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Chapter 1

Introduction

This course gives an overview of computational methods which are useful in
Bayesian statistics. Some of the methods (such as stochastic simulation or EM
algorithm) are useful also for statisticians who follow the frequentist approach
to inference.

1.1 Bayesian statistics: the basic components

Suppose we are going to observe data y in the form of a vector y = (y1, . . . , yn).
Before the observation takes place, the values y1, . . . , yn are uncertain (due to
measurement errors, the natural variation of the population or due to some
other reason). To allow for this uncertainty, we consider y to be the observed
value of a random vector Y = (Y1, . . . , Yn).

We consider a parametric model for the distribution of Y : the distribution
of Y is governed by a parameter Θ which is unknown. Usually there are several
(scalar) parameters, and then Θ is actually a vector. If Θ = θ, then the vector
Y has the distribution with density

y 7→ fY |Θ(y | θ). (1.1)

This is called the sampling distribution (or data distribution). Having ob-
served the data Y = y, the function

θ 7→ fY |Θ(y | θ)

(considered as a function of θ and with y equal to the observed value) is called
the likelihood function (but often multiplicative constants are omitted from
the likelihood).

In Bayesian statistics both observables and parameters are considered ran-
dom. Bayesian inference requires that one sets up a a joint distribution for
the data and the parameters (and perhaps other unknown quantities such as
future observations). If the data and the parameter are jointly continuously
distributed, then the density of the joint distribution can be written in the form

(y, θ) 7→ fY,Θ(y, θ) = fY |Θ(y | θ) fΘ(θ),
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where fΘ is the density of the marginal distribution of Θ, which is called the
prior distribution. The prior distribution reflects the statistician’s uncer-
tainty about plausible values of the parameter Θ before any data has been
observed.

Having observed the data Y = y, the statistician constructs the conditional
distribution of Θ given Y = y, which is called the posterior distribution. The
posterior distribution summarizes the statistician’s knowledge of the parameter
after the data has been observed. The main goal of Bayesian inference is to gain
an understanding of the posterior distribution.

Using Bayes’ rule (Bayes’ theorem) of elementary probability theory, the
posterior distribution has the density

θ 7→ fΘ|Y (θ | y) =
fY,Θ(y, θ)
fY (y)

=
fY |Θ(y | θ) fΘ(θ)∫
fY |Θ(y | t) fΘ(t) dt

. (1.2)

Here fY , the density of the marginal distribution of Y , has been expressed by
integrating the variable θ out from the density fY,Θ(y, θ) of the joint distribution.

Notice that the posterior density is obtained, up to a constant of proportion-
ality depending on the data, by multiplying the prior density by the likelihood,

fΘ|Y (θ | y) ∝ fΘ(θ) fY |Θ(y | θ).

Once the full probability model has been set up, the formula of the posterior
density is therefore available immediately, except for the nuisance that the nor-
malizing constant 1/fY (y) is sometimes very hard to determine.

1.2 Remarks on notation

In Bayesian statistics one rarely uses as exact notation as we have been using
up to now.

• It is customary to blur the distinction between a random variable and its
observed (or possible) value by using the same symbol in both cases. This
is especially handy, when the quantity is represented by such a lower-case
Greek character which does not posess a useful upper-case version.

• It is customary to use the terms “distribution” and “density” interchange-
ably, and to use the same notation for density functions of continuous
distributions and probability mass functions of discrete distributions.

• When the statistical model is complex, it very soon becomes cumbersome
to differentiate all the different densities in question by subscripts. An
alternative notation is to introduce a different symbol for each of the
distributions of interest, e.g., in the style

h(y, θ) = g(θ) f(y | θ) = m(y) p(θ | y),

where h is what we previously denoted by fY,Θ, g is fΘ, f is fY |Θ and so
on.
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• However, many authors use a different system of notation, where one
abuses notation to make the presentation more compact. For instance,
one may use p(·) to stand generically for different densities, so that the
argument of p shows both what random quantity is under consideration
and the value it may assume. Further, it is customary to let an expression
such as g(θ) denote the function g. Using such notation, e.g.,

p(θ) means the function fΘ

and
p(y) means the function fY

even though fΘ and fY may be quite different functions. Using such
compact notation, Bayes’ rule can be written as

p(θ | y) =
p(y | θ) p(θ)

p(y)
.

• In the sequel, we will often use such compact notation, since it is important
to become familiar with notational conventions typically used in the field.
However, we will also use more explicit (and cumbersome) notation where
one uses subscripts on the densities in order to avoid misunderstandings.

1.3 Frequentist statistics versus Bayesian statis-
tics

The reader should be aware that the Bayesian approach is not the only approach
to statistics. Since the 1930’s, the dominant approach to statistical inference has
been what we (nowadays) call frequentist statistics (or classical statistics).
It is only since the 1990’s that the Bayesian approach has gradually become
widely spread largely due to the arrival of new computational techniques.

In frequentist statistics the parameter is considered a deterministic, unknown
quantity, whose value, say θ0, we seek to estimate. In frequentist statistics, one
does not define any probability distributions on the parameter space, so con-
cepts like prior or posterior distribution do not make any sense in that context.
The typical way of estimation is by the principle of maximum likelihood al-
though other methods are used, too. The maximum likelihood estimate is that
point in the parameter space which maximizes the likelihood function. In some
situations, the principle of maximum likelihood needs to be supplemented with
various other principles in order to avoid nonsensical results.

Frequentist statistics assess the performance of a statistical procedure by
considering its performance under a large number of hypothetical repetitions
of the observations under identical conditions. Using the notation we have
already introduced, this means that a frequentist statistician is interested in
what happens, on the average, when data is repeatedly drawn from the sampling
distribution with density fY |Θ(y | θ0). (A true frequentist would not use such
notation but would use something like fY (y; θ0) instead.) In contrast, Bayesian
statisticians always condition on the observed data. Bayesians are not concerned
with what would happen with data we might have observed but did not. A
Bayesian makes probability statements about the parameter given the observed
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data, rather than probability statements about hypothetical repetitions of the
data conditional on the unknown value of the parameter.

There used to be a bitter controversy among followers of the two different
schools of thought. The frequentists pointed out that the inferences made by
Bayesians depend on the prior distribution chosen by the statistician. Therefore
Bayesian inference is not objective but is based on the personal beliefs of the
statistician. On the other hand, the Bayesians liked to poke fun at the many
paradoxes one gets by adhering rigidly to the principles used in frequentist
statistics and accused the field of frequentist statistics to be a hodgepodge of
methods derived from questionable principles.

However, nowadays many statisticians use both Bayesian and frequentist
inference. If the sample size is large, then the point estimates, confidence inter-
vals and many other inferences using either approach are usually quite similar.
However, the interpretations of these results are different. A Bayesian statisti-
cian might consider results he or she obtains using frequentist methods to be
approximations to results one would obtain using proper Bayesian methodology,
and vice versa.

One area where the two approaches differ clearly is hypothesis testing. In fre-
quentist statistics it is very common to conduct a test of a sharp null hypothesis
(or a point null hypothesis or a simple hypothesis) such as

H0 : θ = θ0 vs. H1 : θ 6= θ0.

Many Bayesians have objections to the whole idea of testing a sharp null hy-
pothesis. What is more, in this setting one arrives at quite different results
using Bayesian or frequentist methods.

1.4 A simple example of Bayesian inference

To illustrate the basic notions, consider the following example. Suppose that
conditionally on Θ = θ, the random variables Yi, i = 1, . . . , n are independently
exponentially distributed with rate θ, i.e., that

p(yi | θ) = θ e−θyi , yi > 0.

Then the likelihood is

p(y | θ) =
n∏

i=1

p(yi | θ) = θn exp(−θ
n∑

i=1

yi).

Suppose that our prior is the gamma distribution Gam(a, b) with known
hyperparameters a, b > 0, i.e.,

p(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0.

Then, as a function of θ > 0,

p(θ | y) ∝ p(y | θ) p(θ)

∝ θa−1e−bθ θn exp(−θ
n∑

i=1

yi)

= θa+n−1 exp(−(b+
n∑

i=1

yi)θ).
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This shows that the posterior distribution is the gamma distribution

Gam(a+ n, b+
n∑

i=1

yi).

Since the gamma distribution is a well-understood distribution, we can consider
the inference problem solved.

In this case the prior distribution and posterior distribution belong to the
same parametric family of distributions. In such a case we speak of a conjugate
family (under the likelihood under consideration). In such a case Bayesian in-
ference amounts to finding formulas for updating the so called hyperparameters
of the conjugate family.

We might also want to consider a future observable Y ∗ whose distribution
conditionally on Θ = θ is also exponential with rate θ but which is condition-
ally indpendent of the already available observations y1, . . . , yn. Then p(y∗ | y)
is called the (posterior) predictive distribution of the future observable.
Thanks to conditional independence, the joint posterior of Θ and Y ∗ can be
shown to factorize as follows

p(y∗, θ | y) = p(y∗ | θ) p(θ | y)

and therefore, by marginalizing,

p(y∗ | y) =
∫
p(y∗, θ | y) dθ =

∫
p(y∗ | θ) p(θ | y) dθ

=
∫ ∞

0

θ e−θy∗ (b+
∑n

1 yi)a+n

Γ(a+ n)
θa+n−1 e−(b+

∑n
1 yi)θ dθ

where the integral can be expressed in terms of the gamma function. Hence also
the predictive distribution can be obtained explicitely.

If we are not satistifid by any gamma distribution ias a representation of
our prior knowledge, and we may pick our prior from another family of distri-
butions. In this case the situation changes dramatically in that we must resort
to numerical methods in order to understand the posterior distribution.

1.5 Introduction to Bayesian computations

Conceptually, Bayesian inference is simple. One simply combines the prior
and the likelihood to derive the posterior. For a single parameter, this can
be implemented quite simply by graphical methods or by numerical integra-
tion. However for more complex problems, Bayesian inference was traditionally
extremely hard to implement except in some simple situations where it was pos-
sible to use conjugate priors and arrive at analytical solutions. In distinction,
in classical statistics the conceptual underpinnings behind statistical inference
are more complicated, but the calculations are simple, at least in the case of
certain standard statistical models.

A breakthrough occurred in the 1980’s, when people realized two things.

• Instead of an analytic expression, one can represent the posterior distri-
bution on a computer by drawing a sequence of samples from it.
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• In most situations it is easy to draw samples from the posterior using
MCMC methods (Markov chain Monte Carlo methods). Such methods
were introduced in the statistical physics literature already in the 1950’s.
Several computer programs, most notably BUGS (WinBUGS or Open-
BUGS), are now available for constructing automatically MCMC algo-
rithms for a wide variety of statistical models.

1.6 Literature

• See, e.g., Bernardo and Smith [2] for a clear exposition of classical Bayesian
statistics.

• Scehrvish [16] treats both Bayesian and frequentist statistics using a rig-
orous, measure theoretic formulation.

• See, e.g., Gelman et al. [7] and O’Hagan and Forster [13] for expositions
of Bayesian analysis and its computational techniques.

• Some of the books discussing Bayesian computation and especially MCMC
methods include those by Tanner [17]; Robert and Casella [15] as well as
the more theoretical Robert and Casella [14]; Liu [11]; Chen, Shao and
Ibrahim [3]; Gamerman and Lopes [6]; Albert [1].

• Congdon [5, 4] and Ntzoufras [12] discuss a rich collection of Bayesian
models using BUGS for implementing the computations.

• To gain a wider picture of computational statistics, consult Gentle [8, 9]
or Givens and Hoeting [10].
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Chapter 2

Review of Probability

We are going to work with random vectors. Some of their components have
discrete distributions and some continuous distributions, and a random vector
may have both types of components. The reader is hopefully familiar with most
of the concepts used in this chapter. We use uppercase letters such as X for
random variables and random vectors, and lowercase letters such as x for their
possible values. When there are several random variables under consideration,
we may use subscripts to differentiate between functions (such as distribution
functions, densities, ...) associated with the different variables.

2.1 Random variables and random vectors

While the student needs not know measure theoretic probability theory, it use-
ful to at least recognize some concepts. The starting point of the theory is a
probability space (or probability triple) (Ω,A, P ), where

• Ω is a set called a sample space,

• A is a collection of subsets of Ω. A set E ∈ A is called an event.

• P is a probability measure, which assigns a number

0 ≤ P (E) ≤ 1, E ∈ A

for each event E.

A random variable X is defined to be a function

X : Ω→ R .

Intuitively, a random variable is a number determined by chance. A random
vector Y is a function

Y : Ω→ Rd

for some positive integer d. I.e., random vectors are vector-valued functions
whose components are random variables. A random variable is a special case of
a random vector (take d = 1). We will use the abbreviation RV to denote either
a random variable or a random vector.
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For technical reasons, which we will not discuss, the set of events A usually
does not contain all subsets of Ω. Further, all RVs need to be Borel measurable.
This is a technical condition, which ensures that everything is properly defined.
Further, for technical reasons, all subsets of of R or Rd used in these notes are
assumed to be Borel subsets, and this requirement is not going to be mentioned
anymore.

If X is a random variable, then it is of interest to know how to calculate the
probability that X ∈ B for and arbitrary set B ⊂ R. The function

B 7→ P (X ∈ B), B ⊂ R

is called the distribution of X. Here P (X ∈ B) means the probability of the
event

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B}.
In probability theory, it is customary to suppress the argument ω whenever
possible, as was done here.

The distribution of a random vector Y is defined similarly as the set function

B 7→ P (X ∈ B), B ⊂ Rd .

The distribution of a RV defined as a set function is an abstract concept.
In applications one usually deals with more concrete representations such as
distribution functions, probability mass functions or probability densities.

2.2 Distribution function

The cumulative distribution function (cdf) of a random variable X is de-
fined as

FX(x) = P (X ≤ x), x ∈ R . (2.1)

(Probabilists usually use the shorter term distribution function (df).) If there
is only one random variable under consideration, we may omit the symbol of
that variable from the subscript. The distribution function is defined for any
random variable no matter what type its distribution is (discrete, continuous,
or something more complicated).

If F is the distribution function of any random variable, then it has the
following properties.

• F is nondecreasing and right continuous.

• F has limits F (−∞) = 0 and F (+∞) = 1.

The distribution function determines the distribution. If two random vari-
ables X and Y have the same distribution functions, then they have the same
distributions, i.e.,

FX = FY ⇔ (P (X ∈ B) = P (Y ∈ B), ∀B ⊂ R) .

The distribution function of a random vector X = (X1, . . . , Xd) is defined
analogously,

FX(x) = P (X ≤ x) = P (X1 ≤ x1, . . . , Xd ≤ xd), x = (x1, . . . , xd) ∈ Rd .

The distribution function determines the distribution also for random vectors.
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2.3 Discrete distributions

A discrete RV takes values in a finite or countable set. In this case also the dis-
tribution of that quantity is called discrete. The probability (mass) function
(pmf) of a discrete RV is defined by

fX(x) = P (X = x). (2.2)

Usually the range of a discrete random variable is a subset of the integers.
A pmf fX has the properties

0 ≤ fX(x) ≤ 1, ∀x,

and ∑
x

fX(x) = 1,

which follow at once from the properties of the probability measure. Here the
sum extends over all the possible values of X.

2.4 Continuous distributions

A RV X is called continuous and is said to have a continuous distribution, if
its distribution has a probability density function (pdf) (or simply density),
i.e., if there exists a function fX ≥ 0 such that for any set B,

P (X ∈ B) =
∫

B

fX(x) dx. (2.3)

If X is a random variable, then B ⊂ R, but if X is d-dimensional random vector,
then B ⊂ Rd, and the integral is actually a multiple integral.

