
Chapter 10

Multi-model inference

10.1 Introduction

If we consider several competing statistical models, any of which could serve
as an explanation for our data, and would like to select the best of them, then
we face a model selection (or a model choice, or a model comparison) problem.
Instead of choosing a single best model, it might be more meaningful to combine
somehow inferences obtained from all of the models, and then we may speak of
model averaging. Such an activity may also be called multi-model inference.

For example, in the binary regression setting with the explanatory variable
x we might posit the model

[Yi | θ]
ind∼ B(F (α+ βxi)), i = 1, . . . , n,

where B(p) is the Bernoulli distribution with success probability p, but we might
want to consider several different link function F such as the logit, the probit
and, say, the cdf of t distribution ν = 4 degrees of freedom.

In a continuous regression problem with explanatory variable x, we might
want to consider polynomials of degrees zero, one and two as the mean response,

model 0: [Yi | α, σ] ind∼ N(α, σ2), i = 1, . . . , n

model 1: [Yi | α, β1, σ] ind∼ N(α+ βxi, σ
2), i = 1, . . . , n

model 2: [Yi | α, β1, β2, σ] ind∼ N(α+ β1xi + β2x
2
i , σ

2), i = 1, . . . , n.

One commonly occurring situation is the variable selection problem. For
instance, we might want to select which of the candidate variables to use as
explanatory variables in a multiple regression problem.

The usual frequentist solution to model selection in the case of nested models
is to perform a series of hypothesis tests. One statistical model is said to be
nested within another model, if it is a special case of the other model. In the
polynomial regression example, model 0 is a special case of model 1, and model
1 is a special case of model 2. In this example a frequentist statistician would
probably select among these models by using F -tests. However, one may be
bothered by the fact that we actually need to make multiple tests. Should we
take this into account in selecting the size of the test?
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In contrast to the polynomial regression example, in the binary regression
example there is no natural way to nest the models, and comparing the models
by hypothesis tests would be problematic.

Outside the linear model framework, a frequentist statistician would compare
nested models by using the asymptotic χ2 distribution of the likelihood ratio test
(LRT) statistic, but the asymptotics is valid only when the simpler model does
not correspond to a parameter value at the boundary of the parameter space
of the more complex model. There exist important statistical models (such as
the linear mixed effects model) where a natural null hypothesis corresponds to a
point at the boundary of the parameter space, and then the usual χ2 asymptotics
does not apply.

In addition to the hypothesis testing approach, a frequentist statistician
might compare models using one of several information criteria, such as the
Akaike information criterion, AIC. This approach does not suffer from the prob-
lems we identified in the hypothesis testing approach.

In the rest of this chapter we will discuss Bayesian techniques for model
selection, or more generally, to multi-model inference. The basic idea is to
introduce a single encompassing model which is a union of all the alternative
models. Then we use Bayes rule to derive the posterior distribution. This
requires that we have successfully specified the entire collection of candidate
models we want to consider. This theM-closed case instead of the more general
M-open case, where the ultimate model collection is not known ahead of time,
see [1, Ch. 6] for a deep discussion on this and other assumptions and approaches
a Bayesian statistician can use in multi-model inference.

The concepts we need are borrowed from the Bayesian approach to hypoth-
esis testing. There is no requirement that the models should be nested with
respect to one another, and no problem arises if one model is defined on the
boundary of the parameter space of another model.

To unify the discussion we make the following conventions. The alternative
models are numbered 1, . . . ,K. The parameter vector θm of model m belongs
to the parameter space Sm ⊂ Rdm . The parameter vectors θm,m = 1, . . . ,K of
the models are considered separate: no two models share any parameters.

For example, in the binary regression example the α and β parameters for
the logit link and for the probit link and for the t link are considered separate,
and we could label them, e.g., as

θ1 = (α1, β1), θ2 = (α2, β2), θ3 = (α3, β3).

Here S1 = S2 = S3 = R2, and d1 = d2 = d3 = 2.
In the polynomial regression example the error variance parameters are con-

sidered separate parameters in all of the three models, the intercepts and slopes
are considered separate parameters, and so on. We could label them, e.g., as

θ1 = (α0, σ
2
0), θ2 = (α1, β1, σ

2
1), θ3 = (α2, β21, β22, σ

2
2).

Here d1 = 2, d2 = 3, d3 = 4, and

S1 = R×R+, S2 = R2×R+, S3 = R3×R+,

At first sight it may seem unnatural to separate the parameters which usually
are denoted by the same symbol, such as α and σ2 in the zeroth and the first
degree polynomial regression models. To make it more acceptable, think of
them in the following way.
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• In the zeroth degree model α0 is the ”grand mean” and σ2
0 is the error

variance when there no explanatory variable is present in the model.

• In the first degree regression model α1 is the intercept and σ2
1 is the error

variance when there is intercept and slope present in the model, and so
on.

10.2 Marginal likelihood and Bayes factor

Handling multi-model inference in the Bayesian framework is easy, at least in
principle. In the single encompassing model one needs, in addition to the pa-
rameter vectors of the different models θ1, θ2, . . . , θK , also a random variable M
to indicate the model index. Then

P (M = m) ≡ p(m), m = 1, . . . ,K

are the prior model probabilities, which have to sum to one. Typically the prior
model probabilities are chosen to be uniform. Further,

p(θm |M = m) ≡ p(θm | m),

is the prior on θm in model m,

p(y | θm,M = m) ≡ p(y | θm,m),

is the likelihood within model m, and

p(θm | y,M = m) ≡ p(θm | y,m)

is the posterior for θm within model m.
For model selection, the most interesting quantities are the posterior model

probabilities,

P (M = m | y) ≡ p(m | y), m = 1, . . . ,K.

By Bayes rule,

p(m | y) =
p(y | m) p(m)

p(y)
, where p(y) =

K∑
j=1

p(y | m) p(m) (10.1)

Here p(y | m) is usually called the marginal likelihood of the data within
model m, or simply the marginal likelihood of model m. Of course, this marginal
likelihood is different from the marginal likelihood we discussed in connection
with the EM algorithm. Other terms like marginal density of the data, integrated
likelihood, prior predictive (density), predictive likelihood or evidence are also all
used in the literature. The marginal likelihood of model m is obtained by
averaging the likelihood using the prior as the weight, both within model m,
i.e.,

p(y | m) =
∫
p(y, θm | m) dθm =

∫
p(θm | m) p(y | θm,m) dθm. (10.2)
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In other words, the marginal likelihood of model m is the normalizing constant
needed in order to make prior times likelihood within model m to integrate to
one,

p(θm | y,m) =
p(θm | m) p(y | θm,m)

p(y | m)
.

The Bayes factor BFkl for comparing model k against model l is defined
to be the ratio of posterior to prior odds, or in more detail, the posterior odds
in favor of model k against model l divided by the prior odds in favor of model
k against model l, i.e.,

BFkl =
P (M = k | y)
P (M = l | y)

/
P (M = k)
P (M = l)

(10.3)

By Bayes rule (10.1), the Bayes factor equals the ratio of the two marginal
likelihoods,

BFkl =
p(y |M = k)
p(y |M = l)

(10.4)

From this we see immediately that BFlk = 1/BFkl. There are tables available
(due to Jeffreys and other people) for interpreting the value of the Bayes factor.

One can compute the posterior model probabilities p(m | y), if one knows
knows the prior model probabilities and either the marginal likelihoods for all
the models, or the Bayes factors for all pairs of models. Having done this, we
may restrict our attention to the best model which has the largest posterior
probability. Alternatively we might want to consider all those models whose
posterior probabilities are nearly equal to that of the best model.

If one needs to form predictions for future observations Y ∗ which are condi-
tionally independent of the observations, then one might form the predictions
by model averaging, i.e., by using the predictive distribution

p(y∗ | y) =
K∑
m=1

∫
p(y∗,m, θm | y) dθm

=
K∑
m=1

∫
p(y∗ | m, θm, y) p(m | y) p(θm | m, y) dθm

=
K∑
m=1

p(m | y)
∫
p(y∗ | m, θm) p(θm | m, y) dθm,

where on the last line we used the assumption that the data Y and the future
observation Y ∗ are conditionally independent within each of the models m,
conditionally on the parameter vector θm. The predictive distribution for future
data is obtained by averaging the within-model predictive distributions using
posterior model probabilities as weights.

Similarly, we could consider the posterior distribution of a function of the
parameter vector, which is meaningful in all of the candidate models. In the
binary regression example, such a parameter could be LD50 (lethal dose 50 %)
which is defined as the value of the covariate x which gives success probability
50 %. Such a parameter could be estimated with model averaging.

