
Chapter 10

Multi-model inference

10.1 Introduction

If we consider several competing statistical models, any of which could serve
as an explanation for our data, and would like to select the best of them, then
we face a model selection (or a model choice, or a model comparison) problem.
Instead of choosing a single best model, it might be more meaningful to combine
somehow inferences obtained from all of the models, and then we may speak of
model averaging. Such activities may also be called multi-model inference.

For example, in the binary regression setting with the explanatory variable
x we might posit the model

[Yi | θ]
ind∼ B(F (α+ βxi)), i = 1, . . . , n,

where B(p) is the Bernoulli distribution with success probability p, but we might
want to consider several different link function F such as the logit, the probit
and, say, the cdf of t distribution ν = 4 degrees of freedom.

In a continuous regression problem with explanatory variable x, we might
want to consider polynomials of degrees zero, one and two as the mean response,

model 0: [Yi | α, σ2] ind∼ N(α, σ2), i = 1, . . . , n

model 1: [Yi | α, β1, σ
2] ind∼ N(α+ β1xi, σ

2), i = 1, . . . , n

model 2: [Yi | α, β1, β2, σ
2] ind∼ N(α+ β1xi + β2x

2
i , σ

2), i = 1, . . . , n.

One commonly occurring situation is the variable selection problem. For
instance, we might want to select which of the candidate variables to use as
explanatory variables in a multiple regression problem.

The usual frequentist solution to model selection in the case of nested models
is to perform a series of hypothesis tests. One statistical model is said to be
nested within another model, if it is a special case of the other model. In the
polynomial regression example, model 0 is a special case of model 1, and model
1 is a special case of model 2. In this example a frequentist statistician would
probably select among these models by using F -tests. However, one may be
bothered by the fact that we actually need to make multiple tests. How should
we take this into account when selecting the size of the test?
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Outside the linear model framework, a frequentist statistician would compare
nested models by using the asymptotic χ2 distribution of the likelihood ratio
test (LRT) statistic, but the asymptotics is valid only when the simpler model
does not correspond to a parameter value at the boundary of the parameter
space of the more complex model. There are important statistical models (such
as the linear mixed effects model) where a natural null hypothesis corresponds
to a point at the boundary of the parameter space, and then the usual χ2

asymptotics do not apply.
In contrast to the polynomial regression example, in the binary regression

example there is no natural way to nest the models, and comparing the models
by hypothesis tests would be problematic.

Besides hypothesis testing, a frequentist statistician might compare models
using some information criterion, such as the Akaike information criterion, AIC.
This approach does not suffer from the problems we identified in the hypothesis
testing approach.

In the rest of this chapter we will discuss Bayesian techniques for model
selection, or more generally, to multi-model inference. The basic idea is to
introduce a single encompassing model which is a union of all the alternative
models. Then we use Bayes rule to derive the posterior distribution. This
requires that we have successfully specified the entire collection of candidate
models we want to consider. This theM-closed case instead of the more general
M-open case, where the ultimate model collection is not known ahead of time,
see [1, Ch. 6] for a deep discussion on this and other assumptions and approaches
a Bayesian statistician can use in multi-model inference.

The concepts we need are borrowed from the Bayesian approach to hypoth-
esis testing. There is no requirement that the models should be nested with
respect to one another, and no problem arises if one model corresponds to a
parameter value at the boundary of the parameter space of another model.

To unify the discussion we make the following conventions. The alternative
models are numbered 1, . . . ,K. The parameter vector θm of model m belongs
to the parameter space Sm ⊂ Rdm . The parameter vectors θm,m = 1, . . . ,K of
the models are considered separate: no two models share any parameters.

For example, in the binary regression example the α and β parameters for
the logit link and for the probit link and for the t link are considered separate,
and we could label them, e.g., as

θ1 = (α1, β1), θ2 = (α2, β2), θ3 = (α3, β3).

Here S1 = S2 = S3 = R2, and d1 = d2 = d3 = 2.
In the polynomial regression example the error variance parameters are con-

sidered separate parameters in all of the three models, the intercepts and slopes
are considered separate parameters, and so on. We could label them, e.g., as

θ1 = (α0, σ
2
0), θ2 = (α1, β1, σ

2
1), θ3 = (α2, β21, β22, σ

2
2).

Here d1 = 2, d2 = 3, d3 = 4, and

S1 = R×R+, S2 = R2×R+, S3 = R3×R+,

At first sight it may seem unnatural to separate the parameters which usually
are denoted by the same symbol, such as α and σ2 in the zeroth and the first
degree polynomial regression models. To make it more acceptable, think of
them in the following way.
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• In the zeroth degree model α0 is the ”grand mean” and σ2
0 is the error

variance when there no explanatory variable is present in the model.