The integral over the set B is defined as∫
B

fX(x) dx =
∫

1B(x)fX(x) dx,

where on the right the integral is taken over the whole space, and 1B is the
indicator function of the set B,

1B(x) =

{
1, if x ∈ B
0, otherwise.

With integrals we follow the convention that if the range of integration is not
indicated, then the range of integration is the whole space under consideration.

By definition, a probability density fX satisfies

fX(x) ≥ 0, ∀x,

but a density need not be bounded from above. Also∫
fX(x) dx = 1,
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(where the integral extends over the whole space). This follows since the prob-
ability that X takes on some value is 1.

The requirement (2.3) does not determine the density uniquely but only
modulo sets of measure zero. In applications one works with continuous or
piecewise-continuous versions of the densities, and does not worry about this
non-uniqueness. We say that two densities f and g are equal, and write f = g,
if f and g are densities of the same distribution, i.e., if f and g are equal almost
everywhere.

The density can be obtained from the distribution function by differentiation.
In one dimension,

fX = F ′X

Here the derivative on the right is defined almost everywhere, and on the right
we may extend the function arbitrarily to whole R. After this we obtain a valid
density function. In d dimensions one has an analogous result,

fX1,...,Xd
(x1, . . . , xd) =

∂dFX1,...,Xd
(x1, . . . , xd)

∂x1 · · · ∂xd
,

almost everywhere, in the sense that the mixed derivative is defined almost
everywhere and after an arbitrary extension one obtains a density for the joint
distribution of X1, . . . , Xd.

The pmfs of discrete random variables and the pdfs of continuous random
variables behave in many contexts in exactly the same way. That is why we use
the same notation in both cases. Sometimes we use the word ’density’ to refer
to the pmf of a discrete random variable or even to the analogous concept for
more complicated distributions. (The key mathematical concept is the Radon-
Nikodym derivative with respect to some dominating sigma-finite measure.) If
it is necessary to make a distinction, we will speak of the density of a continuous
distribution or the density of a continuous RV.

2.5 Quantile function

A quantile function is the inverse function of the distribution function of a ran-
dom variable whenever the distribution function is invertible. Otherwise the
quantile function is defined as a generalized inverse function of the distribu-
tion function. Notice that quantile functions are defined only for univariate
distributions.

Let us first consider the important case, where the quantile function can be
obtained by inverting the distribution function. Consider a random variable X
whose df FX is continuous and strictly increasing on an interval (a, b) such that
FX(a) = 0 and FX(b) = 1. In other words, we assume that X ∈ (a, b) with
probability one. The values a = −∞ or b = +∞ are permitted, in which case
FX(a) or FX(b) has to be interpreted as the corresponding limit.

In this case, the equation

FX(x) = u, 0 < u < 1,

has a unique solution F−1
X (u) ∈ (a, b) and we call the resulting function

qX(u) = F−1
X (u), 0 < u < 1 (2.4)
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the quantile function of (the distribution of) X. (We are abusing notation: we
are actually using the inverse function of the df FX restricted to the interval
(a, b).) If a or b is finite, we could extend the domain of definition of qX in a
natural way to cover the points 0 or 1, respectively. However, we will not do
this since this would lead to difficulties when a = −∞ or b =∞.

Since

P (X ≤ qX(u)) = FX(qX(u)) = FX(F−1
X (u)) = u, 0 < u < 1,

a proportion of u of the distribution of X lies to the left of the point qX(u).

Example 2.1. The unit exponential distribution Exp(1) has the density

fX(x) = e−x 1[0,∞)(x)

and distribution function

FX(x) =
∫ x

−∞
fX(t) dt =

{
1− e−x, if x ≥ 0
0, otherwise.

Hence the quantile function of this distribution is

qX(u) = F−1
X (u) = − ln(1− u), 0 < u < 1.

4

The quantile function has important uses in simulation. Let U ∼ Uni(0, 1),
which means that U has the uniform distribution on (0, 1). Recall that most
programming environments have a random number generator for the Uni(0, 1)
distribution. Let qX be the quantile function of a random variable X. Then

qX(U) d=X, (2.5)

which means that qX(U) has the same distribution as X. We will check this
claim shortly. Equation (2.5) shows how a uniformly distributed random vari-
able U can be transformed to have a given distribution. We will refer to this
method by the name inverse transform. This method has many other names
in the literature: the probability integral transform the inverse transfor-
mation method, the quantile transformation method and others. The
inverse transform is an excellent simulation method for certain distributions,
whose quantile functions are easy to calculate.

Example 2.2. By the previous example, we can simulate a random draw from
Exp(1) by generating U ∼ Uni(0, 1) and then calculating

− ln(1− U).

This procedure can be simplified a bit by noticing that when U ∼ Uni(0, 1),
then also 1 − U ∼ Uni(0, 1) distribution. Therefore we may as well simulate
Exp(1) by calculating

− ln(U).

4
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We now check the claim (2.5) in the case introduced before, where FX is
continuous and strictly increasing on (a, b) and FX(a) = 0 and FX(b) = 1.

Recall that the inverse function of a strictly increasing function is strictly
increasing. Therefore

{(u, x) ∈ (0, 1)× (a, b) : qX(u) ≤ x)} = {(u, x) ∈ (0, 1)× (a, b) : u ≤ FX(x)}.

(Apply FX to both sides of the first inequality, or qX = F−1
X to the second.)

Hence, for any a < x < b,

P (qX(U) ≤ x) = P (U ≤ FX(x)) = FX(x).

This proves eq. (2.5).
A more general df F does not admit an inverse function defined on (0, 1).

However, one can define a generalized inverse function by using the formula

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1. (2.6)

Here inf B is the greatest lower bound of the set B ⊂ R. Since a df is increasing
and right continuous, the set {x : F (x) ≥ u} is of the form [t,∞) for some t ∈ R,
and then its infimum is t.

The inverse transform principle (2.5) holds for all univariate distributions,
when we define the quantile function to be the generalized inverse of the distri-
bution function.

2.6 Joint, marginal and conditional distributions

If we are considering two RVs X and Y , then we may form a vector V by
concatenating the components of X and Y ,

V = (X,Y ).

Then the joint distribution of X and Y is simply the distribution of V . If the
distribution of V is discrete or continuous, then we use the following notation
for the pmf or density of the joint distribution

fX,Y (x, y),

which means the same thing as fV (v), when v = (x, y). The distribution of X
or Y alone is often called its marginal distribution.

Recall the elementary definition of conditional probability. Suppose that A
and B are events and that P (A) > 0. Then the conditional probability P (B | A)
of B given A (the probability that B occurs given that A occurs) is defined by

P (B | A) =
P (A ∩B)
P (A)

. (2.7)

If the joint distribution of RVs X and Y is discrete, then the conditional
distribution of Y given X = x is defined by using (2.7). Given X = x, Y has
the pmf

fY |X(y | x) = P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)
=
fX,Y (x, y)
fX(x)

. (2.8)
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Here fX , the pmf of the marginal distribution of X is obtained by summing y
out from the joint pmf,

fX(x) =
∑

y

fX,Y (x, y),

Naturally, definition (2.8) makes sense only for those x for which fX(x) > 0.
If need be, we may extend the domain of definition of the conditional pmf
fY |X(y | x) by agreeing that

fY |X(y | x) = 0, if fX(x) = 0.

It is useful to have in mind some such extension in order to make sense of certain
formulas. However, the exact manner in which we do this extensions does not
really matter.

By rearranging the definition of the conditional pmf we see that for all x
and y

fX,Y (x, y) = fX(x) fY |X(y | x).

By reversing the roles of X and Y , wee see that also the following holds,

fX,Y (x, y) = fY (y) fX|Y (x | y).

Hence, the pmf of the joint distribution can be obtained by multiplying the
marginal pmf with the pmf of the conditional distribution. This result is called
the multiplication rule or the chain rule (or the product rule).

When RVs X and Y have a continuous joint distribution, we define the
conditional density fY |X of Y given X as

fY |X(y | x) =
fX,Y (x, y)
fX(x)

, when fX(x) > 0. (2.9)

Here fX is the density of the marginal distribution ofX, which can be calculated
by integrating y out from the joint distribution,

fX(x) =
∫
fX,Y (x, y) dy,

Again, if need be, we may extend the definition by agreeing that fY |X(y | x) = 0
whenever fX(x) = 0.

The multiplication rule holds also for jointly continuously distributed RVs.
Considered as a function of x and y

fX,Y (x, y) = fX(x) fY |X(y | x) = fY (y) fX|Y (x | y).

(Equality is here interpreted as equality of density functions, i.e., it holds almost
everywhere.)

If we have a discrete RV X and a continuous RV Y , then their joint distri-
bution can be manipulated by making use of a function fX,Y (x, y) which yields
probabilities when its summed over x and integrated over y, i.e.,

P (X ∈ A, Y ∈ B) =
∑
x∈A

∫
B

fX,Y (x, y) dy
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for arbitrary sets A and B. For convenience, we call such a representation a
density (of the joint distribution). We obtain the pmf of X by integrating y out
from the joint density,

fX(x) =
∫
fX,Y (x, y) dy,

and the density of Y by summing x out from the joint density,

fY (y) =
∑

x

fX,Y (x, y).

The multiplication rule holds,

fX,Y (x, y) = fX(x) fY |X(y | x) = fY (y) fX|Y (x | y).

Often a joint distribution like this is specified by giving the marginal distribution
of one variable and the conditional distribution of the other variable.

Often we consider the joint distribution of more than two variables. E.g.,
consider three RVs X, Y and Z which have (say) continuous joint distribution.
By conditioning on (X,Y ) and by using the multiplication rule twice, we see
that

fX,Y,Z(x, y, z) = fX,Y (x, y) fZ|X,Y (z | x, y) = fX(x) fY |X(y | x) fZ|X,Y (z | x, y).

Of course, other factorizations are possible, too. We obtain the density of the
marginal distribution of any set of variables, by integrating out the other vari-
ables from the joint density. E.g., the joint (marginal) density of X and Y
is

fX,Y (x, y) =
∫
fX,Y,Z(x, y, z) dz,

and the (marginal) density of X is

fX(x) =
∫∫

fX,Y,Z(x, y, z) dy dz

The multiplication rule holds also for a random vector which has an arbitrary
number of components some of which have discrete distributions and some of
which continuous distributions as long as the joint distribution of the continuous
components is of the continuous type. In this case the joint density of any
subset of the components can be obtained by marginalizing out the rest of the
components from the joint density: the discrete variables have to be summed
out and the continuous ones integrated out.

The multiplication rule holds also for conditional distributions. E.g., con-
sider three variables X, Y and Z. As functions of x and y we have

fX,Y |Z(x, y | z) = fX|Z(x | z) fY |X,Z(y | x, z) = fY |Z(y | z) fX|Y,Z(x | y, z).
(2.10)

Notice that we use one vertical bar to indicate conditioning: on the right hand
side of the bar appear the variables on which we condition, in some order, and
on the left hand side those variables whose conditional distribution we are dis-
cussing, in some order. We can calculate the densities of marginals of conditional
distributions using the same kind of rules as for unconditional distributions: we
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sum over discrete and integrate over continuous variables. E.g., if the distribu-
tion of Y is continuous, then

fX|Z(x | z) =
∫
fX,Y |Z(x, y | z) dy, (2.11)

and if Y is discrete, then

fX|Z(x | z) =
∑

y

fX,Y |Z(x, y | z). (2.12)

Once we have more than two RVs, it becomes tedious to write the RVs as
subscripts and their potential values as arguments. We let p be the generic
symbol of a density. The argument of p(·) indicates both the symbol of the RV
and its potential value. Hence, e.g., p(x, y) indicates, that there are two RVs
X and Y under consideration, and that we are considering their joint density
fX,Y (x, y). The multiplication rule for two variables can be written as

p(x, y) = p(x) p(y | x) = p(y) p(x | y).

However, in some other contexts this notation can be misleading. In those cases
we will use subscripts to make the notation unambiguous.

2.7 Independence and conditional independence

If we have several RVs X1, X2, . . . , Xn, then they are independent, if their joint
distribution function factorizes as

FX1,X2,...,Xn
(x1, x2, . . . , xn) = FX1(x1) FX2(x2) . . . FXn

(xn), (2.13)

for all x1, x2, . . . , xn. If we have available some sort of a joint density, this is
the case, if it factorizes as

fX1,X2,...,Xn
(x1, x2, . . . , xn) = fX1(x1) fX2(x2) . . . fXn

(xn),

for all x1, x2, . . . , xn.
If two random variables X and Y are independent, then their joint density

has to satisfy

fX,Y (x, y) = fX(x) fY |X(y | x) = fY (y) fX|Y (x | y) = fX(x) fY (y)

by the multiplication rule and by independence. We conclude that X and Y are
independent if and only if

fX|Y (x | y) = fX(x), fY |X(y | x) = fY (y)

for all x and y.
Sometimes we consider an infinite sequence of RVs X1, X2, . . . . Then the

sequence is independent, if for any n, the first n RVs X1, X2, . . . , Xn are in-
dependent. If all the RVs Xi in a finite or infinite sequence have the same
distribution, then we say that X1, X2, . . . is an i.i.d. (independent, identically
distributed) sequence.
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Fact. If X1, X2, . . . are independent, and f1, f2, . . . are functions, then
f1(X1), f2(X2), . . . are independent.

RVs X1, X2, . . . , Xn are conditionally independent given Y , if their con-
ditional density factorizes as

fX1,X2,...,Xn|Y (x1, x2, . . . , xn | y) = fX1|Y (x1 | y) fX2|Y (x2 | y) . . . fXn|Y (xn | y),

for all x1, x2, . . . , xn and y. Then the joint density of X1, X2, . . . , Xn and Y is

fX1,...,Xn,Y (x1, . . . , xn, y) = fY (y) fX1|Y (x1 | y) . . . fXn|Y (xn | y).

We can obtain the marginal distribution of X1, X2, . . . , Xn from this by inte-
grating (or summing) y out.

If conditionally on Y , the RVs X1, X2, . . . , Xn are not only independent but
also have the same distribution, then we say that X1, X2, . . . , Xn are i.i.d. given
Y (or conditionally on Y ). It can be shown that in this case every permutation
of (X1, . . . , Xn) has the same (marginal) distribution as any other permutation.
Such a collection of RVs is called exchangeable.

2.8 Expectations and variances

If X is a discrete RV and h is a function such that h(X) is a scalar or a vector,
then the expected value (or expectation or mean) of h(X) is

Eh(X) =
∑

x

h(x)fX(x).

On the other hand, if X is a continuous RV, then

Eh(X) =
∫
h(x)fX(x) dx,

whenever that integral can be defined and the result is finite. In particular, EX
is called the mean (or expectation or expected value) of X. If X is a random
vector, then the mean is also a vector.

If X is a random variable, then its variance is

varX = E((X − EX)2).

The variance is always non-negative. By expanding the square, and by the
linearity of expectation,

varX = E(X2)− (EX)2.

If X is a random vector (a column vector), then we may consider its covariance
matrix (variance matrix, dispersion matrix)

CovX = E[(X − EX)(X − EX)T ],

which has dimensions d× d, when X has d scalar components.
Sometimes we consider the conditional expectation of a random variable Y

given the value of another random variable X. Below, we write the formulas for
the case when the joint distribution of X and Y is continuous. The conditional
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expectation of Y given X = x is defined as the expectation of the conditional
distribution y 7→ fY |X(y | x),

E(Y | X = x) =
∫
y fY |X(y | x) dy.

The result is a function of x, say m(x). When we plug the random variable X
in that function, we get a random variable m(X) which is called the conditional
expectation of Y given the random variable X,

E(Y | X) = m(X), where m(x) = E(Y | X = x).