In multi-model inference one should pay close attention to the formulation
of the within-model prior distributions. While the within-model posterior dis-
tributions are usually robust against the specification of the within-model prior,
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the same is not true for the marginal likelihood. In particular, in a multi-model
situation one cannot use improper priors for the following reason. If the prior
for model m is improper, i.e.,

p(θm | m) ∝ hm(θm)

where the integral of hm is infinite, then

c hm(θm), with c > 0 arbitrary,

is an equally valid expression for the within-model prior. Taking hm(θm) as the
prior within model m in eq. (10.2) leads to the result

p1(y | m) =
∫
hm(θm) p(y | θm,m) dθm

whereas the choice c hm(θm) leads to the result

pc(y | m) = c p1(y | m).

Therefore, if the prior for model m is improper, then we cannot assign any
meaning to the marginal likelihood for model m, and the same difficulty applies
to the Bayes factor, as well.

Many researchers regard the sensitivity of the marginal likelihood to the
within model prior specifications a very serious drawback. This difficulty has
led to many proposals for model comparison which do not depend on marginal
likelihoods and Bayes factors. However, we will continue to use them for the
rest of this chapter. Therefore we suppose that

• we have specified the entire collection of candidate models (this the M-
closed assumption).

• we have successfully formulated proper and informative priors for each of
the candidate models.

10.3 Approximating marginal likelihoods

If we use a conjugate prior in model m, then we can calculate its marginal
likelihood analytically, e.g., by using Bayes rule in the form

p(y | m) =
p(θm | m) p(y | θm,m)

p(θm | y,m)
, (10.5)

where θm is any point in the parameter space of model m, and all the terms
on the right-hand side (prior density, likelihood, and posterior density, each of
them within model m, respectively) are available in a conjugate situation. This
form of the Bayes rule is also known by the name candidate’s formula. In order
to simplify the notation, we will drop the conditioning on the model m from
the notation for the rest of this section, since we will discuss estimating the
marginal likelihood for a single model at a time. For example, in the rest of this
section we will write candidate’s formula (10.5) in the form

p(y) =
p(θ) p(y | θ)
p(θ | y)

. (10.6)
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Hopefully, leaving the model under discussion implicit in the notation does not
cause too much confusion to the reader. If it does, add conditioning on m to
each of the subsequent formulas and add the subscript m to each occurrence of
θ and modify the text accordingly.

When the marginal likelihood is not available analytically, we may try to
estimate it. One idea is based on estimating the posterior ordinate p(θ | y)
in candidate’s formula (10.6) at some point θh having high posterior density
(such as the posterior mean estimated by MCMC). The result can be called the
candidate’s estimator for the marginal likelihood. Suppose that the parameter
can be divided into two blocks θ = (θ1, θ2) such that the full conditional dis-
tributions p(θ1 | θ2, y) and p(θ2 | θ1, y) are both available analytically. By the
multiplication rule

p(θ1, θ2 | y) = p(θ1 | y) p(θ2 | θ1, y).

We might estimate the marginal posterior ordinate of θ1 at θh,1 by the Rao-
Blackwellized estimate

p̂(θh,1 | y) =
1
N

N∑
i=1

p(θh,1 | θ(i)
2 , y),

where (θ(i)
1 , θ

(i)
2 ), i = 1, . . . , N is a sample from the posterior, e.g., produced by

MCMC. Then the joint posterior at θh = (θh,1, θh,2) can be estimated by

p̂(θh,1, θh,2 | y) = p̂(θh,1 | y) p(θh,2 | θh,1, y).

This approach was proposed in Chib [5] where one can also find extensions to
more than two blocks.

Another approach is to use the Laplace method to approximate the integral

p(y) =
∫
p(θ) p(y | θ) dθ.

This gives the marginal likelihood approximation

p̂Lap(y) = p(θ̃) p(y | θ̃) (2π)d/2√
det(Q)

, (10.7)

where θ̃ is the posterior mode (i.e. the maximum a posterior estimate, or MAP
estimate), and and Q is the negative Hessian of the logarithm of the unnormal-
ized posterior density

θ 7→ log (p(θ) p(y | θ))

evaluated at the mode θ̃.
One can also use various Monte Carlo approaches to approximate the marginal

likelihood. Since
p(y) =

∫
p(y | θ) p(θ) dθ,

naive Monte Carlo integration gives the estimate

p̂(y) =
1
N

N∑
i=1

p(y | θ(i)), (10.8)
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where we average the likelihood values using a sample θ(i), i = 1, . . . , N from
the prior p(θ). If the posterior corresponds to a large data set y1, . . . , yn, then
typically the model m likelihood is very peaked compared to the prior. In this
situation the estimate (10.8) has typically huge variance, since very few of the
sample points hit the region with high likelihood values, and these few values
dominate the sum.

A better approach would be to write the marginal likelihood as

p(y) =
∫
p(y | θ) p(θ)

g(θ)
g(θ) dθ,

where g(θ) is an importance sampling density for the model under consideration.
This yields the importance sampling estimate

p̂(y) =
1
N

N∑
i=1

p(y | θ(i)) p(θ(i))
g(θ(i))

, (10.9)

where θ(i), i = 1, . . . , N is a sample drawn from the importance sampling density
g. In order to obtain low variance, g should be an approximation to the posterior
density, and g should have heavier tails than the true posterior. For example, g
could be a multivariate t distribution centered on the posterior mode, the shape
of which is chosen using an estimate of the posterior covariance matrix.

The marginal likelihood can also be estimated using an MCMC sample drawn
from the posterior distribution p(θ | y). Let g be a probability density defined
on the parameter space. Integrating the identity

g(θ) = g(θ)
p(y) p(θ | y)
p(y | θ) p(θ)

over the parameter space gives

1
p(y)

=
∫

g(θ)
p(y | θ) p(θ)

p(θ | y) dθ

If θ(i), i = 1, . . . , N is a MCMC sample from the posterior, then we can estimate
the marginal likelihood as follows,

p̂(y) =

[
1
N

N∑
i=1

g(θ(i))
p(y | θ(i)) p(θ(i))

]−1

. (10.10)

Here we calculate the harmonic mean of prior times likelihood divided by the
density g ordinates evaluated at the sample points, p(y | θ(i)) p(θ(i))/g(θ(i)).
This is the generalized harmonic mean estimator suggested by Gelfand and
Dey [8]. The function g should be chosen so that it has approximately the same
shape as the posterior density p(θ | y) but in this case the tails of g should be
thin compared to the tails of the posterior.

If one selects g to be the prior p(θ) then formula (10.10) suggests that one
could estimate the marginal likelihood by calculating the harmonic mean of the
likelihood values p(y | θ(i)). This is the (in)famous harmonic mean estimator
first discussed by Newton and Raferty [13]. The harmonic mean estimator has
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typically infinite variance and is numerically unstable, and therefore should not
be used at all.

Besides these, many other sampling-based approaches have been proposed
in the literature (e.g., bridge sampling).

After all the marginal likelihoods p(y |M = j) have been estimated one way
or another, then one can estimate the posterior model probabilities based on
eq. (10.1), i.e., by using

p̂(m | y) =
p(m) p̂(y | m)∑K

j=1 p(M = j) p̂(y |M = j)
, m = 1, . . . ,K.

The denominator is just the sum of the numerators when m takes the values
from 1 to K.

An obvious way to estimate the Bayes factor BFkl is to calculate the ratio
of two marginal likelihood estimators,

B̂Fkl =
p̂(y |M = k)
p̂(y |M = l)

.

However, there are also more direct ways of estimating the Bayes factor, such
as path sampling.

10.4 BIC and other information criteria

Information criteria consist of two parts: a measure of fit of the model to the
data, and a penalty for the complexity of the model. The two most famous such
criteria are AIC and BIC.

Our starting point for Schwarz’s Bayes(ian) Information Criterion, BIC
(other acronyms: SBIC, SBC, SIC), is the Laplace approximation to the marginal
posterior given in eq. (10.7). Taking logarithms and multiplying by minus two
gives

−2 log p(y) ≈ −2 log p(θ̃)− 2 log p(y | θ̃)− d log(2π) + d log det(Q).

where θ̃ is the MAP estimate. To simplify this we note that in large samples log
prior is negligible compared to the log likelihood, and the MAP estimate θ̃ is
roughly equal to the maximum likelihood estimate θ̂. Further, when the n data
points are conditionally independent, then Q ≈ nI, where I is the expected
Fisher information for sample size one. Dropping terms which remain constant
as the sample size n increases in the resulting approximation, we get the Bayes
information criterion for model m, namely

BICm = −2Lm + dm log n. (10.11)

Here
Lm = log p(y | θ̂m,m)

is the maximized log-likelihood for model m, dm is the dimensionality of the
model m parameter space, and n is the sample size. (Warning: in the literature
you will find several different definitions for BIC.) This criterion can be used
for rough comparison of competing models: smaller values of BIC correspond
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to better models. Most of the time, more complex models lead automatically to
higher values of the maximized likelihood, but the term dm log n penalizes for
increased model complexity.