• In the first degree regression model α1 is the intercept and σ2
1 is the error

variance when there is intercept and slope present in the model, and so
on.

10.2 Marginal likelihood and Bayes factor

Handling multi-model inference in the Bayesian framework is easy, at least in
principle. In the single encompassing model one needs, in addition to the pa-
rameter vectors of the different models θ1, θ2, . . . , θK , also a random variable M
to indicate the model index. Then

P (M = m) ≡ p(m), m = 1, . . . ,K

are the prior model probabilities, which have to sum to one. Typically the prior
model probabilities are chosen to be uniform. Further,

p(θm |M = m) ≡ p(θm | m),

is the prior on θm in model m,

p(y | θm,M = m) ≡ p(y | θm,m),

is the likelihood within model m, and

p(θm | y,M = m) ≡ p(θm | y,m)

is the posterior for θm within model m.
For model selection, the most interesting quantities are the posterior model

probabilities,

P (M = m | y) ≡ p(m | y), m = 1, . . . ,K.

By Bayes rule,

p(m | y) =
p(y | m) p(m)

p(y)
, where p(y) =

K∑
m=1

p(y | m) p(m) (10.1)

Here p(y | m) is usually called the marginal likelihood of the data within
model m, or simply the marginal likelihood of model m. Of course, this marginal
likelihood is different from the marginal likelihood we discussed in connection
with the EM algorithm. Other terms like marginal density of the data, integrated
likelihood, prior predictive (density), predictive likelihood or evidence are also all
used in the literature. The marginal likelihood of model m is obtained by
averaging the likelihood using the prior as the weight, both within model m,
i.e.,

p(y | m) =
∫
p(y, θm | m) dθm =

∫
p(θm | m) p(y | θm,m) dθm. (10.2)
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In other words, the marginal likelihood is the normalizing constant needed in
order to make prior times likelihood within model m to integrate to one,

p(θm | y,m) =
p(θm | m) p(y | θm,m)

p(y | m)
.

The Bayes factor BFkl for comparing model k against model l is defined
to be the ratio of posterior to prior odds, or in more detail, the posterior odds
in favor of model k against model l divided by the prior odds in favor of model
k against model l, i.e.,

BFkl =
P (M = k | y)
P (M = l | y)

/
P (M = k)
P (M = l)

(10.3)

By Bayes rule (10.1), the Bayes factor equals the ratio of the two marginal
likelihoods,

BFkl =
p(y |M = k)
p(y |M = l)

(10.4)

From this we see immediately that BFlk = 1/BFkl. There are tables available
(due to Jeffreys and other people) for interpreting the value of the Bayes factor.

One can compute the posterior model probabilities p(m | y), if one knows
the prior model probabilities and either the marginal likelihoods for all the
models, or the Bayes factors for all pairs of models. Having done this, we
may restrict our attention to the best model which has the largest posterior
probability. Alternatively we might want to consider all those models whose
posterior probabilities are nearly equal to that of the best model.

If one needs to form predictions for future observations Y ∗ which are condi-
tionally independent of the observations, then one might form the predictions
by model averaging, i.e., by using the predictive distribution

p(y∗ | y) =
K∑
m=1

∫
p(y∗,m, θm | y) dθm

=
K∑
m=1

∫
p(y∗ | m, θm, y) p(m | y) p(θm | m, y) dθm

=
K∑
m=1

p(m | y)
∫
p(y∗ | m, θm) p(θm | m, y) dθm,

where on the last line we used the assumption that the data Y and the future
observation Y ∗ are conditionally independent within each of the models m,
conditionally on the parameter vector θm. The predictive distribution for future
data is obtained by averaging the within-model predictive distributions using
posterior model probabilities as weights.

Similarly, we could consider the posterior distribution of a function of the
parameter vector, which is meaningful in all of the candidate models. In the
binary regression example, such a parameter could be LD50 (lethal dose 50 %)
which is defined as the value of the covariate x which gives success probability
50 %. Such a parameter could be estimated with model averaging.