E(Y | X) is a random variable.
An important property of conditional expectations is the following property

(iterated expectation, tower rule),

EE(Y | X) = EY, (2.14)

i.e., one can calculate the unconditional expectation by averaging the conditional
expectation over the marginal distribution. This is valid whenever EY is a well-
defined extended real number (possibly infinite). In the continuous case this
follows from

EE(Y | X) =
∫ [∫

y fY |X(y | x) dy
]
fX(x) dx =

∫∫
y fX,Y (x, y) dxdy.

The conditional variance of Y given X = x,

var(Y | X = x),

is defined as the variance of the conditional distribution of Y given X = x. The
result is a function depending on x. When we substitute the random variable
X for x, we get the conditional variance var(Y | X) of Y given the random
variable X. We have the result

varY = E var(Y | X) + varE(Y | X). (2.15)

This shows that conditioning decreases the variance: the variance of the condi-
tional expectation, varE(Y | X), is less or equal to the unconditional variance
varY .

2.9 Change of variable formula for densities

If X is a discrete RV and Y = g(X) is some function X, then Y has the pmf

fY (y) = P (Y = y) = P (g(X) = y) =
∑

x:g(x)=y

fX(x).

However, for continuous distributions the situation is more complicated.
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2.9.1 Univariate formula

Let us first consider the univariate situation. Suppose that X is a continuous
random variable with density fX and Y is defined by

Y = g(X),

where g : A→ B is a continuously differentiable function such that

• The function g : A→ B is a continuously differentiable bijection from an
open interval A ⊂ R to an open interval B ⊂ R.

• The inverse function g−1 : B → A is also continuously differentiable.

• P (X ∈ A) = 1.

Since g is a bijective function defined on an open interval, it has to be either
increasing or decreasing. Suppose first that g is increasing. Suppose a < b and
a, b ∈ B. For convenience, let h = g−1. Then h is increasing, and therefore

P (a < Y < b) = P (a < g(X) < b) = P (h(a) < X < h(b)) =
∫ h(b)

h(a)

fX(x) dx.

By making the change of variable

y = g(x) ⇔ x = h(y),

we get

P (a < Y < b) =
∫ h(b)

h(a)

fX(x) dx =
∫ b

a

fX(h(y)) h′(y) dy.

Since this holds for all a, b ∈ B such that a < b, and since P (Y ∈ B) = 1, we
conclude that

fY (y) = fX(h(y)) h′(y), when y ∈ B,

and zero elsewhere.
On the other hand, if g is decreasing, then h = g−1 is also decreasing, and

the previous calculation holds except for a change of sign.
The end result of the calculations is that in either case Y has the density

given by
fY (y) = fX(h(y)) |h′(y)|, when y ∈ B, (2.16)

and zero elsewhere.
A useful heuristic, which helps to keep this in mind is to note that the

formula
fX(x) |dx| = fY (y) |dy| (2.17)

holds under the bijective change of variable

y = g(x) ⇔ x = h(y).

Solving for fY (y), we get

fY (y) = fX(x)
∣∣∣∣dxdy

∣∣∣∣ = fX(h(y)) |h′(y)|.
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Notice that the result holds on B, the image of A under the mapping g. Else-
where fY (y) = 0.

The result can also be expressed by using the derivative of g instead of h, if
one calculates as follows,

fY (y) = fX(x)
1∣∣∣∣dydx
∣∣∣∣ = fX(x)

1
|g′(x)|

=
fX(h(y))
|g′(x)|

. (2.18)

Also this formula holds on B and fY (y) = 0 elsewhere. Formula (2.18) is correct,
since the formula

dx
dy

=
1
dy
dx

expresses correctly the derivative of the inverse function.
This univariate case can usually be handled more easily by calculating first

the cdf of Y = g(X) and then by taking the derivative of the cdf. However, in
higher-dimensional settings the change of variables formula becomes indispens-
able.

2.9.2 Multivariate formula

Consider a two-dimensional random vector X = (X1, X2) with continuous dis-
tribution and pdf fX , a function g : A → B, where A,B ⊂ R2, and define the
two-dimensional random vector Y by

Y =
[
Y1

Y2

]
= g(X) =

[
g1(X)
g2(X)

]
.

We assume that g is a diffeomorphism, i.e., that g is bijective, continuously
differentiable, and that its inverse function is also continuously differentiable.
We make the following assumptions.

• The set A is open and P (X ∈ A) = 1. The set B is the image of A under
the function g. The function g is continuously differentiable.

• B is open and the inverse function g−1 : B → A is also continuously
differentiable.

It can be shown that the random vector Y has the density

fY (y) = fX(h(y)) |Jh(y)|, y ∈ B (2.19)

and zero elsewhere, where h is g−1, the inverse function of g, and Jh(y) is the
Jacobian determinant (or Jacobian) of the function h evaluated at the point
y,

Jh(y) = det


∂h1(y)
∂y1

∂h1(y)
∂y2

∂h2(y)
∂y1

∂h2(y)
∂y2

 (2.20)

The matrix, whose determinant the Jacobian is, is called the Jacobian matrix
or the derivative matrix of the function h. This two-variate formula can be
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derived in the same manner as the corresponding univariate formula by making
a multivariate change of variable in a multivariate integral. Notice that we need
the absolute value |Jh(y)| of the Jacobian determinant in the change of variable
formula (2.19).

A convenient standard notation for the Jacobian determinant is

Jh(y) =
∂(x1, x2)
∂(y1, y2)

.

Notice that here Jh is a function of y. On the other hand, the Jacobian deter-
minant of g,

Jg(x) =
∂(y1, y2)
∂(x1, x2)

is a function of x. When y = g(x) which is the same as x = h(y), then we have

∂(x1, x2)
∂(y1, y2)

∂(y1, y2)
∂(x1, x2)

= 1,

since the two Jacobian matrices are inverses of each other, and det(A−1) =
1/det(A) for any invertible matrix A.

There is a useful heuristic also in the two-dimensional case. The formula

fX(x) |∂(x1, x2)| = fY (y) |∂(y1, y2)| (2.21)

has to hold under the bijective change of variable

y = g(x) ⇔ x = h(y).

Therefore

fY (y) = fX(x)
∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣ = fX(h(y)) |Jh(y)|

On the other hand, we may express fY (y) as follows,

fY (y) = fX(x)
1∣∣∣∣ ∂(y1, y2)

∂(x1, x2)

∣∣∣∣ = fX(h(y))
1

|Jg(h(y))|
, (2.22)

where Jg is the Jacobian determinant of the function g (expressed as a function
of x). These formulas for fY (y) hold on the set B. Elsewhere fY (y) = 0.

The formulas (2.19) and (2.22) generalize also to higher dimensions, when
one defines the Jacobians as

Jh(y) =
∂x

∂y
=
∂(x1, . . . , xd)
∂(y1, . . . , yd)

= det


∂h1(y)
∂y1

· · · ∂h1(y)
∂yd

...
. . .

...
∂hd(y)
∂y1

· · · ∂hd(y)
∂yd


and

Jg(x) =
∂y

∂x
=
∂(y1, . . . , yd)
∂(x1, . . . , xd)

= det


∂g1(x)
∂x1

· · · ∂g1(x)
∂xd

...
. . .

...
∂gd(x)
∂x1

· · · ∂gd(x)
∂xd

 .
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As an application of these formulas, consider a RV X, which has a d-
dimensional continuous distribution, and define Y as an affine function of X,

Y = AX + b.

Here A is an invertible (i.e., nonsingular) d× d matrix and b is a d-vector, and
A and b are constants (non-random quantities). Now

g(x) = Ax+ b and h(y) = A−1(y − b).

The Jacobian matrix of g is simply A and the Jacobian matrix of h is A−1, so
Jg(x) = det(A) and Jh(y) = det(A−1). By (2.19) or (2.22) we have

fY (y) = fX(A−1(y − b))|det(A−1)| = fX(A−1(y − b))
|det(A)|

.
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Chapter 3

Simulating Random
Variables and Random
Vectors

In this chapter we discuss methods for producing (on a computer) an endless
supply of random values from a specified distribution, which we call the target
distribution. Actually we should speak of pseudo-random values, since the
calculated numbers are not random, but are calculated using deterministic, it-
erative algorithms. For practical purposes, however, the calculated values can
be used as if they were the observed values of an i.i.d. sequence of RVs.

There are many terms in use for denoting this activity. Some authors speak
of random variable/variate/deviate/number generation. Some say that they
draw/generate/produce samples from a distribution. Some say that they simu-
late random variables/variates/deviates/numbers.

The aim of this chapter is not to present good (or the best) simulation
methods for particular distributions. Rather, the emphasis is on explaining
general principles on which such methods are based.

3.1 Simulating the uniform distribution

One speaks of random numbers especially when the target distribution is
either the uniform distribution Uni(0, 1) on the unit interval (0, 1) or the discrete
uniform distribution on the set {0, . . . ,m−1}, where m is a large integer. Other
distributions can be obtained from the uniform distribution by using a large
variety of techniques.

Most programming languages and mathematical or statistical computing
environments have available a generator for the uniform distribution Uni(0, 1).
The successive values u1, u2, . . . , un returned by a good uniform random number
generator can be used as if they were the observed values of and i.i.d. sequence
of random variables U1, U2, . . . , Un having the uniform distribution Uni(0, 1).

During the years, several tests have been devised for testing these key prop-
erties: uniformity and independence. (One famous test suite is the Diehard
battery of tests assembled by G. Marsaglia.) Good uniform random number
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generators are well documented and pass all the usual tests. Good quality
mathematical and statistical computing environments have such good genera-
tors, but the reader is warned that some lower quality generators remain in use
in some circles.

Mathematically, a uniform random number generator is of the form

si = g(si−1), ui = h(si), i = 1, 2, . . . ,

where si is the state of the generator at the ith step. (Typically, the state is
either a scalar or a vector of a fixed dimension.) Notice that si is a deterministic
function of the previous state si−1. The ith value returned by the generator is
ui, and it is obtained by applying a deterministic function to the state si. One
needs an initial state s0 to start the iteration. The initial state is usually called
the seed state or the seed.

A random number generator usually provides means for

• querying and setting the seed (or state) of the generator,

• generating one or several random numbers.

If the random number generator is started on two different occasions from
the same seed, one obtains exactly the same sequences of random numbers.
Therefore it is important to be aware how one sets the seed and what happens
if the seed is not explicitly set.

E.g., in the C programming language, there is available the uniform random
number generator random() whose seed can be set with the functions srandom()
or initstate(). If a program uses the function random() without setting the
seed, then the seed is set to its default initial value with the consequence that
different runs of the program make use of exactly the same “random” values.

From now on, it is assumed that the reader has available a uniform random
number generator. Next we discuss how one can simulate i.i.d. random variables
having some specified non-uniform target distribution. Basically, all methods
are based on just two tricks, which are sometimes applied in a series,

• apply (one or several) deterministic transformations to uniform random
numbers,

• apply a probabilistic transformation (such as random stopping in the
accept–reject method) to an i.i.d. sequence of random numbers drawn
from some distribution, the simulation of which is ultimately based on
i.i.d. uniform random numbers.

3.2 The inverse transform

Let F be a univariate df, and let q be the corresponding quantile function. Recall
from section 2.5 that if U ∼ Uni(0, 1), then the random variable X defined by

X = q(U) (3.1)

has the distribution function F . This is the inverse transform method (also
known as the probability integral transform and the quantile transform(ation)
method).
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If U1, . . . , Un are i.i.d. and follow the Uni(0, 1) distribution, then also

X1 = q(U1), . . . , Xn = q(Un) (3.2)

are i.i.d. with the distribution function F . Independence follows, since (de-
terministic) functions of independent random variables are themselves indepen-
dent.

The inverse transform is a good choice if the quantile function of the target
distribution is easy to calculate. This is the case, e.g., for

• the exponential distribution,

• the Weibull distribution,

• the Pareto distribution,

• the Cauchy distribution (which is same as the t1 distribution); also the t2
distribution.

Even though there may be available an iterative routine for calculating the
quantile function of some given complicated target distribution, simulating it
may be computationally more efficient with some other approach.

If one uses the inverse transform for simulating the general discrete distri-
bution with pmf

f(i) = pi, i = 1, 2, . . . , k

with
∑k

i=1 pi = 1, and remembers to use the generalized inverse function of the
distribution function as the quantile function, then one obtains the following
obvious algorithm.

Algorithm 1: The inverse transform method for the general discrete dis-
tribution.
Input: The pmf p1, p2, . . . , pk of the target distribution.
Result: One sample I from the target distribution.
Generate U ∼ Uni(0, 1);1

Return I, if2

I−1∑
j=1

pj ≤ U <
I∑

j=1

pj .

This algorithm works by dividing the unit interval into n pieces whose lengths
are p1, . . . , pk from left to right. Having generated U , the algorithm checks, into
which of the intervals U falls, and returns the number of the interval. Notice
that this algorithm requires a search, which may be time-consuming if k is large.

There are available more efficient algorithms such as the alias method for
simulating the general discrete distribution. However, they require an initializa-
tion step. If one needs to generate just one value from a discrete distribution,
then this simple method may well be the most efficient one.

3.3 Transformation methods

If we already know how to simulate a random vector Y = (Y1, . . . , Yk) with a
known distribution, and we calculate (the scalar or vector) X as some function
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of Y ,
X = T (Y ),

then X has some distribution. With careful choices for the distribution of Y
and for the transformation T , we can obtain a wide variety of distributions for
X. Of course, the inverse transform is an example of a transformation method.

Notice that if we apply the transformation T to an i.i.d. sequence Y (1), Y (2), . . .
with the distribution of Y , then we obtain an i.i.d. sequence

X(1) = T (Y (1)), X(2) = T (Y (2)), . . .

from the distribution of X.
Sometimes we can use known connections between distributions to find the

distribution of Y and the transformation T .

Example 3.1. The log-normal distribution. Random variable X has the
log-normal distribution with parameters (µ, σ2) if and only if its logarithm is
normally distributed with mean µ and variance σ2, i.e., if

ln(X) ∼ N(µ, σ2).

Therefore once we know how to simulate the normal distribution, we know how
to simulate the log-normal distribution:

1. Generate Y ∼ N(µ, σ2).

2. Return X = exp(Y ).

4

3.3.1 Scaling and shifting

If Y has a continuous distribution with the density g, and X is obtained from
Y by scaling and shifting,

X = m+ sY, m ∈ R, s > 0, (3.3)

then (by the change of variable formula for densities) X has the density

f(x | s,m) = g

(
x−m
s

)
1
s
. (3.4)

The density g is obtained with s = 1 and m = 0. If we know, how to simulate Y
from the density g, then we can simulate from the density f(· | s,m) as follows.

1. Generate Y from the density g.

2. Return X = m+ sY .

Many well-known families of continuous distributions have a scale parameter,
i.e., their densities can be written in the form

x 7→ g
(x
s

) 1
s
, s > 0. (3.5)

In this case s is called a scale parameter of the family (and the family of
distributions can be called a scale family). The density g is obtained, when
s = 1. In this case we have the situation of (3.4) with m = 0, so simulation
from the density with scale parameter s can be implemented as follows.
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1. Generate Y from the density g.

2. Return X = sY .

Many families of distributions have a rate parameter, i.e., their densities can
be represented as

x 7→ λ g(λx), λ > 0,

where g is a density. This means that the family is a scale family, with scale
parameter s = 1/λ, i.e., the scale is the reciprocal of the rate.