Usually BICm is a poor approximation for to the marginal likelihood of
model m, and one should pay attention only to the differences

∆ BICkl = BICk −BICl = −2 log
Lk
Ll

+ (dk − dl) log n.

However, Kass and Wasserman [12] have constructed a special prior, the unit
information prior, under which − 1

2 BICm does give a good approximation to the
logarithm of the model m marginal likelihood log p(y | m). If such a priors are
adopted, then one may estimate the posterior model probabilities by

p̂(m | y) =
exp(− 1

2 BICm)∑K
k=1 exp(− 1

2 BICk)
. (10.12)

However, this approximation is also used also under other kinds of priors.
BIC resembles the equally famous Akaike information criterion, AIC, which

is given by
AICm = −2Lm + 2dm.

In addition, the alphabet soup of information criteria includes such acronyms
as AICc or CAIC; QAIC and QAICc; TIC; HQ; WIC. See, e.g., Burnham and
Anderson [2].

In some statistical models it is not always clear what one should use as the
sample size n in these information criteria. What is more, in complex models,
such as hierarchical models or random effects models, the number of parameters
is not clearly defined. Spiegelhalter et al. [16] suggest that in such a situation
one may use their deviance information criterion, DIC, defined by

DICm = 2D(θm,m)−D(θ̄m,m), (10.13)

where D(θm,m) is the deviance, or minus twice the log-likelihood of model m,

D(θm,m) = −2 log p(y | θm,m),

θ̄m is the posterior mean of θm, and D(θm,m) is the posterior mean of D(θm,m)
within model m. These quantities are estimated using separate MCMC runs
for each of the models. WinBUGS and OpenBUGS have automatic facilities for
calculating DIC, and therefore it has become the widely used among Bayesian
statisticians. As is the case with AIC and BIC, smaller DIC indicates a better
model.

The authors interpret

deff
m = D(θm,m)−D(θ̄m,m)

as the number of effective parameters for model m, and therefore DICm can
written in the form

DICm = D(θ̄m,m) + 2deff
m ,

which shows its connection to AIC. The authors show that deff
m gives a reasonable

definition for the effective number of parameters in many cases. If there is strong
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conflict between the prior and the data, then the effective number of parameters
may turn out have a negative value, which does not make sense.

In order to use DIC, one must decide which expression to use as the likeli-
hood. In complex statistical models, e.g., hierarchical models or random effects
models, even this choice is not clear cut. Consider the hierarchical model, which
has a prior on the hyperparameters ψ and which factorizes as follows

p(y, θ, ψ) = p(y | θ) p(θ | ψ) p(ψ).

If one focuses the attention to the parameter vector θ, then the likelihood ex-
pression is p(y | θ). However, it would be equally valid to consider the vector ψ
to be the true parameter vector. If one focuses on ψ, then one should select

p(y | ψ) =
∫
p(y, θ | ψ) dψ =

∫
p(y | θ) p(θ | ψ) dψ

as the likelihood. In some models p(y | ψ) is available in closed form. Other-
wise, evaluating this likelihood may be problematic. Generally, the DIC values
for p(y | θ) and p(y | ψ) are different. Spiegelhalter et al. suggest that one
should formulate clearly the focus of the analysis, and calculate DIC using the
corresponding likelihood expression. They also point out that DICm changes,
if one reparametrizes model m.

10.5 Sum space versus product space

In this section we discuss an embedding of the multi-model inference problem in
the product-space formulation of the problem. We revert to the explicit notation
of Section 10.2.

Let
Sm ⊂ Rdm , m = 1, . . . ,K

be the parameter space of model m. We call the set

Ssum = ∪Km=1{m} × Sm (10.14)

the sum of the parameter spaces. (In topology, this would be called the topo-
logical sum, direct sum, disjoint union or coproduct of the spaces Sm.) Any
point x ∈ Ssum is of the form

x = (m, θm), where m ∈ {1, . . . ,K} and θm ∈ Sm.

The quantities of inferential interest discussed in Section 10.2 can be defined
based on the joint posterior

p(m, θm | y), m ∈ {1, . . . ,K}, θM ∈ Sm,

which itself is defined on the sum space through the joint distribution specifi-
cation

p(m, θm, y) = p(m) p(θm | m) p(y | θm,m), m ∈ {1, . . . ,K}, θM ∈ Sm.

Designing a MCMC algorithm which uses the sum space as its state space
is challenging. For instance, the dimensionality of the parameter vector may
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change each time the model indicator changes. Specifying the sum-space for-
mulation directly in BUGS seems to be impossible, since in the sum-space for-
mulation parameter θm exits only when the model indicator has the value m.
Green [10] was first to propose a trans-dimensional MCMC algorithm which
works directly in the sum space, and called it the reversible jump MCMC
(RJMCMC) algorithm.

Most of the other multi-model MCMC algorithms are conceptually based on
the product-space formulation, where the state space is the Cartesian product of
the model space {1, . . . ,K} and the Cartesian product of the parameter spaces
of the models,

Sprod = S1 × S2 × · · · × SK . (10.15)

For the rest of the section, θ without a subscript will denote a point point
θ ∈ Sprod. It is of the form

θ = (θ1, θ2, . . . , θK), (10.16)

where each of the θm ∈ Sm. The product space is larger than the sum space,
and the product-space formulation requires that we set up the joint distribution

p(m, θ, y), m ∈ {1, . . . ,K}, θ ∈ Sprod.

In contrast, in the sum-space formulation the parameters {θk, k 6= m} do not
exist on the event M = m, and so we cannot speak of

p(m, θ, y) = p(m, θ1, . . . , θK , y)

within the sum-space formulation. We are obliged to set up the product-space
formulation in such a way that the marginals

p(m, θm, y), m ∈ {1, . . . ,K}

remain the same as in the original sum-space formulation. For this reason we will
not make a notational difference between the sum-space and the product-space
formulation of the multi-model inference problem.

The preceding means that we embed the multi-model inference problem in
the product-space formulation. While specifying the sum-space model is not
possible in WinBUGS/OpenBUGS, it is straightforward to specify the product-
space version of the same problem.

When we do posterior inference in the product-space formulation, only the
marginals

p(m, θm | y), m ∈ {1, . . . ,K}
of the joint posterior

p(m, θ | y) = p(m, θ1, . . . , θK | y)

are of inferential relevance. The other aspects of the joint distribution are only
devices, which allow us to work with the easiear product-space formulation.

If (m(i), θ(i)), i = 1, . . . , N is a sample from the posterior p(m, θ | y), then for
inference we use only the component θ(i)

m(i) of θ(i), which is the parameter vector
of that model m(i) which was visited during the i’th iteration. In particular,
the posterior model probabilities p(M = j | y) can be estimated by tabulating
the relative frequencies of each of the possibilities m(i) = j.
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10.6 Carlin and Chib method

Carlin and Chib [3] use the product-space formulation, where

p(m, θ, y) = p(m) p(θ, y | m), (10.17)

and p(m) is the familiar model m prior probability. The conditional density
p(θ, y | m) is selected to be

p(θ, y | m) = p(θm | m) p(y | θm,m)
∏
k 6=m

gk(θk | y) (10.18)

Here p(θm | m) and p(y | θm,m) are the prior and the likelihood within model
m, respectively. In addition, we need K densities gk(θk | y), k = 1, . . . ,K which
can be called pseudo priors or linking densities. The linking density gk(θk | y)
is an arbitrary density on the parameter space of model k. It can be shown that
this is a valid formulation of the product-space joint density. No circularity
results from allowing the linking densities to depend on the data. Further, this
specification leads to the marginals p(m, θm, y) of the sum-space formulation
irrespective of how one specifies the linking densities.

Let us consider the case of two models (K = 2) in more detail. According
to (10.17) and (10.18), the joint density p(m, θ, y) is{

p(M = 1) p(θ1 |M = 1) p(y | θ1,M = 1) g2(θ2 | y) when m = 1
p(M = 2) p(θ2 |M = 2) p(y | θ2,M = 2) g1(θ1 | y) when m = 2.

We see easily that the marginal densities p(m, θm, y),m = 1, 2 are the same as
in the sum-space formulation: just integrate out

θ2 from p(m = 1, θ1, θ2, y)
θ1 from p(m = 2, θ1, θ2, y).

Hence we have checked the validity of the product space formulation in this
case.

While the specification of the linking densities gk(θk | y) does not influence
the validity of the product-space formulation, this matter does have a critical
influence on the efficiency of the ensuing MCMC algorithm. A recommended
choice is to select gk(θk | y) to be a tractable approximation to the posterior
distribution within model k, such as a multivariate normal approximation or
a multivariate t approximation. Building such approximations usually requires
pilot MCMC runs of all the models under consideration.

Carlin and Chib proposed to use the Gibbs sampler. For this we need to
calculate the full conditionals. First,

p(m | θ, y) ∝ p(m, θ, y), m = 1, . . . ,K.

which is easy to simulate since it is a discrete distribution. Next,

p(θm |M = m, θ−m, y) ∝ p(θm |M = m) p(y | θm,M = m).

