu-
tion N(µ, σ2)1(α,β) corresponding to the unnormalized density

f(v) ∝ N(v | µ, σ2)1(α,β)(v) (9.5)

where we can have α = −∞ or β =∞. The moment generating function of this
distribution is easy to calculate. Then we obtain its expected value (and higher
moments, if need be) by differentiating the result.

Let Φ be the distribution function and φ the density function of the standard
normal N(0, 1). If V has the truncated normal distribution (9.5), then a simple
calculation shows that

M(t) = E(exp(tV ))

= exp(µt+
1
2
σ2t2)

Φ
(
β − µ
σ
− σt

)
− Φ

(
α− µ
σ
− σt

)
Φ
(
β − µ
σ

)
− Φ

(
α− µ
σ

) (9.6)

The expected value of a distribution equals the first derivative of its moment
generating function at t = 0, and hence

E[V ] = M ′(0) = µ− σ
φ

(
β − µ
σ

)
− φ

(
α− µ
σ

)
Φ
(
β − µ
σ

)
− Φ

(
α− µ
σ

) (9.7)
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Using the preceding results, we see that the components m(θ0)i of the vector
m(θ0) are given by

m(θ0)i =


xTi θ0 +

φ(−xTi θ0)
1− Φ(−xTi θ0)

, if yi = 1

xTi θ0 −
φ(−xTi θ0)
Φ(−xTi θ0)

, if yi = 0.
(9.8)

Formulas (9.4) and (9.8) define one step of the EM algorithm for calculating
the posterior mode in probit regression. The EM algorithm for the MLE of
probit regression is obtained from formulas (9.4) and (9.8) by setting R0 as the
zero matrix. (Then we need to assume that XTX is positive definite.)

The truncated normal distribution features in many other statistical models
besides the latent variable formulation of probit regression. One famous example
is the tobit regression model. This is a linear regression model, where the
observations are censored. Since the truncated normal distribution pops up in
many different contexts, it is useful to know that there is a simple formula (9.6)
for its moment generating function.

9.3 Why the EM algorithm works

The proof of the monotonicity of the EM and GEM algorithms is based on the
non-negativity of the Kullback-Leibler divergence. If f and g are two densities,
then the K-L divergence (or relative entropy) of g from f is defined by

D(f ‖ g) =
∫
f ln

f

g
, (9.9)

where the integral is calculated over the whole space. If the supports of f and
g are not the whole space, then we use the conventions

f(x) ln
f(x)
g(x)

=

{
0, if f(x) = 0,
∞, if f(x) > 0 and g(x) = 0.

We will show that the K-L divergence is always non-negative. Therefore we
can use it to measure the distance of g from f . However, the K-L divergence is
not a metric (on the space of densities), since it is even not symmetric.

The proof of the non-negativity can be based on the elementary inequality

lnx ≤ x− 1 ∀x > 0, (9.10)

where equality holds if and only if x = 1. This inequality follows from the
concavity of the logarithm function. The graph of a concave function lies below
each of its tangents, and right hand side of (9.10) is the tangent at x0 = 1.

Theorem 4. Let f and g be densities defined on the same space. Then

D(f ‖ g) ≥ 0,

and equality holds if and only if f = g (almost everywhere).

122



March 12, 2010

Proof. We give the proof only in the case, when f and g have the same support,
i.e., when the sets {x : f(x) > 0} and {x : g(x) > 0} are the same (except
perhaps modulo a set of measure zero). Extending the proof to handle the
general case is straightforward. In the following calculation, the integral extends
only over the common support of f and g.

(−1)D(f ‖ g) =
∫
−f ln

f

g
=
∫
f ln

g

f

≤
∫
f(
g

f
− 1) by (9.10)

=
∫

(g − f) = 1− 1 = 0.

We have equality if and only if

ln
g

f
=
g

f
− 1,

almost everywhere, and this happens if and only if f = g almost everywhere.

The following theorem establishes the monotonicity of EM or GEM itera-
tions.

Theorem 5. Define the function Q by either the equation (9.1) or by (9.2).
Let θ0 and θ1 be any values such that

Q(θ1 | θ0) ≥ Q(θ0 | θ0). (9.11)

Then, with the definition (9.1) we have

fΘ|Y (θ1 | y) ≥ fΘ|Y (θ0 | y),

and with the definition (9.2) we have

fY |Θ(y | θ1) ≥ fY |Θ(y | θ0).

In either case, if we have strict inequality in the assumption (9.11), then we
have strict inequality also in the conclusion.

Proof. We consider first the proof for the definition (9.1). We will use the
abbreviated notations, and make use of the identity

p(θ | y) =
p(θ, z | y)
p(z | θ, y)

.

For any θ, we have

ln p(θ | y) =
∫
p(z | θ0, y) ln p(θ | y) dz

=
∫
p(z | θ0, y) ln

p(θ, z | y)
p(z | θ, y)

dz

= Q(θ | θ0)−
∫
p(z | θ0, y) ln p(z | θ, y) dz
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Using this identity at the points θ1 and θ0, we obtain

ln p(θ1 | y)− ln p(θ0 | y)

= Q(θ1 | θ0)−Q(θ0 | θ0) +
∫
p(z | θ0, y) ln

p(z | θ0, y)
p(z | θ1, y)

dz

≥ Q(θ1 | θ0)−Q(θ0 | θ0),

since the K-L divergence is non-negative. This proves the claim for (9.1).
The proof for the definition (9.2) starts from the identity

ln p(y | θ) =
∫
p(z | θ0, y) ln p(y | θ) dz

=
∫
p(z | θ0, y) ln

p(y, z | θ)
p(z | θ, y)

dz

= Q(θ | θ0)−
∫
p(z | θ0, y) ln p(z | θ, y) dz.

Rest of the proof is the same as before.

9.4 Literature

The name EM algorithm was introduced by Dempster, Laird and Rubin in [1].
Many special cases of the method had appeared in the literature already in the
1950’s, but this article gave a unified structure to the previous methods. The
book [3] is dedicated to the EM algorithm and its variations. Many authors have
extended the EM algorithm so that one obtains also the covariance matrix of
the (marginal) posterior, or the approximate covariance matrix of the (marginal)
MLE, see, e.g., [3] or [2].
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