As an example, consider the family of exponential distributions, which is
usually parametrized using the rate parameter λ > 0. The density function of
the Exp(λ) distribution (exponential with rate λ) is

Exp(x | λ) = λ exp(−λx)1(0,∞)(x)

We see that s = 1/λ is a scale parameter. Recall that we already know how to
simulate the Exp(1) distribution (the unit exponential distribution) using the
inverse transform. Therefore we can simulate the Exp(λ) distribution as follows.

1. Generate Y from the unit exponential distribution Exp(1).

2. Return X = Y/λ.

This simulation algorithm can also be derived directly using the inverse trans-
form.

Some families of continuous distributions have both a scale and a location
parameter, i.e., their densities can be written in the form (3.4). Such a family
is called a location-scale family, and s is called the scale parameter and m the
location parameter of the family. A familiar example is the family of normal
distributions

{N(µ, σ2), µ ∈ R, σ2 > 0}.
N(µ, σ2), the normal distribution with mean µ and variance σ2, has the density

N(x | µ, σ2) =
1√
2πσ

exp
(
−1

2
(x− µ)2

σ2

)
=

1
σ

1√
2π

exp

(
−1

2

(
x− µ
σ

)2
)
.

Therefore µ is a location parameter, and the standard deviation (square root of
variance) σ is a scale parameter of (univariate) normal distributions.

As a consequence, we can generate X ∼ N(µ, σ2) as follows.

1. Generate Y ∼ N(0, 1).

2. Return X = µ+ σY .

For another example of a location-scale family of distributions, consider
Uni(a, b), the uniform distribution on the interval (a, b), where a < b. This
distribution has the density

f(x) =

{
1

b−a , if a < x < b,

0, otherwise.

A moments reflection shows that one can simulate the Uni(a, b) distribution as
follows.

1. Generate U ∼ Uni(0, 1).

2. Return X = a+ (b− a)U .
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3.3.2 Polar coordinates

Consider the transformation from polar coordinates (r, φ) to the Cartesian co-
ordinates (x, y),

x = r cos(φ), y = r sin(φ). (3.6)

Here r is the radial coordinate and φ is the polar angle in radians. The map-
ping (3.6) is defined for all r ≥ 0 and for all angles φ. However, if we want to
use the change of variable formula with this mapping, we first have to restrict
its domain so that the mapping becomes a bijection between its domain and
its range. We obtain a bijective correspondence between (r, φ) and (x, y), if the
domain of the mapping is selected so that r > 0 and φ is allowed to have values
in any fixed open interval of length 2π.

We will use the following domain domain for the polar angle φ,

−π < φ < π.

With this choice, the mapping (3.6) defines a bijective correspondence between
the following open sets

(r, φ) ∈ (0,∞)× (−π, π) → (x, y) ∈ R2 \{(x, y) : x ≤ 0, y = 0}. (3.7)

Here the image of the domain (0,∞)× (−π, π) is the coordinate plane cut along
the negative x-axis. The Jacobian of the mapping (r, φ) 7→ (x, y) is

∂(x, y)
∂(r, φ)

= det


∂x

∂r

∂x

∂φ
∂y

∂r

∂y

∂φ

 = det
[
cosφ −r sinφ
sinφ r cosφ

]
= r.

The inverse function of the mapping (3.6) is a bit tricky to express. Many
books state (not correctly) that we get r and φ form x and y by the formulas

r =
√
x2 + y2, φ = arctan(y/x),

but if not an outright error, at least this is an instance of misuse of notation. If
you have to program your own routines for the rectangular to polar conversion,
do not use those formulas!

The formula for r is correct, and it is true that one has to select the value
of φ so that tan(φ) = y/x. There is, however, a problem with the formula
φ = arctan(y/x), which stems from the fact, that the tangent function does not
have a unique inverse function. Usually, the notation arctan means the principal
branch of the (multivalued) inverse tangent function with the range

−π/2 < arctan(u) < π/2, u ∈ R .

If you use this convention and the formula φ = arctan(y/x), then your polar
coordinate point (r, φ) is guaranteed not to be in the second or third quadrant
even if your original Cartesian coordinate point (x, y) is.

So, care is needed with the Cartesian to polar coordinate formula (x, y) 7→
(r, φ). One expression, which is correct and easy to program, is given by

r =
√
x2 + y2, φ = atan2(y, x), (3.8)
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where atan2(y, x) is the arc tangent function of two variables, which is defined
for all (x, y) 6= (0, 0). It returns the counterclockwise (signed) angle in radians
in the range (−π, π] between the positive x axis and the vector (x, y). The
function atan2 is available in most programming languages (but the order of
the arguments is reversed in some programming environments). If (x, y) does
not fall on the negative x-axis, then r and φ calculated by (3.8) satisfy r > 0
and −π < φ < π.

The polar to Cartesian conversion formula (3.6) and the Cartesian to polar
conversion formula (3.8) define a diffeomorphism between the sets in eq. (3.7).

After this preparation, suppose the two-dimensional random vector (X,Y )
has a continuous density, and we want to express this distribution by means of
polar coordinates (R,Φ) using the conversion formula (3.8). Now the probability
that (X,Y ) is exactly on the negative x-axis, P (X ≤ 0, Y = 0) = 0, since
the joint distribution is continuous. Furthermore, we have a diffeomorphism
between the coordinates (r, φ) and (x, y) given by formulas (3.6) and (3.8).
Hence, we can apply the change of variables formula with the result

fR,Φ(r, φ) = fX,Y (x, y)
∣∣∣∣∂(x, y)
∂(r, φ)

∣∣∣∣ = rfX,Y (r cosφ, r sinφ), r > 0,−π < φ < π.

(3.9)
Actually, the same formula for fR,Φ is valid, if we choose any open interval of
length 2π as the domain of φ. This follows, since in that case one can define
a diffeomorphism between rotated versions of the sets in eq. (3.7), and the
Jacobian needed in the change of variables formula is still r.

Suppose in particular that the density fX,Y (x, y) is invariant under rotations
about the origin, i.e., that

fX,Y (x, y) = g(r), with r =
√
x2 + y2. (3.10)

Then the polar coordinates of (X,Y ) have the density

fR,Φ(r, φ) = rg(r) = 2πrg(r)
1
2π
, r > 0,−π < φ < π.

This shows that R and Φ are independent, the polar angle Φ has the uniform
distribution on its domain of length 2π (and this is obvious because of the
rotational symmetry!), and the density of R can be read off from the previous
formula. I.e., under the assumption (3.10), we have

R q− Φ, (3.11)
Φ ∼ Uni(−π, π), fR(r) = 2πrg(r), r > 0. (3.12)

On the other hand, suppose we start with a density for the polar coordinates
(R,Φ),

fR,Φ(r, φ), r > 0,−π < φ < π

and let (X,Y ) be (R,Φ) in Cartesian coordinates (formula (3.6)). By the change
of variables formula,

fX,Y (x, y) =
fR,Φ(r, φ)∣∣∣∂(x,y)

∂(r,φ)

∣∣∣ =
fR,Φ(

√
x2 + y2, atan2(y, x))√

x2 + y2
, (3.13)
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where, initially, it is forbidden that (x, y) is on the negative x-axis. However,
any continuous joint density for (X,Y ) implies that

P (X ≤ 0, Y = 0) = 0,

and so we can let x and y to have any real values in (3.13). An exception is the
origin (x, y) = (0, 0), since the formula (3.13) is not defined at the origin, but
one can use any value for fX,Y there, and the result remains correct.

As an application of the formulas in this section, consider the joint distri-
bution of two independent variables, X and Y , having the standard normal
distribution N(0, 1). Their joint density is

fX,Y (x, y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1
2π

exp(−r2/2), with r2 = x2 + y2,

and so it is invariant under rotations about the origin. Let (R,Φ) be (X,Y )
in polar coordinates. According to formulas (3.11) and (3.12), R and Φ are
independent, Φ ∼ Uni(−π, π), and the density of R is

fR(r) = r exp(−r2/2), r > 0.

The distribution of R belongs to the family of Rayleigh distributions. A statis-
tician recognizes more easily the distribution of Z = R2. A change of variables
gives

fZ(z) = fR(
√
z)

1
2
√
z

=
1
2

exp(−1
2
z), z > 0,

so Z ∼ Exp(1/2), the exponential distribution with rate 1/2.
As a side product, we have obtained a way to simulate two independent

samples X and Y from the standard normal distribution N(0, 1). We have
actually rediscovered the the famous method of Box and Muller, first published
in 1958. (Notice: the name is Muller, not Müller.)

Algorithm 2: The method of Box and Muller, initial version.
Result: Two independent samples X and Y from N(0, 1).
Generate independently Z ∼ Exp(1/2) and Φ ∼ Uni(−π, π);1

X ←
√
Z cos(Φ), Y ←

√
Z sin(Φ).2

Of course, since we know how to simulate the Exp(1/2) and Uni(−π, π)
distributions using the uniform distribution Uni(0, 1), we can implement the
method of Box and Muller also as follows.
Algorithm 3: The method of Box and Muller, second version.
Result: Two independent samples X and Y from N(0, 1).
Generate U and V independently from the Uni(0, 1) distribution;1

X ←
√
−2 lnU cos(π(2V − 1)), Y ←

√
−2 lnU sin(π(2V − 1)).2

If you did not know about the explanation involving polar coordinates, these
formulas would probably seem totally mysterious to you.

Actually, Box and Muller stated their method in the following form.

Algorithm 4: The method of Box and Muller, original version.
Result: Two independent samples X and Y from N(0, 1).
Generate U and V independently from the Uni(0, 1) distribution;1

X ←
√
−2 lnU cos(2πV ), Y ←

√
−2 lnU sin(2πV ).2
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This form uses the same idea, but corresponds to the convention that the polar
angle belongs to the interval (0, 2π).

In simulation settings one uses a certain convention, which the reader is
usually expected to know without having been given an explanation. The con-
vention is the following. If one generates several values in an algorithm,
then they are generated independently. This a natural convention, since
the successive calls of the usual random number generators indeed do return
values which can be considered independent. So, e.g., step 1 of the original
version of the Box and Muller method could have been specified as follows:

1. Generate U and V from the Uni(0, 1) distribution.

There are also other methods for generating two independent draws from
the standard normal, which are based on the use of polar coordinates (look up
the Marsaglia polar method in Wikipedia). If one uses a bad uniform random
number generator, then the method of Box and Muller leads to certain practical
difficulties, although the method is exact if one uses uniform random variables.

3.3.3 The ratio of uniforms method

A nonnegative function h ≥ 0 defined on some Euclidean space is called an
unnormalized density, if its integral over the whole space is finite and non-
zero. An unnormalized density can be converted to a density function f by
normalizing it,

f(x) = h(x)
/∫

h(t) dt, x ∈ R .

Unnormalized densities occur quite frequently in Bayesian statistics in the
form

prior× likelihood.

Truncated distributions (defined in the next section) provide other examples of
unnormalized densities.

For still another example, consider the following definition for the uniform
distribution on a set A ⊂ Rd. Let m(A) be the Lebesgue measure of A ⊂ Rd,
given by

m(A) =
∫

1A(x) dx.

If A ∈ R, then m(A) is the length of set A; if A ∈ R2, then m(A) is the area of
A; if A ∈ R3, then m(A) is the volume of A, and if A ∈ Rd, we can call m(A) the
d-dimensional volume of A. Let A ⊂ Rd. We assume that A has nonzero, finite
d-dimensional volume, 0 < m(A) <∞. The uniform distribution on the set
A, which we can denote by Uni(A), is the continuous distribution having the
unnormalized density 1A. The corresponding normalized density is, of course,
1A/m(A).

Suppose that we want to generate samples from a distribution having a given
unnormalized density h on the real line. Define the set C ∈ R2 by

C = {(u, v) : 0 < u <
√
h(v/u)}, (3.14)

Kinderman and Monahan (1977) noticed that if we are able to generate the
pair (U, V ) from the uniform distribution on C, then V/U has the distribution
corresponding to the unnormalized density h.
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Algorithm 5: The ratio of uniforms method.
Assumption: We know how to simulate Uni(C), see eq. (3.14).
Result: One sample X from the distribution with unnormalized density

h.
Generate (U, V ) ∼ Uni(C);1

X ← V/U2

The correctness of the algorithm can be proved by first completing the trans-
formation by (e.g.) defining Y = U , after which we have a bijective correspon-
dence between (U, V ) and (X,Y ), and then by calculating the density of X from
the joint density of (X,Y ). The joint density can be calculated easily by the
change of variables formula. The details are left as an exercise for the reader.
The uniform distribution on the set C can often be simulated in the manner
described in the next section.

3.4 Naive simulation of a truncated distribution

Suppose that RV X has a continuous distribution with density fX . Suppose A
a set such that P (X ∈ A) > 0. Then we can consider the distribution of X
truncated (or restricted) to the set A, which has the unnormalized density given
by

y 7→ fX(y)1A(y). (3.15)

This is also called the distribution of X conditionally on X ∈ A (or given
X ∈ A).

We can simulate this truncated distribution with the following, obvious
method. Notice that we follow the usual convention: in the following algo-
rithm, the successive draws within the repeat–unitl loop from the distribution
with density fX are supposed to be independent.

Algorithm 6: Naive method for simulating from a truncated distribution.
Input: Set A and simulation method for fX .
Result: A sample Y from fX truncated to the set A.
repeat1

Simulate X from the density fX2

until X ∈ A ;3

Y ← X (i.e., accept X, if it is in A).4

The correctness of this method follows from the following calculation,

P (Y ∈ B) = P (X ∈ B | X ∈ A) =

∫
A∩B

fX(x) dx
P (X ∈ A)

=
∫

B

fY (y) dy,

where
fY (y) =

1
P (X ∈ A)

fX(y)1A(y).

The efficiency of this method depends on the acceptance probability

p = P (X ∈ A). (3.16)
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The number of simulations needed in order to get one acceptance has the ge-
ometric distribution on 1, 2, . . . with success probability p. The mean of this
distribution is 1/p.

For example, suppose that we simulate the standard normal N(0, 1) trun-
cated to the set A = (5,∞) using this naive method. Then the acceptance
probability p turns out to be about 2.9 · 10−7. With sample size of ten million
from the N(0, 1) distribution, the expected number of accepted values would be
2.9. On the other hand, should we be interested in simulating N(0, 1) truncated
to the complementary set (−∞, 5], then practically every point of the sample
would be accepted by the naive method.

One important application for this naive simulation method is simulation
of the uniform distribution on some complicated set A. Suppose that we are
able to find a set B, such that A ⊂ B, and we already know how to simulate
the uniform distribution on the set B. Then the uniform distribution on B
truncated to the set A is the uniform distribution on A. This obvious fact can
be proved by noting that the uniform distribution on B truncated to the set A
has the unnormalized density

1B1A = 1A∩B = 1A,

where the last step follows from the inclusion A ⊂ B. As a consequence, we can
simulate Y ∼ Uni(A) as follows.

• Generate X ∼ Uni(B) until X ∈ A, and then return Y = X.

Often we are interested a set A ⊂ R2, which can be enclosed in a rectangle
B = (a, b)× (c, d). The uniform distribution on the rectangle B can simulated
by generating independently the first coordinate from Uni(a, b) and the second
coordinate from Uni(c, d).

Sometimes it is costly to test whether x ∈ A. In such a case we can save
some computational effort, if we can find a simpler set S such that S ⊂ A. So,
now we have the inclusions

S ⊂ A ⊂ B, (3.17)

and we know how to simulate Uni(B). If nowX ∈ S with reasonable probability,
and it is less costly to test, whether x ∈ S than whether x ∈ A, then we can,
on average, save some computational effort with the following algorithm.