Hence we recognize that this full conditional is the posterior within model m.
Finally, for k 6= m

p(θk |M = m, θ−k, y) = gk(θk | y)
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is the linking density for θk.
These full conditionals lead to a Gibbs sampler (or a Metropolis-within-

Gibbs sampler), where one first selects a new value mcur for the model indicator,
drawing the new value from the full conditional p(m | θ, y). After this, one
updates the parameter vectors of all the models. For m equal to mcur (for the
currently visited model), the new value for θm is drawn from the posterior of
model m (and if this is not feasible, one may execute a M–H step for the same
target p(θm | y,m), instead). For all other values of k, the new value of θk is
drawn from the linking density gk(θk | y).

Many other product-space algorithms have been developed as well, see [9]
for a review.

10.7 Reversible jump MCMC

Green’s reversible jump MCMC algorithm (RJMCMC) [10] uses a Markov chain
whose state space is the sum space. We discuss a simplified version of RJMCMC,
where there is only one type of move available for moving from model m to model
k. We also assume that the distributions of the parameter vectors θm in all of
the models are continuous.

The RJMCMC works like the Metropolis–Hastings algorithm. One first
proposes a new state, and then accepts the proposed state as the new state of
the Markov chain, if v < r, where r is the test ratio and v is a fresh uniform
Uni(0, 1) random variate. The difference lies in the details: how the proposed
state is generated, and how the test ratio is calculated. The state space of
the Markov chain is the sum space Ssum, and the target distribution π is the
posterior distribution

π(m, θm) = p(m, θm | y), m ∈ {1, . . . ,K}, θm ∈ Sm.

When the current state of the chain is (m, θm), then the proposal (k, θk) and
the test ratio r are calculated as described in algorithm 20. The proposed model
k is drawn from the pmf β(· | m). If k = m, then one executes an ordinary M–H
step within model m. If k 6= m, then one proposes a new parameter vector θk
in model k as follows. First one generates a noise vector um associated with
θm from noise density g(· | θm,m → k) specific for the move m → k. Then
one calculates θk and uk by applying the so called dimension-matching function
Tm→k. The dimension-matching functions are defined for all moves m 6= k, and
they have to satisfy the following compatibility conditions, which are also called
dimension-matching conditions.

We assume that for each move m → k where m 6= k there exists a diffeo-
morphic correspondence

(θk, uk) = Tm→k(θm, um)

with inverse Tk→m, i.e.,

(θk, uk) = Tm→k(θm, um) ⇔ (θm, um) = Tk→m(θk, uk). (10.19)

Here um is the noise variable associated with θm and uk is the noise variable
associated with θk (for the move m→ k). Here the dimensions have to match,

dim(θm) + dim(um) = dim(θk) + dim(uk),
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Algorithm 20: One step of the RJMCMC algorithm.
Input: The current state of the chain is (m, θm).
Assumption: The correspondences (10.19) are diffeomorhpic.
Result: Proposed next value (k, θk) as well as the test ratio r.
Draw k from the pmf β(k | m).1

if k = m then2

generate the proposal θk with some M–H proposal mechanism within3

model m, and calculate r with the ordinary formula for the M–H ratio.
else4

Draw the noise variable um from density g(um | θm,m→ k). (This5

step is omitted, if the move m→ k is deterministic.)
Calculate θk and uk by the diffeomorphic correspondence specific for6

the move m→ k,
(θk, uk)← Tm→k(θm, um).

Calculate r by7

r ← π(k, θk)
π(m, θm)

β(m | k)
β(k | m)

g(uk | θk, k → m)
g(um | θm,m→ k)

∣∣∣∣ ∂(θk, uk)
∂(θm, um)

∣∣∣∣
end8

since otherwise such a diffeomorphism cannot exist.
Notice the following points concerning this method.

• When we calculate the test ratio r for the move m → k, we have to use
the quantities β(m | k) and g(uk | θk, k → m) which correspond to the
distributions from which we simulate, when the current state is (k, θk) and
the move is selected to be k → m.

• The Jacobian is the Jacobian of the transformation which maps (θm, um)
to (θk, uk), when the move is m→ k, i.e.,

∂(θk, uk)
∂(θm, um)

=
∂Tm→k(θm, um)
∂(θm, um)

.

We will see in Sec. 11.8 that the Jacobian term arises from the change-of-
variables formula for integrals, the reason being the fact that the proposal
θk is calculated in an indirect way, by applying the deterministic function
Tm→k to the pair (θm, um).

• One of the moves m→ k or k → m can deterministic. If the move m→ k
is deterministic, then the associated noise variable, um is not defined nor
simulated, the dimension-matching function is (θk, uk) = Tm→k(θm), and
the noise density value, g(um | θm,m→ k) gets replaced by the constant
one. The same rules apply, when the move k → m is deterministic.

• The target density ratio is calculated by

π(k, θk)
π(m, θm)

=
P (M = k)
P (M = m)

p(θk |M = k)
p(θm |M = m)

p(y |M = k, θk)
p(y |M = m, θm)
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• The test ratio r can be described verbally as

r = (prior ratio)× (likelihood ratio)× (proposal ratio)× (Jacobian)

It is possible to extend the method to the situation where we have discrete
components in the state vectors θm of some of the models m. It is also possible
to have more than one type of move between any given models. See the original
paper by Green [10] for more details. See the review articles [11] and [9] for
more on Bayesian methods for model choice and model averaging.

The choice of the dimension-matching functions is critical to ensure good
mixing of the Markov chain. In this respect, Green’s automatic generic trans-
dimensional sampler [11] seems to be very promising.

10.8 Discussion

In this chapter we have seen many different approaches for estimating the pos-
terior model probabilities, which are central quantities both for model selection
and model averaging. One approach is to estimate the marginal likelihoods for
all of the models, and a distinct approach is to set up an MCMC algorithm
which works over the model space and the parameter spaces of each of the mod-
els. Many variations are possible within each of the two approaches. What are
the pros and cons of these approaches?

If the list of candidate models is short, then it is usually easy to estimate
the marginal likelihoods for each of the models separately. However, if the
list of candidate models is large and if it is suspected that only few of the
models are supported by the data, then the best option might be to implement
a multi-model MCMC sampler. However, getting the multi-model sampler to
mix across the different models can be a challenging exercise and might require
investigating pilot runs within each of the candidate models. Mixing within the
parameter space of a single model is usually very much easier to achieve.

10.9 Literature

In addition to the original articles, one may consult the books [4, 14, 6, 7, 15].
These books also address measures for model checking (model assessment, model
criticism) which we have neglected in this chapter.
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Chapter 11

MCMC theory

In this chapter we will finally justify the usual MCMC algorithms theoretically
using the machinery of general state space Markov chains. We will prove that
the Markov chains corresponding to our MCMC algorithms have the correct
invariant distributions, using the concept of reversibility of a Markov chain.
Additionally, we will try to understand, what the concept of irreducibility of a
Markov chain means and also touch on the topic of Markov chain central limit
theorems.

11.1 Transition kernel

Let S be the state space of a homogeneous Markov chain

Θ(0),Θ(1),Θ(2), . . .

This means that each of the RVs Θ(i) takes values in the space S. S is usually
some subset of the Euclidean space. When the chain corresponds to a MCMC
algorithm, where the support of the target distribution is not the whole space
under consideration, then we usually choose S equal to the support of the target
distribution.

LetK(θ,A) be the transition (probability) kernel of the homogeneous Markov
chain, i.e., we suppose that for all A ⊂ S we have

K(θ,A) = P (Θ(t+1) ∈ A | Θ(t) = θ). (11.1)

As a function of A ⊂ S, the transition kernel K(θ,A) is the conditional distri-
bution of Θ(t+1) given that Θ(t) = θ. Of course,

K(θ, S) = 1 ∀θ.

If µ is the initial distribution of the chain, i.e.,

µ(A) = P (Θ(0) ∈ A), A ⊂ S,

then the joint distribution of Θ(0) and Θ(1) is

Pµ(Θ(0) ∈ A,Θ(1) ∈ B) =
∫
A

µ(dθ0)K(θ0, B).
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Hence the distribution of the next state is

Pµ(Θ(1) ∈ B) =
∫
µ(dθ)K(θ,B), B ⊂ S. (11.2)

When the domain of integration is not indicated, as here, the integral is taken
over the whole space S. Here the integral is the Lebesgue integral of the function
θ 7→ K(θ,B) with respect to the measure µ. We write the initial distribution
itself, or its density, as a subscript to the P -symbol, if need be.

Recall that we call π(θ) a density even if it represents a discrete distribution
with respect to some components of θ and a continuous distribution for others.
Then integrals involving the density π(θ) can actually be sums with respect to
some components of θ and integrals with respect to the others. If the initial
distribution has a density π(θ), then the initial distribution itself is given by

µ(A) =
∫
A

π(θ) dθ.