In multi-model inference one should pay close attention to the formulation
of the within-model prior distributions. While the within-model posterior dis-
tributions are usually robust against the specification of the within-model prior,
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the same is not true for the marginal likelihood. In particular, in a multi-model
situation one cannot use improper priors for the following reason. If the prior
for model m is improper, i.e.,

p(θm | m) ∝ hm(θm)

where the integral of hm is infinite, then

c hm(θm), with c > 0 arbitrary,

is an equally valid expression for the within-model prior. Taking hm(θm) as the
prior within model m in eq. (10.2) leads to the result

p1(y | m) =
∫
hm(θm) p(y | θm,m) dθm

whereas the choice c hm(θm) leads to the result

pc(y | m) = c p1(y | m).

Therefore, if the prior for model m is improper, then we cannot assign any
meaning to the marginal likelihood for model m, and the same difficulty applies
to the Bayes factor, as well.

Many researchers regard the sensitivity of the marginal likelihood to the
within model prior specifications a very serious drawback. This difficulty has
led to many proposals for model comparison which do not depend on marginal
likelihoods and Bayes factors. However, we will continue to use them for the
rest of this chapter. Therefore we suppose that

• we have specified the entire collection of candidate models (this the M-
closed assumption);

• we have successfully formulated proper and informative priors for each of
the candidate models.

10.3 Approximating marginal likelihoods

If we use a conjugate prior in model m, then we can calculate its marginal
likelihood analytically, e.g., by using Bayes rule in the form

p(y | m) =
p(θm | m) p(y | θm,m)

p(θm | y,m)
, (10.5)

where θm is any point in the parameter space of model m, and all the terms
on the right-hand side (prior density, likelihood, and posterior density, each of
them within model m, respectively) are available in a conjugate situation. This
form of the Bayes rule is also known by the name candidate’s formula. In order
to simplify the notation, we will drop the conditioning on the model m from
the notation for the rest of this section, since we will discuss estimating the
marginal likelihood for a single model at a time. For example, in the rest of this
section we will write candidate’s formula (10.5) in the form

p(y) =
p(θ) p(y | θ)
p(θ | y)

. (10.6)
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Hopefully, leaving the model under discussion implicit in the notation does not
cause too much confusion to the reader. If it does, add conditioning on m to
each of the subsequent formulas and add the subscript m to each occurrence of
θ and modify the text accordingly.

When the marginal likelihood is not available analytically, we may try to
estimate it. One idea is based on estimating the posterior ordinate p(θ | y)
in candidate’s formula (10.6) at some point θh having high posterior density
(such as the posterior mean estimated by MCMC). The result can be called the
candidate’s estimator for the marginal likelihood. Suppose that the parameter
can be divided into two blocks θ = (θ1, θ2) such that the full conditional dis-
tributions p(θ1 | θ2, y) and p(θ2 | θ1, y) are both available analytically. By the
multiplication rule

p(θ1, θ2 | y) = p(θ1 | y) p(θ2 | θ1, y).

We might estimate the marginal posterior ordinate of θ1 at θh,1 by the Rao-
Blackwellized estimate

p̂(θh,1 | y) =
1
N

N∑
i=1

p(θh,1 | θ(i)
2 , y),

where (θ(i)
1 , θ

(i)
2 ), i = 1, . . . , N is a sample from the posterior, e.g., produced by

MCMC. Then the joint posterior at θh = (θh,1, θh,2) can be estimated by

p̂(θh,1, θh,2 | y) = p̂(θh,1 | y) p(θh,2 | θh,1, y).

This approach was proposed in Chib [5] where one can also find extensions to
more than two blocks.

Approximating the marginal likelihood is an ideal application for Laplace’s
method. Recall that the basic idea of Laplace’s method is to approximate a
d-dimensional integral of the form

I =
∫
g(θ) exp(L(θ)) dθ

by replacing L(θ) by its quadratic approximation centered on the mode θ̃ of
L(θ) and by replacing g(θ) with g(θ̃). The result was

I ≈ (2π)d/2√
det(Q)

g(θ̃) eL(θ̃),

where Q is the negative Hessian of L(θ) evaluated at the mode θ̃.
If we start from the representation

p(y) =
∫
p(θ) p(y | θ) dθ =

∫
exp [log (p(θ) p(y | θ))] dθ,

and then apply Laplace’s method, we get the approximation

p̂Lap(y) = p(θ̃) p(y | θ̃) (2π)d/2√
det(Q)

, (10.7)
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where θ̃ is the posterior mode (i.e. the maximum a posterior estimate, or MAP
estimate), and and Q is the negative Hessian of the logarithm of the unnormal-
ized posterior density

θ 7→ log (p(θ) p(y | θ))

evaluated at the mode θ̃.
Another possibility is to start from the representation

p(y) =
∫
p(θ) exp [log p(y | θ)] dθ

and then integrate the quadratic approximation for the log-likelihood centered
at its mode, the maximum likelihood estimate (MLE). This gives the result

p̂Lap(y) = p(θ̂) p(y | θ̂) (2π)d/2√
det(Q)

, (10.8)

where θ̂ is the MLE, and Q is now the observed information matrix (evaluated at
the MLE), which is simply the negative Hessian of the log-likelihood evaluated
at the MLE.