Algorithm 7: Simulating from Uni(A), with a pretest.
Assumption: The inclusions S ⊂ A ⊂ B hold, and we know how to

simulate Uni(B)
Result: One sample Y from Uni(A).
repeat1

Generate X ∼ Uni(B);2

if X ∈ S then accept ← true ;3

else if X ∈ A then accept ← true ;4

else accept ← false5

until accept ;6

Y ← X7

The algorithm uses a Boolean variable accept to keep track of whether the
proposed value X has been accepted or not.
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If we use the naive method repeatedly (using an i.i.d. sequence of X’s)
to generate several values Y1, Y2, . . . , Yn, then they are i.i.d. On first thought
this may seem obvious. After further thought this may, however, seem not so
obvious anymore. The independence of the generated Y ’s can be proved either
by elementary means or by appealing to the strong Markov property of i.i.d.
sequences, but we skip the proof. The basic idea is that the sequence of X’s
starts afresh after each (random) time when a freshly generated Y is accepted.

3.5 Accept–reject method

In this section f∗ : Rd → [0,∞) is an unnormalized density of some continuous
target distribution. The corresponding normalized density function is

f(x) = f∗(x)
/∫

f∗(t) dt.

In most of the applications of the method d = 1, but the method can be used
in any dimension.

3.5.1 The fundamental theorem

Suppose d = 1 and consider the set under the graph of f∗, i.e., the set
bounded by the x-axis and the graph of the function f∗,

A = {(x, y) : 0 < y < f∗(x)}. (3.18)

The area of A is

m(A) =
∫ (∫ f∗(x)

0

1 dy

)
dx =

∫
f∗(x) dx.

The same calculation for m(A) holds for other values of d, too.
Suppose (X,Y ) is uniformly distributed in the set A (3.18), and let us cal-

culate (a) the marginal density of X and (b) the conditional density of Y given
X = x. The joint density of (X,Y ) is given by

fX,Y (x, y) =

{
1/m(A), if (x, y) ∈ A,
0, otherwise

By the following calculation, the marginal density of X is simply f

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ f∗(x)

0

1
m(A)

dy =
f∗(x)
m(A)

= f(x).

If x is such that f∗(x) > 0 and y is such that 0 < y < f∗(x), we have

fY |X(y | x) =
fX,Y (x, y)
fX(x)

=
1

f∗(x)
,

while for other values of y, the conditional density is zero. In other words, given
X = x, the random variable Y has the uniform distribution on the interval
(0, f∗(x)).

We have incidentally proved the following theorem, which Robert and Casella
call the fundamental theorem of simulation.
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Theorem 1 (Fundamental theorem of simulation.). Suppose f∗ is an
unnormalized density on Rd and let f bet the corresponding normalized density.
Let A be the set under the graph of f∗, i.e.,

A = {(x, y) : 0 < y < f∗(x)}.

Then we have the following

1. If (X,Y ) ∼ Uni(A), then X ∼ f .

2. If X ∼ f and, conditionally on X = x, Y has the distribution Uni(0, f∗(x)),
then (X,Y ) ∼ Uni(A).

3.5.2 Deriving the accept–reject method

Suppose that f∗ is defined on the real line and that the set where f∗ > 0 is a
finite interval (a, b). Further, suppose f∗ is bounded, f∗ ≤ K. Then we can
enclose the set A in the rectangle (a, b)× (0,K), whose uniform distribution is
simple to simulate. Hence we can simulate the uniform distribution on A by
the naive method for truncated distributions. But not all pdfs of interest are
supported on a finite interval. What to do in that case?

The solution is to apply the fundamental theorem twice. Suppose that we
are able to find a (normalized) density function g such that

1. Mg majorizes (or envelopes) the unnormalized target density f∗, where
M > 0 is a known (majorizing) constant, i.e.,

f∗(x) ≤Mg(x) for all x. (3.19)

2. We know how simulate from g.

Then

A = {(x, y) : 0 < y < f∗(x)} ⊂ B = {(x, y) : 0 < y < Mg(x)}.

By the fundamental theorem, we can simulate (X,Y ) from the uniform distri-
bution on B as follows,

Generate X ∼ g and U ∼ Uni(0, 1); set Y = Mg(X)U .

Therefore we can use the naive method for a truncated distribution to simulate
the uniform distribution on A: we simulate (X,Y ) ∼ Uni(B) until (X,Y ) falls
under the graph of f∗. Combining these ideas, we get the following algorithm.

Algorithm 8: The accept–reject method.
Assumption: The unnormalized f∗ is majorized by Mg
Result: One sample X from f .
repeat1

Generate Z ∼ g and U ∼ Uni(0, 1).2

until Mg(Z)U < f∗(Z) ;3

X ← Z (i.e., accept the proposal Z).4

Remarks
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• Some people call the method acceptance sampling or the acceptance method;
some others call it rejection sampling or the rejection method.

• The majorizing function Mg(z) is also called the envelope of f∗(z).

• The method can also described so that one accepts the proposal Z ∼ g
with probability f∗(Z)/(Mg(Z)).

• The accept–reject method was originally published by John von Neumann
in 1951.

• Although the method works in any dimension, finding useful envelopes in
high-dimensional cases is very challenging.

The efficiency of the method depends crucially on the acceptance probability.
Notice that the joint density Z and U before the acceptance test is

fZ,U (z, u) = g(z)1(0,1)(u).

Therefore the acceptance probability is

p = P

(
U <

f∗(Z)
Mg(Z)

)
=
∫

dz
∫ f∗(z)/(Mg(z))

0

du g(z)1(0,1)(u)

=
∫
g(z)

f∗(z)
Mg(z)

dz =
∫
f∗(z) dz
M

.

(3.20)

If d = 1, this is the same as

Area under f∗

Area under the envelope Mg.

(Here, e.g., “area under f∗” actually means the area of the set bounded by the
graph of f∗ and the x-axis.) In order to get high efficiency, we need as high
acceptance probability as possible. This is achieved by using a tightly fitting
envelope Mg. For a fixed g, the majorizing condition

f∗ ≤Mg

holds for an infinite number of constants M . However, in order to achieve the
best efficiency, one should choose the least possible value for M such that the
majorizing condition holds.

3.5.3 An example of accept–reject

Consider the unnormalized target density

f∗(x) = exp(−x2/2)(1 + 2 cos2(x) sin2(4x)), (3.21)

which is majorized by the function

Mg(x) = 3 exp(−x2/2).
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Here Mg(x) is an unnormalized density of the N(0, 1) distribution, so g is the
density of N(0, 1). Based on this fact, we could (but now need not) give an
expression for M .

The following fragment coded in the R-language calculates n = 1000 inde-
pendent values from the distribution corresponding to f∗ using the accept–
reject method and stores them in the vector x. The acceptance condition
Mg(Z)U < f∗(Z) has been converted to the equivalent condition

U <
f∗(Z)
Mg(Z)

,

which now simplifies a bit.

n <- 1000;
x <- numeric(n) # create a vector with n entries to store the results
for (i in 1:n) { # generate x[i]
while (TRUE) {
z <- rnorm(1); u <- runif(1)
if (u < (1 + 2 * cos(z)^2 * sin(4 * z)^2) / 3) { # accept!
x[i] <- z
break

}
}

}

3.5.4 Further developments of the method

Sometimes the function f∗ is costly to evaluate, but we can find a simpler
function s ≥ 0 which minorizes it,

s(x) ≤ f∗(x) ≤Mg(x), (all x). (3.22)

Then we can say that f∗ has been squeezed between the lower envelope s and
the upper envelope Mg. Sometimes such a function s is called a squeeze.

If s is less costly to evaluate than f∗, then we can save computation by using
the following algorithm instead of the original version of accept–reject.

Algorithm 9: Accept–reject with squeezing.
Assumption: Inequality (3.22) holds
Result: One sample X from f .
repeat1

Generate Z ∼ g and U ∼ Uni(0, 1);2

Y ←Mg(Z)U ;3

if Y < s(Z) then accept ← true ;4

else if Y < f∗(Z) then accept ← true ;5

else accept ← false ;6

until accept ;7

X ← Z8

Here the test Y < s(Z) is now the pretest. If it succeeds, then certainly Y <
f∗(Z) and there is no need to evaluate f∗(Z).

Many familiar univariate continuous distributions have log-concave densities.
A function is called log-concave, if its logarithm is a concave function. We are
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now interested in the case, where the density f is defined on an open interval
(a, b), and f is strictly positive and twice differentiable on that interval. Then
f is log-concave, if and only if

d2

dx2
log f(x) ≤ 0, a < x < b.

The graph of a concave function lies below each of its tangents. Also, the graph
of a concave function lies above each of its chords (secants). Therefore it is easy
to find piecewise linear upper and lower envelopes for concave functions. If one
constructs piecewise linear envelopes for log f , then, by exponentiation, one gets
piecewise exponential envelopes s ≤ f ≤ g∗. It turns out to be relatively easy
to generate values from the distribution, which has the piecewise exponential
unnormalized density g∗. After this has been accomplished, we can immediately
use the accept–reject method with squeezing to simulate from the log-concave
density f .

It is even possible to construct iteratively better and better upper and lower
envelopes for a log-concave density, so that the bounds get tighter every time
a new value is generated from the density. This is called adaptive rejection
sampling (ARS), but there exist several different implementations of this basic
idea.

3.6 Using the multiplication rule for multivari-
ate distributions

Suppose we want to simulate the joint distribution of three variables X, Y and
Z. The multiplication rule (i.e., the chain rule) gives us a decomposition of the
joint distribution of the form

fX,Y,Z(x, y, z) = fX(x) fY |X(y | x) fZ|X,Y (z | x, y).

If all the distributions on the right are available in the sense that we know how
to simulate from them, then we can be interpret the multiplication rule as a
recipe for simulating the joint distribution.

Algorithm 10: Using the multiplication rule for simulation, pedantic
version

Generate the value x from fX ;1

Generate the value y from fY |X(· | x);2

Generate the value z from fZ|X,Y (· | x, y).3

If we repeat the process, we get i.i.d. samples

(X1, Y1, Z1), (X2, Y2, Z2), . . .

from the joint distribution of (X,Y, Z). Of course, one can generalize this to
as many components as are needed. The components need not be scalars, but
they may as well be vectors or even matrices.

Many people tend to describe the same algorithm more informally, e.g., as
follows.

38



January 15, 2010

Algorithm 11: Using the multiplication rule for simulation, informal
version

Generate x ∼ p(x);1

Generate y ∼ p(y | x);2

Generate z ∼ p(z | x, y).3

This is acceptable, if both the writer and the reader understand what this is
supposed to mean. However, the danger of misunderstanding (or rather, not
understanding anything) is great.

3.7 Mixtures

It is instructive to consider the special case of the multiplication rule, when
there are just two components. It is useful to the check what the marginal
distribution of the first component looks like. Simulating from the marginal
distribution in this way is sometimes called the composition method.

Suppose X is continuous and J is discrete with values 1, 2, . . . , k. Then their
joint distribution has the density

fX,J(x, j) = fX|J(x | j)fJ(j).

Let us denote

pj = fJ(j), and fj = fX|J(· | j), j = 1, 2, . . . , k.

Then the marginal density of X is a convex combination of the densities fj ,

fX(x) =
k∑

j=1

pjfj(x), where pj ≥ 0 ∀j,
k∑

j=1

pj = 1. (3.23)

If we have a representation of the form (3.23), where the functions fj are den-
sities, then we say that the density of X is a (finite) mixture of the densities
f1, . . . , fk. The numbers p1, . . . , pk can be called mixing weights. We can simu-
late such a finite mixture distribution as follows.
Algorithm 12: Simulating from a finite mixture of distributions

Generate J from the pmf (p1, p2, . . . , pk);1

Generate X from density fJ ;2

Return X (and ignore J).3

Similarly, if the distribution of (X,Y ) is continuous, then the marginal dis-
tribution of X is

fX(x) =
∫
fX|Y (x | y) fY (y) dy. (3.24)

If we have a representation of the form (3.24), then we say that the distribution
of X is a (continuous) mixture of the densities fX|Y . In such a case, simulation
can be implemented as follows.

Algorithm 13: Simulating from a continuous mixture of distributions
Generate y from density fY ;1

Generate X ∼ fX|Y (· | y);2

Return X (and ignore y).3
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Some important distributions can be represented in the form (3.24) so that
y is the scale parameter of the family of distributions

{fX|Y (· | y) : y > 0}.

In this case we can say that the distribution of X is a scale mixture of the
distributions fX|Y .

Example 3.2. [Simulating the multivariate t distribution] Let ν > 0, µ ∈ Rd

and let Σ be a symmetric, positive definite d × d matrix. The multivariate t
distribution td(ν, µ,Σ) can be represented hierarchically as a scale mixture of
multivariate normal distributions

X | Y ∼ Nd(µ,
1
Y

Σ), where Y ∼ Gam(ν/2, ν/2).

Therefore it can be simulated as follows

1. Generate Y ∼ Gam(ν/2, ν/2).

2. Generate X ∼ Nd(µ, 1
Y Σ).

3. Return X.

The multivariate t distribution has become popular in Monte Carlo studies since
its location and shape can be adjusted (by varying µ and Σ) and since it has
heavier tails than the corresponding multivariate normal distribution. 4

3.8 Affine transformations

Affine transformations of random vectors are multivariate analogs of scaling and
shifting of univariate random variables. If d-dimensional Z has density fZ and
X is defined by

X = b+AZ,

where b ∈ Rd is a constant vector, and A is an invertible, constant d×d matrix,
then X has the density

fX(x) =
fZ(A−1(x− b))
|det(A)|

. (3.25)

We can apply this idea to the simulation of the multivariate normal distribu-
tion N(µ,Σ). Here µ ∈ Rd is the mean (vector) of the distribution, and Σ, the
covariance matrix of the distribution, is a d× d matrix. Σ is always symmetric
and positive semidefinite. We now assume that Σ is positive definite, in which
case it is also invertible. Then the N(µ,Σ) distribution has a density given by

fX(x) = (2π)−d/2(detΣ)−1/2 exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (3.26)

For any symmetric, positive definite matrix Σ it is possible to find a matrix
A such that

Σ = AAT , A is d× d and invertible (3.27)
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One method for finding A is to use the Cholesky decomposition Σ = LLT , where
L is (the Cholesky factor of Σ) is a lower triangular matrix. Another possible
choice is to use the symmetric, positive definite square root of Σ, often denoted
by Σ1/2, as the matrix A.

Let us consider, what is the density of the vector Z = (Z1, . . . , Zd), when
Zi ∼ N(0, 1) independently i = 1, . . . , d. Then

fZ(z) =
d∏

i=1

1√
2π

e−
1
2 z2

i = (2π)−d/2 exp
(
−1

2
zT z

)
.

This is the d-dimensional standard normal distribution N(0, Id).
Suppose we have available the decomposition (3.27) and calculate as follows.

1. Generate Z ∼ Nd(0, I).

2. Return X = µ+AZ.

Then it can be proved that X ∼ N(µ,Σ) either directly from eq. (3.25) or
by using familiar properties of the multivariate normal distribution (i.e., an
affine transform of a multivariate normal rv also has a multivariate normal
distribution).

Sometimes one has to simulate a high-dimensional normal distributionN(µ,Σ)
whose covariance matrix Σ is not explicitely available but whos precision ma-
trix Q = Σ−1 (inverse covariance matrix) is known. Suppose that one is able to
obtain a decomposition

Q = BBT

for the precision matrix. Then one can simulate the distribution as follows

1. Generate Z ∼ N(0, I).

2. Solve Y from the linear equation BTY = Z, and return X = µ+ Y .

This follows since Y now has the normal distribution N(0, (BT )−1((BT )−1)T ),
where

(BT )−1((BT )−1)T = (BT )−1B−1 = (BBT )−1 = Q−1.