In that case, the distribution of the next state given in (11.2) can be written as

Pµ(Θ(1) ∈ B) =
∫
π(θ)K(θ,B) dθ B ⊂ S. (11.3)

However, this distribution may or may not admit a density; which case obtains
depends on the nature of the transition kernel.

In some cases (but not always) the transition kernel can be obtained from a
transition density k(θ1 | θ0) by integration,

K(θ0, B) =
∫
B

k(θ1 | θ0) dθ1.

In such a case k(θ1 | θ0) is the conditional density of Θ(1) conditionally on
Θ(0) = θ0. If the initial distribution has the density π, then (11.3) can be
written as

Pπ(Θ(1) ∈ B) =
∫
θ1∈B

∫
π(θ0) k(θ1 | θ0) dθ1 dθ0.

That is, the density of Θ(1) can be obtained from the joint density π(θ0) k(θ1 | θ0)
by marginalization.

The joint distribution of the states Θ(0),Θ(1) and Θ(2) is determined by

Pµ(Θ(0) ∈ A0,Θ(1) ∈ A1,Θ(2) ∈ A2)

=
∫
θ0∈A0

∫
θ1∈A1

µ(dθ0)K(θ0,dθ1)K(θ1, A2)

where µ is the initial distribution. If the initial distribution has density π, and
the transition kernel can be obtained from transition density k(θ1 | θ0), then
the previous formula just states that the joint density of Θ(0), Θ(1) and Θ(2) is

π(θ0) k(θ1 | θ0) k(θ2 | θ1).

Iterating, we see that the initial distribution µ and the transition kernel K
together determine the distribution of the homogeneous Markov chain.
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11.2 Invariant distribution and reversibility

The density π(θ) is an invariant density (or stationary density or equilibrium
density) of the chain (or of its transition kernel), if the Markov chain preserves
it in the following sense. When the initial state has the invariant distribution
corresponding to the invariant density, then all the consecutive states have to
have the same invariant distribution. In particular, when the initial distribution
has the invariant density π, then the the distribution of Θ(1) also has to have
the density π. That is,

Pπ(Θ(0) ∈ B) = Pπ(Θ(1) ∈ B), ∀B ⊂ S. (11.4)

If this holds, then by induction also all the consecutive states have the same
invariant distribution, so this requirement is equivalent with the requirement
that π is the invariant density of the Markov chain.

By (11.3), the requirement (11.4) can also be written in terms of the transi-
tion kernel, ∫

B

π(θ) dθ =
∫
π(θ)K(θ,B) dθ, ∀B ⊂ S. (11.5)

A given transition kernel may have more than one invariant densities. E.g.,
the kernel

K(θ,A) = 1A(θ), A ⊂ S

corresponds to the Markov chain which stays for ever at the same state where
it starts. Obviously, any probability distribution is an invariant distribution
for this trivial chain. Staying put obviously preserves any target distribution,
but at the same time, this is obviously useless for the purpose of exploring the
target. Useful Markov chains are ergodic, and then the invariant density can be
shown to be unique.

One simple way to ensuring that a Markov chain has a specified invariant
density π is to construct the transition kernel K so that it is reversible with
respect to π. This means that the condition

Pπ(Θ(0) ∈ A,Θ(1) ∈ B) = Pπ(Θ(0) ∈ B,Θ(1) ∈ A) (11.6)

holds for every A,B ⊂ S. This means that

(Θ(0),Θ(1)) d=(Θ(1),Θ(0)), when Θ(0) ∼ π,

that is, the joint distribution of the pair (Θ(0),Θ(1)) is the same as the joint
distribution of the pair (Θ(1),Θ(0)), when the chain is started from the invariant
distribution. Of course, the same result then extends to all pairs (Θ(i),Θ(i+1)),
where i ≥ 0.

Expressed in terms of the transition kernel, the condition (11.6) for reversibil-
ity becomes∫

A

π(θ)K(θ,B) dθ =
∫
B

π(φ)K(φ,A) dφ, ∀A,B ⊂ S. (11.7)

These equations are also called the detailed balance equations.

Theorem 6. If the transition kernel K is reversible for π, then π is an invariant
density for the chain.
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Proof. For any A ⊂ S

Pπ(Θ(0) ∈ A) = Pπ(Θ(0) ∈ A,Θ(1) ∈ S) = Pπ(Θ(0) ∈ S,Θ(1) ∈ A)

= Pπ(Θ(1) ∈ A).

11.3 Finite state space

It is instructive to specialize the preceding concepts for the case of a finite state
space, which may be familiar to the reader. Consider a Markov chain on the
finite state space

S = {1, . . . , k}.

Now we can identify the transition kernel with the transition matrix P = (pij)
with entries

pij = P (Θ(t+1) = j | Θ(t) = i), i = 1, . . . , k, j = 1, . . . , k.

It is customary to let the first index denote the present state, and the second
index the possible values of the next state.

The entries of the transition matrix have obviously the following properties,

pij ≥ 0 ∀i, j;
k∑
j=1

pij = 1, ∀i.

All the elements are non-negative and all the rows sum to one. Such a matrix is
called a stochastic matrix. The transition kernel corresponding to the transition
matrix is

K(i, A) =
∑

j∈{1,...,k}∩A

pij .

If the pmf of the initial distribution is expressed as the row vector πT =
[π1, . . . , πk], then the pmf at time one is∑

i

πipij = [πTP ]j ,

i.e., it is the j’th entry of the row vector πTP .
The probability row vector πT = [π1, . . . , πk] is stationary if and only if

πT = πTP,

which means that πT has to be a left eigenvector of P corresponding to eigen-
value one, and π has to be a probability vector: its entries must be non-negative
and sum to one. (A left eigenvector of P is simply the transpose of an ordinary
eigenvector [or right eigenvector] of PT ).

In a finite state space the transition matrix P is reversible with respect to
π, if

πi pij = πj pji, ∀i, j.

Then π is an invariant pmf, since for any j∑
i

πi pij =
∑
i

πj pji = πj
∑
i

pji = πj .
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11.4 Combining kernels

A simulation algorithm, where one calculates the new state θ′ based on the old
state θ and some freshly generated random numbers corresponds to the kernel
K(θ,A), where

K(θ,A) = P (Θ′ ∈ A | θ).
Now suppose that we have two simulation codes, which correspond to two

different kernels K1(θ,A) and K2(θ,A). What is the transition kernel from θ
to θ′′, if we first calculate θ′ by the code corresponding to K1(θ, ·), and then
calculate θ′′ using the code corresponding to K2(θ′, ·)? Notice that in the second
step the initial value is the state where we ended up after the first step. The
new piece of code corresponds to a transition kernel which we will denote by

K1K2.

This is can be called the cycle of K1 and K2. In a finite state space K1K2 corre-
sponds to multiplying the transition matrices P1 and P2 to form the transition
matrix P1P2.

If we have d kernels K1, . . . ,Kd, then we can define the cycle of the kernels
K1, . . . ,Kd by

K1K2 · · ·Kd,

which corresponds to executing the simulations corresponding to the kernels
sequentially, always starting from the state where the previous step took us. If
Kj is the transition kernel of the jth component Gibbs updating step, then the
combined kernel K1 · · ·Kd is the kernel the deterministic scan Gibbs sampler,
where the updates are carried out in the order 1, 2, . . . , d.

Now suppose that π is an invariant density for all kernels Kj . If the initial
state Θ has the density π, then after drawing Θ′ from the kernel K1(θ, ·), the
density of Θ′ is π. When we then simulate Θ′′ from the kernel K2(θ′, ·), its
density is again π, and so on. Therefore the cycle kernel

K1K2 · · ·Kd

also has π as its invariant density.
Now suppose that we have d transition kernels Kj . Suppose also that

β1, . . . , βd is a probability vector. Then the kernel

K(θ,A) =
d∑
j=1

βjKj(θ,A)

is called a mixture of the kernels K1, . . . ,Kd. It corresponds to the following
simulation procedure. We draw j from the pmf β1, . . . , βd and then draw the
new value θ′ using the kernel Kj(θ, ·). If Kj is the jth updating step of a Gibbs
sampler, then K is the transition kernel of the random scan Gibbs sampler
corresponding to selecting the component to be updated using the probabilities
β1, . . . , βd.

Suppose that all the kernels Kj have π as an invariant density. Then also
the mixture K =

∑
βjKj has the same invariant density, since∫

A

π(θ) dθ =
∫
π(θ)Kj(θ,A) dθ, ∀j ∀A ⊂ S,
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and hence∫
A

π(θ) dθ =
d∑
j=1

βj

∫
A

π(θ) dθ =
d∑
j=1

βj

∫
π(θ)Kj(θ,A) dθ =

∫
π(θ)K(θ,A) dθ.

For this argument to work, it is critical that the mixing vector β1, . . . , βd does
not depend on the present state θ.