One can also use various Monte Carlo approaches to approximate the marginal
likelihood. Since

p(y) =
∫
p(y | θ) p(θ) dθ,

naive Monte Carlo integration gives the estimate

p̂(y) =
1
N

N∑
i=1

p(y | θ(i)), (10.9)

where we average the likelihood values using a sample θ(i), i = 1, . . . , N from
the prior p(θ). If the posterior corresponds to a large data set y1, . . . , yn, then
typically the model m likelihood is very peaked compared to the prior. In this
situation the estimate (10.9) has typically huge variance, since very few of the
sample points hit the region with high likelihood values, and these few values
dominate the sum.

A better approach would be to write the marginal likelihood as

p(y) =
∫
p(y | θ) p(θ)

g(θ)
g(θ) dθ,

where g(θ) is an importance sampling density for the model under consideration.
This yields the importance sampling estimate

p̂(y) =
1
N

N∑
i=1

p(y | θ(i)) p(θ(i))
g(θ(i))

, (10.10)

where θ(i), i = 1, . . . , N is a sample drawn from the importance sampling density
g. In order to obtain low variance, g should be an approximation to the posterior
density, and g should have heavier tails than the true posterior. For example, g
could be a multivariate t distribution centered on the posterior mode, the shape
of which is chosen using an estimate of the posterior covariance matrix.
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The marginal likelihood can also be estimated using an MCMC sample drawn
from the posterior distribution p(θ | y). Let g be a probability density defined
on the parameter space. Integrating the identity

g(θ) = g(θ)
p(y) p(θ | y)
p(y | θ) p(θ)

over the parameter space gives

1
p(y)

=
∫

g(θ)
p(y | θ) p(θ)

p(θ | y) dθ

If θ(i), i = 1, . . . , N is a MCMC sample from the posterior, then we can estimate
the marginal likelihood as follows,

p̂(y) =

[
1
N

N∑
i=1

g(θ(i))
p(y | θ(i)) p(θ(i))

]−1

. (10.11)

Here we calculate the harmonic mean of prior times likelihood divided by the
density g ordinates evaluated at the sample points, p(y | θ(i)) p(θ(i))/g(θ(i)).
This is the generalized harmonic mean estimator suggested by Gelfand and
Dey [9]. The function g should be chosen so that it has approximately the same
shape as the posterior density p(θ | y) but in this case the tails of g should be
thin compared to the tails of the posterior.

If one selects g to be the prior p(θ) then formula (10.11) suggests that one
could estimate the marginal likelihood by calculating the harmonic mean of the
likelihood values p(y | θ(i)). This is the (in)famous harmonic mean estimator
first discussed by Newton and Raferty [14]. The harmonic mean estimator has
typically infinite variance and is numerically unstable, and therefore should not
be used at all.

Besides these, many other sampling-based approaches have been proposed
in the literature (e.g., bridge sampling).

After all the marginal likelihoods p(y |M = j) have been estimated one way
or another, then one can estimate the posterior model probabilities based on
eq. (10.1), i.e., by using

p̂(m | y) =
p(m) p̂(y | m)∑K

j=1 p(M = j) p̂(y |M = j)
, m = 1, . . . ,K.

The denominator is just the sum of the numerators when m takes the values
from 1 to K.

An obvious way to estimate the Bayes factor BFkl is to calculate the ratio
of two marginal likelihood estimators,

B̂Fkl =
p̂(y |M = k)
p̂(y |M = l)

.

However, there are also more direct ways of estimating the Bayes factor, such
as path sampling.
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10.4 BIC and other information criteria

Information criteria consist of two parts: a measure of fit of the model to the
data, and a penalty for the complexity of the model. The two most famous such
criteria are AIC and BIC.