Another possibility is that one is able to generate efficiently from the normal
distribution N(0, Q) whose covariance matrix Q is the precision matrix of the
target distribution. Then one can do as follows

1. Generate Z ∼ N(0, Q).

2. Solve Y from QY = Z, and return X = µ+ Y .

3.9 Literature

The following text books are good references for the topics of this chapter.
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Chapter 4

Monte Carlo Integration

In this chapter we discuss approximate integration methods, which use an i.i.d.
sample X1, X2, . . . from some distribution. In a later chapter we will discuss
MCMC methods, where the underlying random variables are not independent
and where they do not have identical distributions.

Monte Carlo methods are computational methods, which depend on the use
of random or pseudo random numbers. The name Monte Carlo refers to the
famous casino located in Monaco. Like casino games, Monte Carlo methods are
highly repetitive and depend on randomness.

4.1 Limit theorems

When the underlying sample is i.i.d., one can use the two most important limit
theorems of probability theory to analyze the behavior of arithmetic means.

Theorem 2 (Strong law of large numbers, SLLN). Let Y1, Y2, . . . be i.i.d.
random variables such that E|Yi| <∞. Denote µ = EYi. Then

1
n

n∑
i=1

Yi → µ,

almost surely, as n→∞.

Remark. The condition E|Yi| <∞ guarantees that the expectation EYi is
defined and finite. It is the best possible condition in the strong law of large
numbers for i.i.d. random variables. If E|Yi| =∞, then it can be shown that

lim sup
n→∞

∣∣∣∣∣ 1n
n∑

i=1

Yi

∣∣∣∣∣→∞
almost surely, which means that the sample mean oscillates wildly and therefore
diverges.

Theorem 3 (Central Limit Theorem, CLT). Let Y1, Y2, . . . be i.i.d. ran-
dom variables such that EY 2

i <∞. Denote

µ = EYi, σ2 = varYi.
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Then
1
n

∑n
i=1 Yi − µ
σ/
√
n

d−→ N(0, 1), (4.1)

as n→∞.

In the CLT the arrow d−→ denotes convergence in distribution. Random
variables Z1, Z2, . . . converge in distribution to a limit distribution with df F ,
if

P (Zn ≤ x)→ F (x), as n→∞

at all points of continuity x of F . Since in the CLT the df of the limit distribution
N(0, 1) is continuous, in the CLT the convergence of the distribution functions
holds at each point.

In CLT the quantity in (4.1) which has a limit distribution is the standard-
ized mean of the n first random variables. I.e., if we denote

Ȳn =
1
n

n∑
i=1

Yi,

then

EȲn =
1
n

n∑
i=1

µ = µ

and

var Ȳn = E

( 1
n

n∑
i=1

(Yi − µ)

)2
 =

1
n2
E

 n∑
i=1

(Yi − µ)
n∑

j=1

(Yj − µ)


=

1
n2
nσ2 =

1
n
σ2.

Therefore the numerator is Ȳn minus its expectation, and the denominator is
the standard deviation of Ȳn.

If the sample size n is large, then we can pretend that the standardized mean
already follows its limit distribution, i.e., we can pretend that

Ȳn − µ
σ/
√
n

d=N(0, 1).

This an example of normal approximation.
Suppose we know σ but do not know µ. Then we can calculate a confidence

limit for µ by normal approximation as follows. We are seeking a central 100(1−
α)% confidence interval, for some 0 < α < 1. Let z1−α/2 be the value of the
quantile function of the standard normal N(0, 1) at 1 − α/2, i.e., a proportion
1−α/2 of the probability mass of N(0, 1) lies to the left of z1−α/2. E.g., a 95 %
confidence interval corresponds to α = 0.05 and z0.975 ≈ 1.96. Using the normal
approximation,

P

(∣∣∣∣ Ȳn − µ
σ/
√
n

∣∣∣∣ ≤ z1−α/2

)
≈ 1− α,

When we solve the inequality for µ, we see that approximately with probability
1− α we have

µ ∈ Ȳn ± z1−α/2
σ√
n
.
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Usually not only µ but also σ would be unknown. However, we can still
apply the preceding confidence interval, when we plug in a reasonable estimate
σ̂ of the standard deviation σ. Usually one uses the sample standard deviation
of the Yi values,

σ̂ = s =

√√√√ 1
n− 1

n∑
i=1

(
Yi − Ȳn

)2
.

With this choice, we get the confidence interval

µ ∈ Ȳn ± z1−α/2
s√
n
. (4.2)

Here the quantity

s√
n

=

√√√√ 1
n(n− 1)

n∑
i=1

(
Yi − Ȳn

)2
,

is called the standard error of the mean.
Instead of the critical values of the standard normal, one often uses the

critical values of the t distribution with (n−1) degrees of freedom in the previous
construction. If the sample size is large, then the resulting confidence interval
is in practice the same as (4.2).

There is nothing probabilistic about the coverage a single confidence inter-
val: the interval either contains µ or does not. However, if one constructs a
large number of (1 − α)100% confidence intervals (4.2), where n is large, then
approximately proportion (1 − α) of them covers µ and proportion α does not
cover µ.

4.2 Basic principles of Monte Carlo integration

Suppose f is a density, which we are able to to simulate from, and that we are
interested in the expectation

I =
∫
h(x)f(x) dx = Eh(X). (4.3)

Suppose that we simulate X1, X2, . . . independently from the density f and set
Yi = h(Xi). Then the sequence Y1, Y2, . . . is i.i.d. and

EYi = Eh(Xi) =
∫
h(x)f(x) dx = I.

If we calculate the mean of the N values h(X1), . . . , h(XN ), then we obtain
the estimate

ÎN =
1
N

N∑
i=1

h(Xi). (4.4)

By the SLLN, ÎN converges to I as N increases, provided that the condition
E|h(X)| <∞ holds. In Monte Carlo simulations we are free to select N as large
as our budget (available computer time) allows.
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We have

EÎN =
1
N

N∑
i=1

Eh(Xi) = I,

and therefore the estimate ÎN is unbiased. It is also easy to express the variance
and the standard error of the estimator. If the variance of h(X) is finite, then

var ÎN =
1
N

varh(X). (4.5)

This can be called the sampling variance, simulation variance or Monte Carlo
variance of the estimator ÎN .

A more meaningful quantity for measuring the accuracy of ÎN is the square
root of the variance. Recall that the square root of the variance of an estima-
tor (i.e., its standard deviation) is called its standard error. (This term is
commonly used also for the estimate of the (theoretical) standard error.) The
standard error of a Monte Carlo estimate can be called its sampling standard
error, simulation standard error of Monte Carlo standard error. The Monte
Carlo standard error is of the order 1/

√
N , since√

var ÎN =
1√
N

√
varh(X). (4.6)

The theoretical variance (population variance) varh(X), which is needed in
both (4.5) and (4.6), is usually unknown. However, it it can be estimated by
the sample variance of the h(Xi) values,

s2 = v̂arh(X) =
1

N − 1

N∑
i=1

(
h(Xi)− ÎN

)2

.

We get an approximate 100(1 − α)% confidence interval for I from (4.2),
namely

ÎN ± z1−α/2
s√
N
. (4.7)

Example 4.1. Calculating the 95 % confidence interval (4.7) with R. We
assume that the sample from the density f is generated with the call rname(N).
We also assume that we have available a function h, which applies the function
h element-by-element to its vector argument.

x <- rname(N)
# Calculate vector y so that y[i] = h(x[i]) for all i.
y <- h(x)
Ihat <- mean(y)
se <- sqrt(var(y) / N)
# or: se <- sd(y) / sqrt(N)
z <- qnorm(1 - 0.05/2)
ci <- c(Ihat - z * se, Ihat + z * se)

4
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The accuracy of Monte Carlo integration goes to zero like 1/
√
N as N in-

creases. To get an extra decimal place of accuracy it is necessary to increase
N by a factor of 100. In practice, one usually achieves moderate accuracy with
a moderate simulation sample size N . However, in order to achieve high accu-
racy, one usually needs an astronomical simulation sample size. Notice, however
that Monte Carlo integration works equally well in a space of any dimension-
ality. In contrast, the classical quadrature rules of numerical analysis become
prohibitively expensive in high dimensional spaces.

Notice, how versatile Monte Carlo integration is. If one wants to esti-
mate several expectations Eh1(X), Eh2(X), . . . , Ehk(X), then a single sample
X1, . . . , XN from the density f suffices, since

Ehj(X) ≈ 1
N

N∑
i=1

hj(Xi), j = 1, . . . , k.

In that case one uses common random numbers to estimate the different expec-
tations.

4.3 Empirical quantiles

Often one wants to estimate the quantile function of a random variable X, when
one has available a sample X1, . . . , XN (i.i.d. or not) from its distribution.
Then one speaks of the empirical quantile function. This problem can be
approached via Monte Carlo integration. One wants to solve x from the equation

E1(−∞,x](X) = u, 0 < u < 1,

for various values of u. One can approximate the expectation by the Monte Carlo
method. However, the resulting equation does not have a unique solution, as
we will see in a moment.

Let X(j) be the j’th smallest observation, which is also called the j’th order
statistic of the sample. I.e., the observations sorted from lowest to highest are

X(1) ≤ X(2) ≤ · · · ≤ X(N).

If
X(j) < x < X(j+1)

for some j = 1, . . . , N , then by Monte Carlo

E1(−∞,x](X) ≈ 1
N

N∑
i=1

1(−∞,x](Xi) =
j

N
.

Therefore a reasonable value for the empirical quantile function at u = j/N
is some value between X(j) and X(j+1), and one can use various interpolation
methods to extend the definition to all values 0 < u < 1.

Different statistical computer packages use slightly different formulas to de-
fine the empirical quantile function. There is latitude in selecting the exact
point at which the empirical quantile function takes on the j’th order statistic
and latitude in how one interpolates in between. E.g., in R the empirical quan-
tile function is calculated by the function quantile(), and the user can choose
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between nine definitions of the empirical quantile function. For a large sample
from a continuous distribution, all the definitions calculate approximately the
same results.

4.4 Techniques for variance reduction

It is always possible to estimate the unknown integral by using different repre-
sentations of the form ∫

h(x)f(x) dx.

A clever choice may imply a significantly lower variance for the Monte Carlo
estimator. Then one speaks of variance reduction methods.

E.g., to reduce variance, it is always a good idea to try to carry out the com-
putation analytically as far as possible, and then use Monte Carlo integration
only as a last resort.

Suppose that we have two Monte Carlo methods for estimating the same
integral. Let the variance in method i be

vi

N
, i = 1, 2,

where N is the sample size employed. Then, in order to achieve the same
accuracy (e.g., the same variance or the same standard error), we should use in
method two the sample size

v2
v1
N,

where N is the sample size used in method one.

4.4.1 Conditioning

Conditioning decreases variance in the sense that

varE(Z | Y ) ≤ varZ

for any random variables Y and Z. In Monte Carlo integration it is therefore
advantageous to use the conditional expectation of the integrand instead of the
original integrand, whenever that is possible. Conditioning performs part of the
original integration analytically, and the rest by Monte Carlo.

Conditioning is often called Rao-Blackwellization. (Explanation: in the
celebrated Rao-Blackwell theorem one conditions on a sufficient statistic.)

To exemplify conditioning, suppose we want to estimate the integral

I = Eh(X,Y ) = EE(h(X,Y ) | Y ),

and are able to compute the conditional expectation

m(y) = E[h(X,Y ) | Y = y].

Then we can estimate I either by simulating (Xi, Yi), i = 1, . . . , N from the
joint distribution of (X,Y ) and by calculating

Î
(1)
N =

1
N

N∑
i=1

h(Xi, Yi)
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or by calculating

Î
(2)
N =

1
N

N∑
i=1

m(Yi).

Supposing that the computational effort required for evaluating h(Xi, Yi) or
m(Yi) is about the same, the second method is better since its variance is lower.

One case where this idea can be used is in estimating posterior predictive ex-
pectations. We have often the situation, where in addition to the observed data
we want to consider a future observation Y ∗. The distribution of Y ∗ condition-
ally on the observed data Y = y is its (posterior) predictive distribution.
Typically, the data Y and future observation Y ∗ are modeled as conditionally
independent given the parameter Θ. Then the joint posterior of Θ and Y ∗

factorizes as follows

p(y∗, θ | y) = p(θ | y) p(y∗ | y, θ) = p(θ | y) p(y∗ | θ),

where the first identity follows by the multiplication rule for conditional distri-
butions, and the second by conditional independence. Therefore we can sim-
ulate the joint posterior distribution of Y ∗ and Θ by first simulating θi from
the posterior distribution p(θ | y) and then y∗i from the sampling distribu-
tion of Y ∗ conditionally on the simulated value θi. We can estimate the mean
E[Y ∗ | Y = y] of the posterior predictive distribution by straightforward Monte
Carlo as follows

Î
(1)
N =

1
N

N∑
i=1

y∗i .

However, in a typical situation we would know the mean of Y ∗ given the value
of the parameter Θ, i.e., the mean of the sampling distribution of Y ∗,

m(θ) = E[Y ∗ | Θ = θ] =
∫
y∗p(y∗ | θ) dy∗.

In this case we obtain a better estimator of E[Y ∗ | Y ] by conditioning,

Î
(2)
N =

1
N

N∑
i=1

m(θi).

The same approach applies also, when we want to estimate the expectation

E[h(Y ∗) | Y = y],

where h is a function for which we know∫
h(y∗) p(y∗ | θ) dy∗,

which is the expectation of h(Y ∗) given Θ = θ.

4.4.2 Control variates

Sometimes we want estimate the expectation I = Eh(X) and know that

µ = Em(X),
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where m is a known function and µ is a known constant. By defining

W = h(X)− β(m(X)− µ), (4.8)

where β is a constant, we get a RV W , whose expectation is I. Since

varW = varh(X)− 2β cov(h(X),m(X)) + β2 varm(X),

the lowest possible variance for W is obtained by selecting for β the value

β∗ =
cov(h(X),m(X))

varm(X)
. (4.9)

Here we must have var(m(X)) > 0. If we use β = β∗ in (4.8), then

varW = varh(X)− cov2(h(X),m(X))
varm(X)

.

Notice that varW < varh(X), if the RVs h(X) and m(X) are correlated, i.e.,
if cov(h(X),m(X)) 6= 0. The stronger the correlation, the greater the variance
reduction.

If we manage to select the value β so that varW < varh(X), then we should
estimate I as the mean of values Wi which are simulated from the distribution
of W ,

ÎN =
1
N

N∑
i=1

[h(Xi)− β(m(Xi)− µ)] . (4.10)

Here X1, . . . , XN is an i.i.d. sample with the distribution of X. Here m(X)
is the control variate, whose expectation we know. The variance of the con-
trol variate estimator (4.10) is less than the variance of the naive Monte Carlo
estimator, which just averages the values h(Xi).

To understand, why this happens, suppose that cov(h(X),m(X)) is positive.
Then also β should be selected positive. In this case an unusually high outcome
for h̄, the sample average of the h(Xi) values, tends to be associated with an
unusually high outcome for m̄ the sample average of the m(Xi) values In that
case the control variate estimate adjusts the naive Monte Carlo estimate h̄ of
Eh(X) downward, i.e.,

ÎN =
1
N

N∑
i=1

[h(Xi)− β(m(Xi)− µ)] = h̄− β(m̄− µ),

where

h̄ =
1
N

N∑
i=1

h(Xi), m̄ =
1
N

N∑
i=1

m(Xi).