We have proved the following theorem.

Theorem 7. If π is an invariant density for each of the kernels K1, . . . ,Kd,
then it is also an invariant density for the cycle kernel K1 · · ·Kd.

If π is an invariant density for each of the kernels K1, . . . ,Kd and β1, . . . , βd
is a probability vector, i.e., each βi ≥ 0 and β1 + · · ·+ βd = 1, then π is also an
invariant density for the mixture kernel

∑d
j=1 βjKj.

11.5 Invariance of the Gibbs sampler

Suppose that the target density is π(θ), where θ is divided into components

θ = (θ1, θ2, . . . , θd).

Now consider the transition kernel Kj corresponding to the jth component
Gibbs sampler. This sampler updates the jth component θj of θ only and
keeps all the other components θ−j at their original values. The sampler draws
a new value θ′j for θj from the corresponding full conditional density, which we
denote by

πj(θj | θ−j).

A key observation is the identity

π(θ) = πj(θj | θ−j)π(θ−j),

where π(θ−j) is the marginal density of all the other components except θj .

Theorem 8. The transition kernel corresponding to the jth component Gibbs
sampler has π as its invariant density.

Proof. Let the initial state Θ have density π, and let Θ′j be drawn from the jth
full conditional density. Then the joint distribution of Θ and Θ′j has the density

π(θ)πj(θ′j | θ−j) = πj(θj | θ−j)π(θ−j)πj(θ′j | θ−j).

After the update, the state is (Θ′j ,Θ−j). We obtain its density by integrating
out the variable θj from the joint density of Θ and Θ′j , but∫

πj(θj | θ−j)π(θ−j)πj(θ′j | θ−j) dθj = πj(θ′j | θ−j)π(θ−j)
∫
π(θj | θ−j) dθj

= πj(θ′j | θ−j)π(θ−j) = π(θ′).

Therefore the updated state has the density π.
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It now follows from theorem 7 that the systematic scan and the random scan
Gibbs samplers have π as their invariant distribution.

It can also be shown that the transition kernel Kj of the jth Gibbs update
is reversible with respect to π. From this it follows that the transition kernel∑
j βjKj of the random scan Gibbs sampler is also reversible with respect to π.

However, the transition kernel of the systematic scan Gibbs sampler is not usu-
ally reversible. (The distinction between reversible and non-reversible kernels
makes a difference when one discusses the regularity conditions needed for the
Markov chain central limit theorems.)

11.6 Reversibility of the M–H algorithm

Proving that the Metropolis–Hastings update leaves the target density invariant
requires more effort than proving the same property for the Gibbs sampler.

Let the initial state Θ be θ and let the next state be denoted by Φ. Recall
that Φ is obtained from θ by the following steps.

• We generate the proposal Θ′ from the proposal density q(θ′ | θ), and
independently U ∼ Uni(0, 1).

• We set

Φ =

{
Θ′, if U < r(θ,Θ′) (accept)
θ, otherwise (reject),

where the M–H ratio r(θ, θ′) is defined by

r(θ, θ′) =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

(11.8)

Notice that r(θ, θ′) can be greater than one, and hence the probability of accep-
tance, conditionally on Θ = θ and Θ′ = θ′ is given by

α(θ, θ′) = P (accept | Θ = θ,Θ′ = θ′) = min(1, r(θ, θ′)).

Theorem 9. The Metropolis–Hastings sampler is reversible with respect to π,
and hence has π as its invariant density.

Proof. To prove reversibility, we must prove that

Pπ(Θ ∈ A,Φ ∈ B) = Pπ(Θ ∈ B,Φ ∈ A) (11.9)

for all sets A and B in the state space. Here the subscript π means that the
current state Θ is distributed according to the density π.

Now the left-hand side (LHS) of the claim (11.9) is

Pπ(Θ ∈ A,Φ ∈ B) = Pπ(Θ ∈ A,Φ ∈ B, accept) + Pπ(Θ ∈ A,Φ ∈ B, reject)
= Pπ(Θ ∈ A,Θ′ ∈ B, accept) + Pπ(Θ ∈ A ∩B, reject)

Similarly, the right-hand side (RHS) of the claim (11.9) is

Pπ(Θ ∈ B,Φ ∈ A) = Pπ(Θ ∈ B,Θ′ ∈ A, accept) + Pπ(Θ ∈ B ∩A, reject)
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The contributions from rejection are equal on the LHS and on the RHS, and we
need only show that the contributions from acceptance are also equal.

On the LHS, the contribution from acceptance is

Pπ(Θ ∈ A,Θ′ ∈ B, accept) =
∫

dθ 1A(θ)π(θ)
∫

dθ′ 1B(θ′) q(θ′ | θ)α(θ, θ′)

=
∫∫

(θ,θ′)∈A×B
π(θ) q(θ′ | θ)α(θ, θ′) dθ dθ′.

Similarly, on the RHS, the contribution from acceptance is

Pπ(Θ ∈ B,Θ′ ∈ A, accept) =
∫∫

(θ,θ′)∈B×A
π(θ) q(θ′ | θ)α(θ, θ′)dθ dθ′

=
∫∫

(θ,θ′)∈A×B
π(θ′) q(θ | θ′)α(θ′, θ) dθ dθ′,

where in the last formula we just interchanged the names of the integration
variables. Since the two integration sets are the same, and the equality has to
hold for every integration set A × B, the integrands must be proved to be the
same, i.e., the claim (11.9) is true if and only if

π(θ) q(θ′ | θ)α(θ, θ′) = π(θ′) q(θ | θ′)α(θ′, θ) ∀θ, θ′, (11.10)

(almost everywhere). However, our choice (11.8) for r(θ′, θ) implies (11.10),
since its LHS is

π(θ) q(θ′ | θ)α(θ, θ′) = π(θ) q(θ′ | θ) min(1, r(θ, θ′))

= min
(
π(θ) q(θ′ | θ), π(θ) q(θ′ | θ) π(θ′) q(θ | θ′)

π(θ) q(θ′ | θ)

)
= min(π(θ) q(θ′ | θ), π(θ′) q(θ | θ′)),

and its RHS is

π(θ′) q(θ | θ′)α(θ′, θ) = π(θ′) q(θ | θ′) min(1, r(θ′, θ))

= min
(
π(θ′) q(θ | θ′), π(θ′) q(θ | θ′) π(θ) q(θ′ | θ)

π(θ′) q(θ | θ′)

)
.

and therefore the two integrands are the same.

Recall from the proof, that it is sufficient to show the reversibility of the
acceptance part of the transition kernel by establishing (11.10), where α(θ, θ′) =
min(1, r(θ, θ′)). The formula (11.8) is not the only choice for r which works.
E.g., Barker’s formula

r(θ, θ′) =
π(θ′)q(θ | θ′)

π(θ′)q(θ | θ′) + π(θ)q(θ′ | θ)

(which was proposed by Barker in 1965) would also imply eq. (11.10). In-
deed, Hastings considered Barker’s formula and many other related formulas for
α(θ, θ′), which all guarantee (11.10). Later, Hasting’s student Peskun showed
that the acceptance probability α(θ, θ′) implied by (11.8) is, in a certain sense,
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the best possible [8]. Later, Tierney [12] extended Peskun’s optimality argument
from the discrete state space to the general state space.

If we use a Metropolis–Hastings update to update the jth component of θ
only, then the corresponding kernel is reversible with respect to π and hence
has π as its invariant density. This follows from our proof, when we treat the
other components θ−j as constants. We can then combine the jth component
Metropolis–Hastings updates using a systematic scan or a random-scan strategy,
and the resulting algorithm still has π as its invariant density. The random scan
algorithm is still reversible with respect to π, but the systematic scan algorithm
is usually not reversible.

11.7 State-dependent mixing of proposal distri-
butions

As in Sec. 7.4.6 we calculate the proposal θ′ as follows, when the current state
is θ. We draw the proposal from a proposal density, which is selected randomly
from a list of alternatives, and the selection probabilities are allowed depend on
the current state.

• Draw j from the pmf β(· | θ), j = 1, . . . ,K.

• Draw θ′ from the density q(θ′ | θ, j) which corresponds to the selected j.

• Accept the proposed value as the new state, if U < r, where U ∼ Uni(0, 1),
and

r =
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

. (11.11)

Otherwise the chain stays at θ.

We now outline the proof why this yields a Markov chain which is reversible
with respect to the target density π(θ).

As in ordinary Metropolis–Hastings, we only need to show reversibility when
that the proposed value is accepted. That is, we need to show that

Pπ(Θ ∈ A,Θ′ ∈ B, accept) = Pπ(Θ ∈ B,Θ′ ∈ A, accept), (11.12)

where the subscript indicates that the density of the current state Θ is assumed
to be π.

Let

αj(θ, θ′) = P (accept | Θ = θ,Θ′ = θ′, component j was selected)

= min
(

1,
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

)
.