Our starting point for Schwarz’s Bayes(ian) Information Criterion, BIC
(other acronyms: SBIC, SBC, SIC), is the Laplace approximation to the marginal
posterior based on the MLE (10.8). Taking logarithms and multiplying by minus
two gives

−2 log p(y) ≈ −2 log p(θ̂)− 2 log p(y | θ̂)− d log(2π) + log det(Q).

where θ̂ is the MLE and Q is the observed information matrix (at the MLE). We
concentrate on the case where we have n observations yi which are conditionally
independent, i.e.,

p(y | θ) =
n∏
i=1

p(yi | θ),

from which

log p(y | θ) =
n∑
i=1

log p(yi | θ)

Q = n

[
1
n

n∑
i=1

(−1)
∂2

∂θ ∂θT
log p(yi | θ)

]
|θ=θ̂

One can argue (based on a multivariate version of the SLLN) that the average
inside the square brackets is approximately equal to the corresponding expected
value J1(θ̂), the expected (or Fisher) information matrix due to a single obser-
vation, evaluated at the MLE, where

J1(θ) = −
∫
p(y | θ) ∂2

∂θ ∂θT
log p(y | θ) dθ.

Hence we approximate

Q ≈ nJ1(θ̂) ⇒ det(Q) ≈ nd det(J1(θ̂))

This gives

−2 log p(y) ≈ −2 log p(y | θ̂) + d log n− 2 log p(θ̂)− d log(2π) + log det(J1(θ̂)).

The final step is to drop all the terms which remain constant as the sample size
n increases, and this gives the approximation

−2 log p(y) ≈ −2 log p(y | θ̂) + d log n.

We have now derived the Bayesian information criterion for model m, namely

BICm = −2Lm + dm log n. (10.12)

Here
Lm = log p(y | θ̂m,m)
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is the maximized log-likelihood for model m, dm is the dimensionality of the
model m parameter space, and n is the sample size. (Warning: in the literature
you will find several different definitions for BIC.) This criterion can be used
for rough comparison of competing models: smaller values of BIC correspond
to better models. Most of the time, more complex models lead automatically to
higher values of the maximized likelihood, but the term dm log n penalizes for
increased model complexity.

The approximations involved in the derivation of BIC are rather crude, and
therefore usually exp(− 1

2 BICm) is a rather poor approximation to the marginal
likelihood of model m. One should pay attention only to the differences

∆ BICkl = BICk −BICl = −2 log
Lk
Ll

+ (dk − dl) log n.

However, Kass and Wasserman [13] have constructed a special prior, the unit
information prior, under which exp(− 1

2 BICm) does give a good approximation
to the model m marginal likelihood. Nevertheless, if we approximate p(y | m) by
exp(− 1

2 BICm), and assume that the prior model probabilities are equal, then
we may estimate the posterior model probabilities by

p̂(m | y) =
exp(− 1

2 BICm)∑K
k=1 exp(− 1

2 BICk)
. (10.13)

BIC resembles the equally famous Akaike information criterion, AIC,

AICm = −2Lm + 2dm.

In addition, the alphabet soup of information criteria includes such acronyms
as AICc (corrected AIC), cAIC (conditional AIC), mAIC; AFIC; BFIC; DIC;
FIC; HQ; NIC; QAIC and QAICc; RIC; TIC; WIC. Furthermore, there are
several other famous model selection criteria available, such as Mallows’ Cp
(for regression problems with normal errors), or Akaike’s FPE (final prediction
error). Also Rissanen’s MDL (minimum description length) principle can be
used. See, e.g., Burnham and Anderson [2] and Claeskens and Hjort [6].

In some statistical models it is not always clear what one should use as the
sample size n in these information criteria. What is more, in complex models
the number of parameters is not necessarily clearly defined. Spiegelhalter et al.
[16] suggest that in such a situation one may use their deviance information
criterion, DIC, defined by

DICm = 2D(θm,m)−D(θ̄m,m), (10.14)

where D(θm,m) is the deviance, or minus twice the log-likelihood of model m,

D(θm,m) = −2 log p(y | θm,m),

θ̄m is the posterior mean of θm, and D(θm,m) is the posterior mean of D(θm,m)
within model m. These quantities are estimated using separate MCMC runs
for each of the models. WinBUGS and OpenBUGS have automatic facilities for
calculating DIC, and therefore it has become the widely used among Bayesian
statisticians. As with AIC and BIC, smaller DIC indicates a better model.
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The authors interpret

deff
m = D(θm,m)−D(θ̄m,m)

as the number of effective parameters for model m, and therefore DICm can
written in the form

DICm = D(θ̄m,m) + 2deff
m ,

which shows its connection to AIC. The authors show that deff
m gives a reasonable

definition for the effective number of parameters in many cases. If there is strong
conflict between the prior and the data, then the effective number of parameters
may turn out have a negative value, which does not make sense.