Similar explanation works also when the correlation is negative.
The optimal β∗ depends on the moments of RVs h(X) and m(X), and these

are usually unknown. However, we can estimate the optimal β by using a pilot
sample X ′

i, i = 1, . . . , n. We then divide the sample covariance of h(X ′
i) and

m(X ′
i) with the sample variance of m(X ′

i). This is then our estimate of β∗,
which is then used in eq. (4.10) with a fresh sample X1, . . . , XN .
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Somewhat surprisingly, the same calulation can be done by fitting a linear
model, as follows. We fit the linear model

h(X ′
i) = α+ βm(X ′

i) + εi, i = 1, . . . , n.

by least squares
n∑

i=1

(h(X ′
i)− α− βm(X ′

i))
2 = min!,

and this can be done by using any statistical package. Here the errors εi are
definitely not normally distributed as would be required for linear models. We
are just using the available software for linear models for our own purposes.
This approach works, since the least squares estimate of β happens to be the
same as calculated in the previous approach for estimating β∗. The estimated
slope, β̂, is then used in eq. (4.10) and the estimated intercept α̂ is ignored.

Example 4.2. Suppose that rname(n) simulates n values from the distri-
bution of X and that hfunc(x) and mfunc(x) calculates the functions h and
m for each value of its vector argument. Then the following code fragments
demonstrates the two ways of estimating β∗.

x.pilot <- rname(n.pilot)
h <- hfunc(x.pilot); m <- mfunc(x.pilot)
beta <- cov(m, h) / var(m)
# Alternative; here the function lm() fits the linear model.
model <- lm(h ~ m)
# ... select for beta the estimated coefficient of m:
beta <- coef(model)[2]

# Then we estimate the integral and the simulation standard error
x <- rname(n)
h <- hfunc(x); m <- mfunc(x)
w <- h - beta * (m - mu)
Ihat <- mean(w)
se <- sd(w) / sqrt(n)

4

If one knows several expectations

µj = Emj(X), j = 1, . . . , k,

then it is possible to use several control variates m1(X), . . . ,mk(X). The values
of the optimal coefficients can, again, be estimated using a pilot sample and by
fitting a linear model.

4.4.3 Common random numbers

Often one wants to compare two expectations

I1 = Efh1(X), and I2 = Efh2(X),
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where the functions h1 and h2 resemble one another. Suppose we estimate the
expectations by the Monte Carlo estimators Î1 and Î2. We are interested in the
sign of the difference I1 − I2. Since

var
(
Î1 − Î2

)
= var(Î1) + var(Î2)− 2 cov(Î1, Î2),

it is worthwhile to use estimators, which have positive correlation. This is typi-
cally achieved by basing the estimators Î1 and Î2 on common random numbers,
i.e., by using a single sample X1, . . . , XN instead of separate samples for the
two estimators.

Using common random numbers is even more important in the case, where
one tries to estimate a parametrized expectation

I(α) = Efh(X,α)

for various values of the parameter α. Then the estimator using common random
numbers produces a much smoother approximation

α 7→ Î(α)

then what would be obtained by using separate samples at each α. Besides, by
using common random numbers one saves a lot of computational effort.

4.5 Importance sampling

Suppose we want to estimate the integral

I = Ef [h(X)] =
∫
h(x) f(x) dx, (4.11)

where the density f is difficult to sample from. We can rewrite the integral as

I =
∫
{g>0}

h(x)
f(x)
g(x)

g(x) dx = Eg

[
h(X)

f(X)
g(X)

]
.

Here the subscript of the expectation symbol shows, under what distribution
the expectation is calculated. Robert and Casella [4] call this the importance
sampling fundamental identity. This identity was used in Monte Carlo inte-
gration already in the 1950’s.

The new density g can be selected otherwise quite freely, but we must be
certain that

g(x) = 0 ⇒ h(x)f(x) = 0.

In other words, the support of the function hf must be included in the support
of the function g.

4.5.1 Unbiased importance sampling

We can use the following idea, if we know f completely, including its normalizing
constant.
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We select a density g, which is easy to sample from. Then we generate a
sample X1, . . . , XN from g and calculate

ÎN =
1
N

N∑
i=1

h(Xi)
f(Xi)
g(Xi)

(4.12)

Let us call

w(x) =
f(x)
g(x)

the importance ratio, and the weights

wi = w(Xi) =
f(Xi)
g(Xi)

, i = 1, . . . , N (4.13)

the importance weights. Then the importance sampling estimate (4.12) can
be written as

ÎN =
1
N

N∑
i=1

wih(Xi).

Importance sampling gives more weight for those sample points Xi for which
f(Xi) > g(Xi) and downweights the other sample points, in order to form an
unbiased estimate of I = Ef [h(X)], given a sample X1, . . . , XN from g.

Different authors use different names for g such as the auxiliary density, the
importance sampling density, the approximation density and so on. Following
Robert and Casella [4], we call g the instrumental density.

We can interpret the procedure as producing a weighted sample

(w1, X1), . . . , (wN , XN ),

where the weights are needed in order to correct for the fact that the sample is
produced from the wrong density. Since the estimator (4.12) is the arithmetic
mean of terms wi h(Xi) each with mean I,

Eg[wi h(Xi)] = Eg

[
f(Xi)
g(Xi)

h(Xi)
]

=
∫
h(x)f(x) dx = I,

the estimator is unbiased. Its variance can be estimated in the same way as the
variance of the basic Monte Carlo estimator.

In importance sampling we should strive for low variance. In particular, the
variance should be finite. This is the case, if

Eg

[
h2(X)

f2(X)
g2(X)

]
=
∫
h2(x)

f2(x)
g(x)

dx <∞.

If this condition is not satisfied, then the estimator behaves erratically.
In order to achieve minimal variance, one can show that it is optimal to

choose the instrumental density g proportional to |h|f . Then the variance of
the importance sampling estimator is smaller (or equal to) the variance of the
naive Monte Carlo estimator, which uses samples from f . While the optimal
choice

g ∝ |h|f
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can hardly ever be used in practice, it can still provide some guidance in choosing
the form of g: the shape of the instrumental density should resemble the product
|h|f as closely as possible. One should focus sampling on the regions of interest
where |h|f is large in order to save computational resources.

On the other hand, if the integrand h is not fixed in advance (e.g., one wants
to estimate expectations for many functions h) then the instrumental density
g should be selected so that f(x)/g(x) = w(x) is nearly constant and at least
bounded. If the support of f is infinite, this requires that g should have at least
as heavy tails as f . If g is a good approximation to f , then all the importance
weights will be rougly equal. If, on the other hand, g is a poor approximation
to f , then most of the weights will be close to zero, and thus a few of the Xi’s
will dominate the sum, and the estimate will be inaccurate. Therefore it is a
good idea to inspect the importance weights, e.g., by examining their variance
or histogram.

Notice that the importance weights can be utilized to form a control variate.
Denoting the importance weight wi by w(Xi), we have

Egw(Xi) =
∫
f(x)
g(x)

g(x) dx = 1.

Therefore the average of the importance weights can be used as a control variate,
whose expectation is known to be one.

4.5.2 Self-normalized importance sampling

It is possible to apply importance sampling also in the situation, where we want
to estimate I = Ef [h(X)], but only know an unnormalized version f∗ of the
density f . Here

f(x) =
1
c
f∗(x),

but the normalizing constant c is unknown. Of course, c can be expressed as
the integral

c =
∫
f∗(x) dx.

Such a situation is common in Bayesian statistics, but also when f∗ corresponds
to a truncated density. In these cases we cannot calculate (4.12) directly. How-
ever, we can express the integral as

I =
∫
h(x)f(x) dx =

∫
h(x)f∗(x) dx∫
f∗(x) dx

,

and then estimate the numerator and denominator separately using importance
sampling.

We sample X1, . . . , XN from an instrumental density g. We estimate the
denominator by∫

f∗(x) dx =
∫
f∗(x)
g(x)

g(x) dx ≈ 1
N

N∑
i=1

f∗(Xi)
g(Xi)

=
1
N

N∑
i=1

wi,

where we use the importance weights wi corresponding to the unnormalized
density f∗, given by

wi =
f∗(Xi)
g(Xi)

.
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Our estimate of the numerator is∫
h(x)f∗(x) dx ≈ 1

N

N∑
i=1

h(Xi)
f∗(Xi)
g(Xi)

=
1
N

N∑
i=1

wih(Xi).

Canceling the common factor 1/N , we obtain the following selft-normalized
importance sampling estimator (which is usually called just the importance
sampling estimator without any further qualification).

1. Generate X1, X2, . . . , XN from density g.

2. Calculate the importance weights

wi =
f∗(Xi)
g(Xi)

3. Estimate I by the weighted average

Î =
∑N

i=1 wih(Xi)∑N
j=1 wj

. (4.14)

The same method can be described so that having calculated the (raw)
importance weights wi, one calculates the normalized importance weights,

w̃i =
wi

s
, where s =

n∑
j=1

wj ,

by dividing the raw weights by their sum, and then calculates the (self-normalized)
importance sampling estimate as

Ī =
N∑

i=1

w̃i h(Xi).

Unlike the unbiased estimator (4.12), the self-normalized estimator (4.14) is
not unbiased. Its bias is, however, negligible when N is large. One should not
estimate the standard error of the selft-normalized estimator with our ordinary
formulas for Monte Carlo estimates. Instead, one can consult the article by
Geweke [1] or the books by Robert and Casella [4, 5] for different approaches.

In both forms of importance sampling it is a good idea to inspect the impor-
tance weights wi. If only few of the weights are large and others are negligible,
then the estimate is likely not accurate. In self-normalized importance sampling
one can examine the histogram or the coefficient of variation (which is the sam-
ple standard deviation divided by the sample mean) of the importance weights
(standardized or not).

4.5.3 SIR: Sampling importance resampling

Importance sampling can be interpreted so that it produces a weighted sample
(p1, X1), . . . , (pN , XN ), where now (p1, . . . , pN ) is a probability vector (i.e., a
probability mass function on 1, . . . , N). Then I = Ef [h(X)] is approximated by

N∑
i=1

pih(Xi).
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The probability vector is here the vector of normalized importance weights.
However, for some purposes one needs a true sample; a weighted sample does

not suffice. Such a sample can be produced approximately by sampling with
replacement from the sequence

X1, . . . , XN

with probabilities given by the vector (p1, . . . , pN ). This is called SIR (sam-
pling/importance resampling). Following Smith and Gelfand [6], this approach
is also called the weighted bootstrap.

4.6 Literature

Variance reduction methods are discussed in the simulation literature, e.g., Law
and Kelton [2]. Ripley [3] demonstrates that one can reduce the simulation
variance by a factor of 108 by using such techniques cleverly.
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Chapter 5

More Bayesian Inference

We use the generic p(·) notation for densities, if there is no danger of confusion.

5.1 Likelihoods and sufficient statistics

Let us consider n (conditionally) independent Bernoulli trials Y1, . . . , Yn with
success probability θ. That is, the RVs Yi are independent and Yi takes on
the value 1 with probability θ (success in the i’th Bernoulli experiment) and
otherwise is zero (failure in the i’th Bernoulli experiment). Having observed the
values y1, . . . , yn, the likelihood corresponding to y = (y1, . . . , yn) is given by

p(y | θ) =
n∏

i=1

p(yi | θ) =
n∏

i=1

θyi(1− θ)1−yi

= θs(1− θ)n−s, 0 < θ < 1,

(5.1)

where

s = t(y) =
n∑

i=1

yi

is the observed number of successes. Here the likelihood depends on the data y
only through the value of t(y), which is said to be a sufficient statistic. Since

p(θ | y) ∝ p(y | θ) p(θ) = θt(y)(1− θ)n−t(y) p(θ),

the posterior depends on the data only through the value of t(y).
In a more general situation, a statistic t(Y ) is called sufficient, if the likeli-

hood can be factored as

p(y | θ) = g(t(y), θ)h(y)

for some functions g and h. Then (as a function of θ)

p(θ | y) ∝ p(y | θ) p(θ) ∝ g(t(y), θ) p(θ)

and therefore the posterior depends on the data only through the value t(y) of
the sufficient statistic.
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In Bayesian inference, we might as well throw away the original data as
soon as we have calculated the value of the sufficient statistic. (Do not try
this at home. You might later want to consider other likelihoods for your data!)
Sufficient statistics are very convenient, but not all likelihoods admit a sufficient
statistic of a fixed dimension, when the sample size is allowed to vary. Such
sufficient statistics exist only in what are known as exponential families, see,
e.g., the text of Schervish [5, Ch. 2] for a discussion.

In the Bernoulli trial example, the random variable S corresponding to the
sufficient statistic

S = t(Y ) =
n∑

i=1

Yi

has the binomial distribution Bin(n, θ) with sample size n and success proba-
bility θ. I.e., if we observe only the number of success s (but not the order in
which the successes and failures happened), then the likelihood is given by

p(s | θ) =
(
n

s

)
θs(1− θ)n−s, 0 < θ < 1. (5.2)

The two functions (5.1) and (5.2) describe the same experiment, and are
proportional to each other (as functions of θ). The difference stems from the
fact that there are exactly

(
n
s

)
equally probable sequences y1, . . . , yn, which

sum to a given value of s, where s is one of the values 0, 1, . . . , n. Since the
two functions are proportional to each other, we will get the same posterior
with either of them if we use the same prior. Therefore it does not matter
which of the expressions (5.1) and (5.2) we use as the likelihood for a binomial
experiment.

Observations.

• When calculating the posterior, you can always leave out from the likeli-
hood such factors, which depend only on the data but not on the param-
eter. Doing that does not affect the posterior.

• If your model admits a convenient sufficient statistic, you do not need
to work out the distribution of the sufficient statistic in order to write
down the likelihood. You can always use the likelihood of the underlying
repeated experiment, even if the original data has been lost and only the
sufficient statistic has been recorded.

• However, if you do know the density of the sufficient statistic (conditionally
on the parameter), you can use that as the likelihood. (This is tricky;
consult, e.g., Schervish [5, Ch. 2] for a proof.)

We can generalize the Bernoulli experiment (or binomial experiment) to the
case, where there are k ≥ 2 possible outcomes instead of two possible outcomes.
Consider an i.i.d. sample Y1, . . . , Yn from the discrete distribution with k dif-
ferent values 1, . . . , k with respective probabilities θ1, . . . , θk, where 0 < θj < 1
and

∑
θj = 1. (Because of the sum constraint, there are actually only k−1 free

parameters.) The likelihood corresponding to the data y = (y1, . . . , yn) is given
by

p(y | θ) =
n∏

i=1

p(yi | θ) =
n∏

i=1

k∏
j=1

θ
1(yi=j)
j = θn1

1 θn2
2 · · · θ

nk

k , (5.3)
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where nj is the number of yis which take on the value j. This is the multino-
mial likelihood. Clearly the frequencies n1, . . . , nk form a sufficient statistic.
Notice that

∑
j nj = n.

In this case it is possible to work out the distribution of the sufficient statistic,
i.e., the random frequency vector N = (N1, . . . , Nk), where

Nj = #{i = 1, . . . , n : Yi = j}, j = 1, . . . , k.

Using combinatorial arguments it can be easily proven that

P (N1 = n1, N2 = n2, . . . , Nk = nk | θ1, θ2, . . . , θk)

=
(

n

n1, n2, · · · , nk

)
θn1
1 θn2

2 · · · θ
nk

k ,
(5.4)

when the integers 0 ≤ n1, . . . , nk ≤ n and
∑

j nj = n. Here(
n

n1, n2, · · · , nk

)
=

n!
n1!n2! · · ·nk!