The LHS of the condition (11.12) is

∫
dθ 1A(θ)π(θ)

K∑
j=1

β(j | θ)
∫

dθ′ q(θ′ | θ, j)αj(θ, θ′) 1B(θ′)

=
∑
j

∫∫
1A(θ) 1B(θ′)π(θ)β(j | θ) q(θ′ | θ, j)αj(θ, θ′) dθ dθ′

149



April 9, 2010

Similarly, the RHS of the condition (11.12) is

∑
j

∫∫
1B(θ) 1A(θ′)π(θ)β(j | θ) q(θ′ | θ, j)αj(θ, θ′) dθ dθ′

=
∑
j

∫∫
1A(θ) 1B(θ′)π(θ′)β(j | θ′) q(θ | θ′, j)αj(θ′, θ) dθ dθ′

The equality of LHS and RHS follows from the fact that the integration sets
and the integrands are the same for each j, thanks to the formula (11.11) for
the test ratio r.

11.8 Reversibility of RJMCMC

Recall that the reversible jump MCMC method (RJMCMC) allows transitions
between parameter spaces of different dimensions. Green derived the RJMCMC
algorithm starting from the requirement that the Markov chain should be re-
versible [3].

We consider reversibility proof for a simple case of the RJMCMC algorithm,
where we have two alternative Bayesian models for the same data y. The setting
is the same as in Sec. 10.7. The first model is indicated by M = 1 and the second
model by M = 2. The two models have separate parameter vectors θ1 and θ2

which we assume to have different dimensionalities d1 and d2. Their values are
in respective parameter spaces S1 and S2. The prior distributions within the
two models are

p(θ1 |M = 1), p(θ2 |M = 2),

and the likelihoods are

p(y |M = 1, θ1), p(y |M = 2, θ2).

The RJMCMC algorithm constructs a Markov chain, whose state space is
the sum space

S = ({1} × S1) ∪ ({2} × S2).

Any point in S is of the form (m, θm), where m is either 1 or 2, and θm ∈ Sm.
The target distribution π(m, θm) of the chain is the posterior distribution

π(m, θm) = p(M = m, θm | y), m = 1, 2, θm ∈ Sm. (11.13)

We suppose that the parameters θ1 and θ2 both have continuous distributions
and that d1 < d2.

When the current state of the chain is (m, θm), then the algorithm chooses
with probability β(m | m) to attempt to move within the model m or with
complementary probability β(k | m) to attempt to move from the current model
m to the other model k 6= m.

Recall that in RJMCMC, the moves 1 → 2 and 2 → 1 must be related in
a certain way. Suppose that the move 1 → 2 is effected by the following steps,
when the current state is (1, θ1).

• Draw u1 from density g(· | θ1).
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• Calculate θ2 = T1→2(θ1, u1).

We suppose that the function T1→2 defines a diffeomorphic correspondence be-
tween θ2 and (θ1, u1). The density of the noise g(u1 | θ1) is a density on the
space of dimension d2 − d1. The test ratio is calculated as

r =
π(2, θ2)
π(1, θ1)

β(1 | 2)
β(2 | 1)

1
g(u1 | θ1)

∣∣∣∣ ∂θ2

∂(θ1, u1)

∣∣∣∣ , (move 1→ 2). (11.14)

Our choice for the move 1 → 2 implies that the move 2 → 1 has to de-
terministic and has to be calculated by applying the inverse transformation
T−1

1→2 = T2→1 to θ2, when the current state is (2, θ2), i.e.,

(θ1, u1) = T2→1(θ2).

The value u1 is also calculated from this requirement, and it is used when we
evaluate the test ratio, which is given by

r =
π(1, θ1)
π(2, θ2)

β(2 | 1)
β(1 | 2)

g(u1 | θ1)
1

∣∣∣∣∂(θ1, u1)
∂θ2

∣∣∣∣ , (move 2→ 1). (11.15)

The moves within the models are ordinary Metropolis–Hastings moves from
some suitable proposal distributions and for them the test ratio is the ordinary
M–H ratio.

To show that RJMCMC is reversible with respect to the target distribution,
we should prove that

Pπ(M (0) = m,Θ(0) ∈ A,M (1) = k,Θ(1) ∈ B)

= Pπ(M (0) = k,Θ(0) ∈ B,M (1) = m,Θ(2) ∈ A)
(11.16)

for all m, k ∈ {1, 2} and all sets A ∈ Cm and B ∈ Ck. Here (M (i),Θ(i)) is
the state of the chain at iteration i, and the initial distribution is the target
distribution π.

We consider the case m = 1 and k = 2, and leave the other cases for the
reader to check. Let A ∈ C1 and B ∈ C2 be arbitrary sets. If the event on the
LHS of (11.16) has taken place, then the move 1→ 2 has been selected and θ2

has been proposed and accepted. Therefore the LHS is∫
dθ1 1A(θ1)π(1, θ1)β(2 | 1)

∫
du1 g(u1 | θ1) min(1, r1→2(θ1, u1, θ2)) 1B(θ2),

where r1→2(θ1, u1, θ2) is the expression (11.14), and θ2 is short for T (θ1, u1).
On the other hand, the RHS is given by∫

dθ2 1B(θ2)π(2, θ2)β(1 | 2) min(1, r2→1(θ2, θ1, u1)) 1A(θ1)

where r2→1(θ2, θ1, u1) is the expression (11.15), and the pair (θ1, u1) is short
for T2→1(θ2) = T−1

1→2(θ2). Make the change of variables from θ2 to (θ1, u1) =
T−1

1→2(θ2). This changes the RHS to∫
dθ1

∫
du1 1A(θ1) 1B(θ2)π(2, θ2)β(1 | 2) min(1, r2→1(θ2, θ1, u1))

∣∣∣∣ ∂θ2

∂(θ1, u1)

∣∣∣∣
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where now θ2 is short for T (θ1, u1). Taking into account the formulas for the
test ratios and remembering that

∂(θ1, u1)
∂θ2

∂θ2

∂(θ1, u1)
= 1

(since the mappings are inverses of one another) it is routine matter to check
that the integrands are the same, and therefore reversibility has been checked
for the case (m, k) = (1, 2).

11.9 Irreducibility

A Markov chain which has the target distribution as its invariant distribution
may still be useless. For example, consider the trivial Markov chain which
stays for ever at the same state where it starts. For this chain, any probability
distribution on the state space is an invariant distribution. At the same time,
this kernel is clearly useless for the purpose of generating samples from the
target distribution. In order to be useful, a Markov chain should visit all parts
of the state space. Irreducible chains have that desirable property. A Markov
chain which is not irreducible is called reducible.

If the Markov chain has π as it invariant density, then it is called irre-
ducible, if for any θ(0) ∈ S and for any A such that

∫
A
π(θ) dθ > 0 there exists

an integer m such that

P (Θ(m) ∈ A | Θ(0) = θ(0)) > 0.

In other words, starting from any initial value, an irreducible chain can eventu-
ally reach any subset of the state space (which is relevant for π) with positive
probability.

The Metropolis–Hastings sampler (which treats θ as a single block) is irre-
ducible, e.g., if the proposal density is everywhere positive, i.e., if

q(θ′ | θ) > 0 ∀θ, θ′ ∈ S.

Then every set A which has positive probability under π can be reached with
positive probability in one step starting from any θ. However, the positivity of
the proposal density is not necessary for the irreducibility of the Metropolis–
Hastings chain. It is sufficient that the proposal density allows the chain to visit
any region of the space after a finite number of steps.

The jth component Gibbs sampler is, of course, reducible, since it can not
change any other components than θj . By combining the component updates
with a systematic or a random scan strategy, one usually obtains an irreducible
chain. The same considerations apply to the Metropolis–Hastings sampler which
uses componentwise transitions. However, irreducibility of the Gibbs sampler is
not automatic, as the following example shows.

Example 11.1. Let 0 < p < 1 and consider the density

π(θ1, θ2) = p 1[0,1]×[0,1](θ1, θ2) + (1− p) 1[2,3]×[2,3](θ1, θ2).

The full conditional of θ1 is the uniform distribution on [0, 1], if 0 < θ2 < 1
and the uniform distribution on [2, 3], if 2 < θ2 < 3. The full conditional of
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θ2 is similar. If we start the simulation using an initial value inside the square
[0, 1]× [0, 1], then all the subsequent values of the Gibbs sampler will be inside
the same square, and the square [2, 3]× [2, 3] will never be visited. On the other
hand, if we start the simulation using an initial value inside the other square
[2, 3]× [2, 3], then all the subsequent values of the Gibbs sampler will be inside
the same square, and the square [0, 1]× [0, 1] will never be visited.