In order to use DIC, one must decide which expression to use as the likeli-
hood. In complex statistical models, e.g., hierarchical models or random effects
models, even this choice is not clear cut. Consider the hierarchical model, which
has a prior on the hyperparameters ψ and which factorizes as follows

p(y, θ, ψ) = p(y | θ) p(θ | ψ) p(ψ).

If one focuses the attention to the parameter vector θ, then the likelihood ex-
pression is p(y | θ). However, it would be equally valid to consider the vector ψ
to be the true parameter vector. If one focuses on ψ, then one should select

p(y | ψ) =
∫
p(y, θ | ψ) dψ =

∫
p(y | θ) p(θ | ψ) dψ

as the likelihood. In some models p(y | ψ) is available in closed form. Other-
wise, evaluating this likelihood may be problematic. Generally, the DIC values
for p(y | θ) and p(y | ψ) are different. Spiegelhalter et al. suggest that one
should formulate clearly the focus of the analysis, and calculate DIC using the
corresponding likelihood expression. They also point out that DICm changes,
if one reparametrizes model m.

10.5 Sum space versus product space

In this section we discuss an embedding of the multi-model inference problem in
the product-space formulation of the problem. We revert to the explicit notation
of Section 10.2. Let

Sm ⊂ Rdm , m = 1, . . . ,K

be the parameter space of model m. We call the set

Ssum = ∪Km=1{m} × Sm (10.15)

the sum of the parameter spaces. (In topology, this would be called the topo-
logical sum, direct sum, disjoint union or coproduct of the spaces Sm.) Any
point x ∈ Ssum is of the form

x = (m, θm), where m ∈ {1, . . . ,K} and θm ∈ Sm.

The quantities of inferential interest discussed in Section 10.2 can be defined
based on the joint posterior

p(m, θm | y), m ∈ {1, . . . ,K}, θM ∈ Sm,
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which itself is defined on the sum space through the joint distribution specifi-
cation

p(m, θm, y) = p(m) p(θm | m) p(y | θm,m), m ∈ {1, . . . ,K}, θM ∈ Sm.

Designing a MCMC algorithm which uses the sum space as its state space
is challenging. For instance, the dimensionality of the parameter vector may
change each time the model indicator changes. Specifying the sum-space for-
mulation directly in BUGS seems to be impossible, since in the sum-space for-
mulation parameter θm exits only when the model indicator has the value m.
Green [11] was first to propose a trans-dimensional MCMC algorithm which
works directly in the sum space, and called it the reversible jump MCMC
(RJMCMC) algorithm.

Most of the other multi-model MCMC algorithms are conceptually based on
the product-space formulation, where the state space is the Cartesian product of
the model space {1, . . . ,K} and the Cartesian product of the parameter spaces
of the models,

Sprod = S1 × S2 × · · · × SK . (10.16)

For the rest of the section, θ without a subscript will denote a point point
θ ∈ Sprod. It is of the form

θ = (θ1, θ2, . . . , θK), (10.17)

where each of the θm ∈ Sm. The product space is larger than the sum space,
and the product-space formulation requires that we set up the joint distribution

p(m, θ, y), m ∈ {1, . . . ,K}, θ ∈ Sprod.

In contrast, in the sum-space formulation the parameters {θk, k 6= m} do not
exist on the event M = m, and so we cannot speak of

p(m, θ, y) = p(m, θ1, . . . , θK , y)

within the sum-space formulation. We are obliged to set up the product-space
formulation in such a way that the marginals

p(m, θm, y), m ∈ {1, . . . ,K}

remain the same as in the original sum-space formulation. For this reason we will
not make a notational difference between the sum-space and the product-space
formulation of the multi-model inference problem.

The preceding means that we embed the multi-model inference problem in
the product-space formulation. While specifying the sum-space model is not
possible in WinBUGS/OpenBUGS, it is straightforward to specify the product-
space version of the same problem.

When we do posterior inference in the product-space formulation, only the
marginals

p(m, θm | y), m ∈ {1, . . . ,K}

of the joint posterior

p(m, θ | y) = p(m, θ1, . . . , θK | y)
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are of inferential relevance. The other aspects of the joint distribution are only
devices, which allow us to work with the easiear product-space formulation.

If (m(i), θ(i)), i = 1, . . . , N is a sample from the posterior p(m, θ | y), then for
inference we use only the component θ(i)

m(i) of θ(i), which is the parameter vector
of that model m(i) which was visited during the i’th iteration. In particular,
the posterior model probabilities p(M = j | y) can be estimated by tabulating
the relative frequencies of each of the possibilities m(i) = j.

10.6 Carlin and Chib method

Carlin and Chib [3] use the product-space formulation, where

p(m, θ, y) = p(m) p(θ, y | m), (10.18)

and p(m) is the familiar model m prior probability. The conditional density
p(θ, y | m) is selected to be

p(θ, y | m) = p(θm | m) p(y | θm,m)
∏
k 6=m

gk(θk | y) (10.19)

Here p(θm | m) and p(y | θm,m) are the prior and the likelihood within model
m, respectively. In addition, we need K densities gk(θk | y), k = 1, . . . ,K which
can be called pseudo priors or linking densities. The linking density gk(θk | y)
is an arbitrary density on the parameter space of model k. It can be shown that
this is a valid formulation of the product-space joint density. No circularity
results from allowing the linking densities to depend on the data. Further, this
specification leads to the marginals p(m, θm, y) of the sum-space formulation
irrespective of how one specifies the linking densities.

Let us consider the case of two models (K = 2) in more detail. According
to (10.18) and (10.19), the joint density p(m, θ, y) is{

p(M = 1) p(θ1 |M = 1) p(y | θ1,M = 1) g2(θ2 | y) when m = 1
p(M = 2) p(θ2 |M = 2) p(y | θ2,M = 2) g1(θ1 | y) when m = 2.

We see easily that the marginal densities p(m, θm, y),m = 1, 2 are the same as
in the sum-space formulation: just integrate out

θ2 from p(m = 1, θ1, θ2, y)
θ1 from p(m = 2, θ1, θ2, y).

Hence we have checked the validity of the specification.
While the specification of the linking densities gk(θk | y) does not influence

the validity of the product-space formulation, this matter does have a critical
influence on the efficiency of the ensuing MCMC algorithm. A recommended
choice is to select gk(θk | y) to be a tractable approximation to the posterior
distribution within model k, such as a multivariate normal approximation or
a multivariate t approximation. Building such approximations usually requires
pilot MCMC runs of all the models under consideration.

Carlin and Chib use the Gibbs sampler. For this we need the full condition-
als. First,

p(m | θ, y) ∝ p(m, θ, y), m = 1, . . . ,K.
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which is easy to simulate since it is a discrete distribution. Next,

p(θm |M = m, θ−m, y) ∝ p(θm |M = m) p(y | θm,M = m).

Hence this full conditional is the within model m posterior distribution. Finally,
for k 6= m

p(θk |M = m, θ−k, y) = gk(θk | y)

is the linking density for θk.
These full conditionals lead to a Gibbs sampler (or a Metropolis-within-

Gibbs sampler), where one first selects a new value mcur for the model indicator,
drawing the new value from the full conditional p(m | θ, y). After this, one
updates the parameter vectors of all the models. For m equal to mcur (for the
currently visited model), the new value for θm is drawn from the posterior of
model m (and if this is not feasible, one may execute a M–H step for the same
target p(θm | y,m), instead). For all other values of k, the new value of θk is
drawn from the linking density gk(θk | y).

Many other product-space algorithms have been developed as well, see [10]
for a review.

10.7 Reversible jump MCMC

Green’s reversible jump MCMC algorithm (RJMCMC) [11] uses a Markov chain
whose state space is the sum space. We discuss a simplified version of RJMCMC,
where there is only one type of move available for moving from model m to model
k. We also assume that the distributions of the parameter vectors θm in all of
the models are continuous.

The RJMCMC works like the Metropolis–Hastings algorithm. One first
proposes a new state, and then accepts the proposed state as the new state of
the Markov chain, if v < r, where r is the test ratio and v is a fresh uniform
Uni(0, 1) random variate. The difference lies in the details: how the proposed
state is generated, and how the test ratio is calculated. The state space of
the Markov chain is the sum space Ssum, and the target distribution π is the
posterior distribution

π(m, θm) = p(m, θm | y), m ∈ {1, . . . ,K}, θm ∈ Sm.

When the current state of the chain is (m, θm), then the proposal (k, θk) and
the test ratio r are calculated as described in algorithm 20. The proposed model
k is drawn from the pmf β(· | m). If k = m, then one executes an ordinary M–H
step within model m. If k 6= m, then one proposes a new parameter vector θk
in model k as follows. First one generates a noise vector um associated with
θm from noise density g(· | θm,m → k) specific for the move m → k. Then
one calculates θk and uk by applying the so called dimension-matching function
Tm→k. The dimension-matching functions are defined for all moves m 6= k, and
they have to satisfy the following compatibility conditions, which are also called
dimension-matching conditions.