For this target distribution the Gibbs sample is reducible. This example has
also the interesting feature that the two full conditional distributions do not
determine the joint distribution, since all the joint distributions corresponding
to the different 0 < p < 1 have the same full conditional distributions. 4

The behavior of the previous example is be ruled out, if the target distribu-
tion satisfies what is known as the positivity condition. It requires that π(θ)
is strictly positive for every θ for which each of the marginal densities of the
target distribution π(θj) is positive. Thus the support of π has to be the Carte-
sian product of the supports of the marginal densities. The previous example
clearly does not satisfy the positivity condition, since the Cartesian product of
the supports of the marginal densities is

([0, 1] ∪ [2, 3])× ([0, 1] ∪ [2, 3]),

but π(θ) = 0 for any θ ∈ [0, 1]× [2, 3] or any θ ∈ [2, 3]× [0, 1].
The positivity condition ensures irreducibility of the Gibbs sampler, since

it allows transitions between any two values in a single cycle. The famous
Hammersley–Clifford theorem shows that if the positivity condition is satisfied,
then the full conditional distributions determine the joint distribution uniquely.

11.10 Ergodicity

A Markov chain which has an invariant density π is ergodic, if it is irreducible,
aperiodic and Harris recurrent. Then the invariant density is unique. Of these
conditions, π-irreducibility has already been discussed.

A Markov chain with a stationary density π is periodic if there exist d ≥ 2
disjoint subsets A1, . . . , Ad ⊂ S such that∫

A1

π(θ) dθ > 0,

and starting from A1 the chain always cycles through the sets A1, A2, . . . Ad.
I.e., the chain with transition kernel K is periodic with period d, if for the sets
Ai

K(θ,Ai+1) = 1, ∀θ ∈ Ai, i = 1, . . . , d− 1

and
K(θ,A1) = 1, ∀θ ∈ Ad.

If the chain is not periodic then it is aperiodic. Aperiodicity holds virtually
for any Metropolis–Hastings sampler or Gibbs sampler.

The chain is Harris recurrent, if for all A with
∫
A
π(θ) dθ > 0, the chain

will visit A infinitely often with probability one, when the chain starts from
any initial state θ ∈ S. For MCMC algorithms, π-irreducibility usually implies
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Harris recurrence, so this property is usually satisfied, although generally π-
irreducibility is a much weaker condition than Harris recurrence.

If the chain is ergodic in the above sense, then starting from any initial value
Θ(0) = θ, the distribution of Θ(n) converges (in the sense of total variation
distance) to the (unique) invariant distribution as n grows without limit.

Under ergodicity, the strong law of large numbers holds. Namely, for
any real-valued function h, which is absolutely integrable in the sense that∫

|h(θ)|π(θ) dθ <∞,

the empirical means of the RVs h(Θ(t)),

π̂n(h) =
1
n

n∑
t=1

h(Θ(t)), (11.17)

converge to the corresponding expectation

π(h) =
∫
h(θ)π(θ) dθ (11.18)

with probability one, i.e.,
lim
n→∞

π̂n(h) = π(h), (11.19)

and this holds for any initial distribution for Θ(0).

11.11 Central limit theorem for Markov chains

We continue to use the notation (11.17) and (11.18). While the central limit
theorem (CLT) does not hold for all Markov chains, it does hold for many chains
generated by MCMC algorithms. Under regularity conditions on the Markov
chain Θ(i) and integrability conditions for the function h, the CLT then holds
for the RVs h(Θ(i)) in the form

√
n(π̂n(h)− π(h)) d−→ N(0, σ2

h), as n→∞. (11.20)

As a function of the sample size n, the rate of convergence in the Markov chain
CLT is the same as in the CLT for i.i.d. random variables. The required condi-
tions on the Markov chain are easiest to state when the chain is reversible with
respect to π, and this is why theoreticians recommend that one should favor re-
versible MCMC algorithms over non-reversible ones. However, these conditions
require more advanced notions of ergodicity such as geometric ergodicity, which
we bypass. See, e.g., Robert and Casella [9] or Roberts [10] for discussions of
the regularity conditions for the CLT.

However, the variance σ2
h of the limit distribution is more difficult to estimate

than in the i.i.d. setting, since in the Markov chain CLT it is given by the infinite
sum

σ2
h = varπ h(Θ(0)) + 2

∞∑
t=1

covπ(h(Θ(0)), h(Θ(t))). (11.21)

Here the subscript π means that the covariances are calculated assuming that
Θ(0) ∼ π. Contrast this with the case of i.i.d. sampling from π, where the
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variance of the limit distribution would be varπ h(Θ(0)). If the chain is extended
also for negative times, then this sum can be presented in the doubly-infinite
form

σ2
h =

∞∑
t=−∞

covπ(h(Θ(0)), h(Θ(t))),

since the autocovariances at lags −t and t are then equal.
One interpretation of the results (11.20) and (11.21) is that we can measure

the loss in efficiency due to the use of the Markov chain instead of i.i.d. sampling
by defining the parameter

τh =
σ2
h

varπ h(Θ(0))
= 1 + 2

∞∑
t=1

corrπ(h(Θ(0)), h(Θ(t))),

which is called the integrated autocorrelation time for estimating π(h) using
the Markov chain under consideration (see e.g. [10]). Here corrπ(h(Θ(0)), h(Θ(t)))
is the autocorrelation at lag t for the sequence

(
h(Θ(t))

)
, when the chain is

started from the invariant distribution π. We can also define the effective
sample size (for estimating π(h) using the Markov chain under consideration)
as

neff(h) =
n

τh

This is the sample size of an equivalent i.i.d. sample for estimating π(h), when
the Markov chain is run for n iterations.

Estimating the asymptotic variance can also be viewed as the problem of
estimating the spectral density at frequency zero either for the autocovariance
sequence or for the autocorrelation sequence. To simplify the notation, fix the
function h and denote the autocovariance sequence of (h(Θ(t)) for the stationary
chain by (Rt) and the autocorrelation sequence by (ρt),

Rt = covπ(h(Θ(0)), h(Θ(t))), ρt = corrπ(h(Θ(0)), h(Θ(t))), t = 0, 1, 2, . . .

Further, let us extend these sequences to negative lags by agreeing that

R−t = Rt, ρ−t = ρt, t = 1, 2, . . .

Then the spectral density of the sequence (Rt) at angular frequency w is defined
by the Fourier transform

gR(w) =
1

2π

∞∑
t=−∞

e−itwRt, −π < w < π,

where i =
√
−1. (Warning: there are several related but slightly different

definitions of the spectral density in the literature.) The spectral density gρ(w)
of the sequence (ρt) is defined similarly. Using these definitions,

σ2
h = 2π gR(0), τh = 2π gρ(0)

There are specialized methods available for the spectral density estimation prob-
lem, and these can be applied to estimating the asymptotic variance σ2

h or the
integrated autocorrelation time τh.
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All the usual methods for estimating Monte Carlo standard errors in MCMC
are ultimately based on the CLT for Markov chains. The methods differ in
how one estimates σ2

h. Some of the methods are based on estimates for the
integrated autocorrelation time or of the spectral density at zero. In the batch
means method we have already implicitly formed an estimate for σ2

h. See [2] for
further discussion.

11.12 Literature

See the articles [5] or [11] and the book [1, Ch. 14] for surveys of the Markov
chain theory needed in MCMC. See the books by Nummelin [6] or by Meyn and
Tweedie [4] for comprehensive presentations of the general state space theory.
See also the discussions in the books by Robert and Casella [9] and O’Hagan
and Forster [7].
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[1] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden
Markov Models. Springer Series in Statistics. Springer, 2005.

[2] J. M. Flegal, M. Haran, and G. L. Jones. Markov chain Monte Carlo: Can
we trust the third significant figure? Statistical Science, pages 250–260,
2008.

[3] Peter J. Green. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika, 82:711–732, 1995.

[4] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability.
Cambridge University Press, 2nd edition, 2009. First ed. published by
Springer in 1993.

[5] E. Nummelin. MC’s for MCMC’ists. Intenational Statistical Review,
70(2):215–240, 2002.

[6] Esa Nummelin. General Irreducible Markov Chains and Nonnegative Op-
erators. Cambridge University Press, first paperback edition, 2004. First
published 1984.

[7] Anthony O’Hagan and Jonathan Forster. Bayesian Inference, volume 2B
of Kendall’s Advanced Theory of Statistics. Arnold, second edition, 2004.

[8] P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains.
Biometrika, 60:607–612, 1973.

[9] Christian P. Robert and George Casella. Monte Carlo Statistical Methods.
Springer, second edition, 2004.

[10] Gareth O. Roberts. Linking theory and practice of MCMC. In Peter J.
Green, Nils Lid Hjort, and Sylvia Richardson, editors, Highly Structured
Stochastic Systems. Oxford University Press, 2003.

156



April 9, 2010

[11] Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov
chains and MCMC algorithms. Probability Surveys, 1:20–71, 2004.

[12] Luke Tierney. A note on Metropolis–Hastings kernels for general state
spaces. The Annals of Applied Probability, 8:1–9, 1998.

157