We assume that for each move m → k where m 6= k there exists a diffeo-
morphic correspondence

(θk, uk) = Tm→k(θm, um)

138



April 27, 2010

with inverse Tk→m, i.e.,

(θk, uk) = Tm→k(θm, um) ⇔ (θm, um) = Tk→m(θk, uk). (10.20)

Here um is the noise variable associated with θm and uk is the noise variable
associated with θk (for the move m→ k). Here the dimensions have to match,

dim(θm) + dim(um) = dim(θk) + dim(uk),

since otherwise such a diffeomorphism cannot exist.

Algorithm 20: One step of the RJMCMC algorithm.
Input: The current state of the chain is (m, θm).
Assumption: The correspondences (10.20) are diffeomorphic.
Result: Proposed next value (k, θk) as well as the test ratio r.
Draw k from the pmf β(k | m).1

if k = m then2

generate the proposal θk with some M–H proposal mechanism within3

model m, and calculate r with the ordinary formula for the M–H ratio.
else4

Draw the noise variable um from density g(um | θm,m→ k). (This5

step is omitted, if the move m→ k is deterministic.)
Calculate θk and uk by the diffeomorphic correspondence specific for6

the move m→ k,
(θk, uk)← Tm→k(θm, um).

Calculate r by7

r ← π(k, θk)
π(m, θm)

β(m | k)
β(k | m)

g(uk | θk, k → m)
g(um | θm,m→ k)

∣∣∣∣ ∂(θk, uk)
∂(θm, um)

∣∣∣∣
end8

Notice the following points concerning this method.

• When we calculate the test ratio r for the move m → k, we have to use
the quantities β(m | k) and g(uk | θk, k → m) which correspond to the
distributions from which we simulate, when the current state is (k, θk) and
the move is selected to be k → m.

• The Jacobian is the Jacobian of the transformation which maps (θm, um)
to (θk, uk), when the move is m→ k, i.e.,

∂(θk, uk)
∂(θm, um)

=
∂Tm→k(θm, um)
∂(θm, um)

.

We will see in Sec. 11.8 that the Jacobian term arises from the change-of-
variables formula for integrals, the reason being the fact that the proposal
θk is calculated in an indirect way, by applying the deterministic function
Tm→k to the pair (θm, um).
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• One of the moves m→ k or k → m can deterministic. If the move m→ k
is deterministic, then the associated noise variable, um is not defined nor
simulated, the dimension-matching function is (θk, uk) = Tm→k(θm), and
the noise density value, g(um | θm,m→ k) gets replaced by the constant
one. The same rules apply, when the move k → m is deterministic.

• The target density ratio is calculated by

π(k, θk)
π(m, θm)

=
P (M = k)
P (M = m)

p(θk |M = k)
p(θm |M = m)

p(y |M = k, θk)
p(y |M = m, θm)

• The test ratio r can be described verbally as

r = (prior ratio)× (likelihood ratio)× (proposal ratio)× (Jacobian)

It is possible to extend the method to the situation where we have discrete
components in the state vectors θm of some of the models m. It is also pos-
sible to have more than one type of move between any given models. See the
original paper by Green [11] for more details. The choice of the dimension-
matching functions is critical to ensure good mixing of the Markov chain. In
this respect, Green’s automatic generic trans-dimensional sampler [12] seems to
be very promising.

10.8 Discussion

In this chapter we have seen many different approaches for estimating the pos-
terior model probabilities, which are central quantities both for model selection
and model averaging. One approach is to estimate the marginal likelihoods for
all of the models, and a distinct approach is to set up an MCMC algorithm
which works over the model space and the parameter spaces of each of the mod-
els. Many variations are possible within each of the two approaches. What are
the pros and cons of these approaches?

If the list of candidate models is short, then it is usually easy to estimate
the marginal likelihoods for each of the models separately. However, if the
list of candidate models is large and if it is suspected that only few of the
models are supported by the data, then the best option might be to implement
a multi-model MCMC sampler. However, getting the multi-model sampler to
mix across the different models can be a challenging exercise and might require
investigating pilot runs within each of the candidate models. Mixing within the
parameter space of a single model is usually very much easier to achieve.

10.9 Literature

In addition to the original articles, see the books [4, 15, 7, 8],which also address
model checking (model assessment, model criticism) which we have neglected in
this chapter.
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