(5.5)

is called a multinomial coefficient. The multivariate discrete distribution
with pmf (5.4) is called the multinomial distribution with sample size pa-
rameter n and probability vector parameter (θ1, . . . , θk). The binomial distri-
bution is a special case of the multinomial distribution: if S ∼ Bin(n, p), then
the vector (S, n − S) has the multinomial distribution with parameters n and
(p, 1− p).

Notice that we can use the simple expression (5.3) for the likelihood of a
multinomial observation even when we know very well that the pmf of the
random vector (N1, . . . , Nk) involves the multinomial coefficient.

5.2 Conjugate analysis

Some likelihoods have the property that if the prior is selected from a certain
family of distributions P, then the posterior also belongs to the same family
P. Such a family is called closed under sampling or a conjugate family (for the
likelihood under consideration). A trivial and useless example of a conjugate
family is provided by the set of all distributions. The useful conjugate families
can be described by a finite number of hyperparameters, i.e., they are of the
form

P = {θ 7→ f(θ | φ) : φ ∈ S}, (5.6)

where S a set in an Euclidean space, and θ 7→ f(θ | φ) is a density for each
value of the hyperparameter vector φ ∈ S. If the likelihood p(y | θ) admits this
conjugate family, and if the prior p(θ) is f(θ | φ0) with a known value φ0, then
the posterior is of the form

θ 7→ p(θ | y) = f(θ | φ1),

where φ1 ∈ S. In order to find the posterior, we only need to find the value of
the updated hyperparameter vector φ1 = φ1(y).

If the densities f(θ | φ) of the conjugate family have an easily understood
form, then Bayesian inference is simple, provided we can approximate our prior
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knowledge by some member f(θ | φ0) of the conjugate family and provided
we know how to calculate the updated hyperparameters φ1(y). However, nice
conjugate families of the form (5.6) are possible only when the likelihood belongs
to the exponential family, see, e.g., Schervish [5, Ch. 2].

The prior knowledge of the subject matter expert on θ is, unfortunately,
usually rather vague. Transforming the subject matter expert’s prior knowledge
into a prior distribution is called prior elicitation. Supposing we are dealing
with a scalar parameter, the expert might only have a feeling for the order of
magnitude of the parameter, or might be able to say, which values would be
surprisingly small or surprisingly large for the parameter. One approach for
constructing the prior would then be to select from the family (5.6) some prior,
which satisfies those kind of prior summaries.

As an example of conjugate analysis, consider the binomial likelihood (5.1)
corresponding to sample size n and success probability θ. Recall that the beta
density with (hyper)parameters a, b > 0 is given by

Be(θ | a, b) =
1

B(a, b)
θa−1(1− θ)b−1, 0 < θ < 1.

Suppose that the parameter θ has the beta prior Be(a, b) with known hyperpa-
rameters a and b. Then

p(θ | y) ∝ p(y | θ) p(θ)
∝ θs (1− θ)n−s θa−1 (1− θ)b−1

∝ Be(θ | a+ s, b+ n− s), 0 < θ < 1.

Therefore we claim that the posterior is Be(a + s, b + n − s), where s is the
number of successes (and n− s is the number of failures). Notice the following
points.

• We developed the posterior density, as a function of the parameter θ,
dropping any constants (i.e., factors not involving θ).

• It is important to keep in mind, which is the variable we are interested in
and what are the other variables, whose functions we treat as constants.
The variable of interest is the one whose posterior distribution we want to
calculate.

• We finished the calculation by recognizing that the posterior has a familiar
functional form. In the present example we obtained a beta density except
that it did not have the right normalizing constant. However, the only
probability density on 0 < θ < 1 having the derived functional form is the
beta density Be(θ | a+s, b+n−s), and therefore the posterior distribution
is this beta distribution.

• In more detail: from our calculations, we know that the posterior has the
unnormalized density θa+s−1(1− θ)b+n−s−1 on 0 < θ < 1. Since we know
that the posterior density is a density on (0, 1), we can find the normalizing
constant by integration:

p(θ | y) =
1
c(y)

θa+s−1(1− θ)b+n−s−1, 0 < θ < 1,

60



January 15, 2010

where

c(y) =
∫ 1

0

θa+s−1(1− θ)b+n−s−1 dθ = B(a+ s, b+ n− s),

where the last step is immediate, since the integral is the normalizing
constant of the beta density Be(θ | a1, b1), where a1 = a + s and b1 =
b+ n− s. Therefore

p(θ | y) = Be(θ | a+ s, b+ n− s).

• As soon as we have recognized the functional form of the posterior, we
have recognized the posterior distribution.

5.3 More examples of conjugate analysis

5.3.1 Poisson likelihood and gamma prior

Suppose that
Yi | θ

i.i.d.∼ Poi(θ), i = 1, . . . , n,

which is shorthand notation for the statement that the RVs Yi, i = 1, . . . , n are
independently Poisson distributed with parameter θ. Then

p(yi | θ) =
1
yi!

θyi e−θ, yi = 0, 1, 2, . . .

and the likelihood is given by

p(y | θ) =
n∏

i=1

p(yi | θ) ∝ θ
∑n

1 yi e−nθ.

The likelihood has the functional form of a gamma density. If the prior for θ is
the gamma distribution Gam(a, b) with known hyperparameters a, b > 0, i.e., if

p(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0,

then

p(θ | y) ∝ p(y | θ) p(θ)
∝ θ

∑n
1 yie−nθθa−1e−bθ

∝ θa+
∑n

1 yi−1 e−θ(b+n), θ > 0

and from this we recognize that the posterior is the gamma distribution

Gam(a+
n∑
1

yi, b+ n).
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5.3.2 Exponential likelihood and gamma prior

Suppose that

Yi | θ
i.i.d.∼ Exp(θ), i = 1, . . . , n

Θ ∼ Gam(a, b),

where a, b > 0 are known constants. Then

p(yi | θ) = θ e−θyi , yi > 0,

and the likelihood is

p(y | θ) =
n∏

i=1

p(yi | θ) = θn exp(−θ
n∑

i=1

yi).

We obtain Gam(a+ n, b+
∑
yi) as the posterior.

5.4 Conjugate analysis for normal observations

5.4.1 Normal likelihood when the variance is known

Suppose that we have one normally distributed observation Y ∼ N(θ, τ2), where
the mean θ is unknown but the variance τ2 is a known value. Then

p(y | θ) =
1

τ
√

2π
exp

(
−1

2
(y − θ)2

τ2

)
.

Suppose that the prior is N(µ0, σ
2
0) with known constants µ0 and σ2

0 . Then the
posterior is

p(θ | y) ∝ p(y | θ) p(θ)

∝ exp
(
− 1

2τ2
(y − θ)2 − 1

2σ2
0

(θ − µ0)2
)

= exp(L(θ)),

where L(θ) is a second degree polynomial in θ, and the coefficient of θ2 in L(θ)
is negative. Therefore the posterior is a normal distribution, but we need to
calculate its mean µ1 and variance σ2

1 .
Developing the density N(θ | µ1, σ

2
1) as a function of θ, we obtain

N(θ | µ1, σ
2
1) =

1
σ1

√
2π

exp
(
−1

2
(θ − µ1)2

σ2
1

)
∝ exp

(
−1

2
1
σ2

1

θ2 +
µ1

σ2
1

θ

)
Next, we equate the coefficients of θ2 and θ, firstly, in L(θ) and, secondly, in
the previous formula to find out that we have

p(θ | y) = N(θ | µ1, σ
2
1),

where
1
σ2

1

=
1
τ2

+
1
σ2

0

,
µ1

σ2
1

=
y

τ2
+
µ0

σ2
0

, (5.7)
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from which we can solve first σ2
1 and then µ1.

In Bayesian inference it is often convenient to parametrize the normal distri-
bution by its mean and precision, where precision is defined as the reciprocal of
the variance. We have just shown that the posterior precision equals the prior
precision plus the datum precision.

If we have n independent observations Yi ∼ N(θ, τ2) with a known variance,
then it is a simple matter to show that

ȳ =
1
n

n∑
i=1

yi

is a sufficient statistic. In this case we know the distribution of the corresponding
RV Ȳ conditionally on θ,

[Ȳ | θ] ∼ N(θ,
τ2

n
),

From these two facts we get immediately the posterior distribution from (5.7),
when the prior is again N(µ0, σ

2
0). (Alternatively, we may simply multiply the

likelihood with the prior density, and examine the resulting expression.)

5.4.2 Normal likelihood when the mean is known

Suppose that the RVs Yi are independently normally distributed,

Yi | θ
i.i.d.∼ N(µ,

1
θ
), i = 1, . . . , n

where the mean µ is known but the variance 1/θ is unknown. Notice that
we parametrize the sampling distribution using the precision θ instead of the
variance 1/θ. Then

p(yi | θ) =

√
θ√
2π

exp
(
−1

2
θ(yi − µ)2

)
,

and the likelihood is

p(y | θ) ∝ θn/2 exp

(
−1

2

n∑
i=1

(yi − µ)2θ

)
.

If the prior is Gam(a, b), then the posterior is evidently

Gam(a+
n

2
, b+

1
2

n∑
i=1

(yi − µ)2).

The previous result can be expressed also in terms of the variance φ = 1/θ.
The variance has what is known as the inverse gamma distribution with density

Gam(
1
φ
| a1, b1)

1
φ2
, φ > 0,

where a1 and b1 are the just obtained updated parameters, as can be established
by the change of variable φ = 1/θ in the posterior density. The inverse gamma
distribution is also called the scaled inverse chi-square distribution, using a
certain other convention for the parametrization.
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5.4.3 Normal likelihood when the mean and the variance
are unknown

Suppose that the RVs Yi are independently normally distributed with unknown
mean φ and unknown precision τ ,

[Yi | φ, τ ]
i.i.d.∼ N(φ,

1
τ

), i = 1, . . . , n.

In this case the likelihood for θ = (φ, τ) is conjugate for the prior of the form

p(φ, τ | a0, b0, µ0, n0) = Gam(τ | a0, b0)N(φ | µ0,
1
n0τ

).

Notice that the precision and the mean are dependent in this prior. This kind
of a dependent prior may be natural in some problems but less natural in some
other problems.

Often the interest centers on the mean φ while the precision τ is regarded as a
nuisance parameter. The marginal posterior of φ (i.e., the marginal distribution
of φ in the joint posterior) is obtained from the joint posterior by integrating
out the nuisance parameter,

p(φ | y) =
∫
p(φ, τ | y) dτ.

In the present case, this integral can be solved analytically, and the marginal
posterior of φ can be shown to be a t-distribution.

5.4.4 Multivariate normal likelihood

When dealing with the multivariate instead of the univariate normal distribu-
tion, it is even more convenient to parametrize the normal distribution using the
precision matrix, which is defined as the inverse of the covariance matrix, which
we assume to be non-singular. Like the covariance matrix, also the precision
matrix is a symmetric and and positive definite matrix.

The density of the multivariate normal Nd(µ,Q−1) with mean µ and preci-
sion matrix Q (i.e., of Nd(µ,Σ), where the covariance matrix Σ = Q−1) is then
given by

Nd(x | µ,Q−1) = (2π)−d/2(detQ)1/2 exp
(
−1

2
(x− µ)TQ(x− µ)

)
where d is the dimensionality of x. Expanding the quadratic form, we get

(x− µ)TQ(x− µ) = xTQx− xTQµ− µTQx+ µTQµ

Now, the precision matrix is symmetric, and a scalar equal its transpose, so

µTQx = (µTQx)T = xTQTµ = xTQµ.

Therefore, as a function of x,

Nd(x | µ,Q−1) ∝ exp
(
−1

2
(xTQx− 2xTQµ)

)
. (5.8)
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Suppose that we have a single multivariate observation Y ∼ N(θ,R−1),
where the prior precision matrix R is known and suppose that the prior for the
parameter vector θ is the normal distribution N(µ0, Q

−1
0 ) with known hyper-

parameters µ0 and Q0. Then

p(y | θ) ∝ exp
(
−1

2
(y − θ)TR(y − θ)

)
.

The prior is

p(θ) ∝ exp
(
−1

2
(θ − µ0)TQ0(θ − µ0)

)
.

The posterior is proportional to their product,

p(θ | y) ∝ exp
(
−1

2
(θ − y)TR(θ − y)− 1

2
(θ − µ0)TQ0(θ − µ0).

)
Here we have

(θ − y)TR(θ − y) + (θ − µ0)TQ0(θ − µ0)

= θTRθ − 2θTRy + yTRy + θTQ0θ − 2θTQ0µ0 + µT
0 Rµ0

= θT (R+Q0)θ − 2θT (Ry +Q0µ0) + c,

where the scalar c does not depend on θ. Comparing this result with (5.8), we
see that the posterior is the multivariate normal Nd(µ1, Q

−1
1 ), where

Q1 = Q0 +R, Q1 µ1 = Q0 µ0 +Ry. (5.9)

Again, posterior precision equals the prior precision plus the datum precision.
As in the univariate case, this result can be extended to several (condi-

tionally) independent observations, and also to the case where both the mean
vector and the precision matrix are (partially) unknown, when we employ an
appropriate conjugate prior.

5.5 Conditional conjugacy

In multiparameter problems it may be difficult or impossible to use conjugate
priors. However, some benefits of conjugate families can be retained, if one has
conditional conjugacy in the Bayesian statistical model.

Suppose we have parameter vector θ, which we partition as θ = (φ, ψ), where
the components φ and ψ are not necessarily scalars. The the full conditional
(density) of φ in the prior distribution is defined as

p(φ | ψ),

and the full conditional (density) of of φ in the posterior is defined as

p(φ | ψ, y).

Then φ exhibits conditional conjugacy, if the full conditional of φ in the prior
and and in the posterior belong to the same family of distributions.
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In practice, one notices the conditional conjugacy of φ as follows. The prior
full conditional of φ is

p(φ | ψ) ∝ p(φ, ψ),

when we regard the joint prior as a function of φ. Similarly, the posterior full
conditional of φ is

p(φ | ψ, y) ∝ p(φ, ψ, y) = p(φ, ψ) p(y | φ, ψ),

when we regard the joint distribution p(φ, ψ, y) as a function of φ. If we rec-
ognize the functional forms of the prior full conditional and the posterior full
conditional, then we have conditional conjugacy.

If we partition the parameter vector into k components, θ = (θ1, . . . , θk)
(which are not necessarily scalars), then sometimes all the components are con-
ditionally conjugate. In other cases, only some of the components turn out to
be conditionally conjugate.

5.6 Reparametrization

Suppose that we have formulated a Bayesian statistical model in terms of a
parameter vector θ with a continuous distribution, but then want to reformu-
late it in terms of a new parameter vector φ, where there is a diffeomorphic
correspondence between θ and φ. I.e., the correspondence

φ = g(θ) ⇔ θ = h(φ)

is one-to-one and continuously differentiable in both directions. What happens
to the prior, likelihood and the posterior under such a reparametrization?

We get the prior of φ using the change of variables formula for densities:

fΦ(φ) = fΘ(θ)
∣∣∣∣ ∂θ∂φ

∣∣∣∣ = fΘ(h(φ)) |Jh(φ)|.

If we know φ then we also know θ = h(φ). Therefore the likelihood stays
the same in that

fY |Φ(y | φ) = fY |Θ(y | h(φ)).

Finally, the posterior density changes in the same way as the prior density
(by the change of variables formula), i.e.,

fΦ|Y (φ | y) = fΘ|Y (θ | y)
∣∣∣∣ ∂θ∂φ

∣∣∣∣ = fΘ|Y (h(φ) | y) |Jh(φ)|.

5.7 Improper priors

Sometimes one specifies a prior by stating that

p(θ) ∝ h(θ),

where h(θ) is a non-negative function, whose integral is infinite∫
h(θ) dθ =∞.
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Then there does not exist a constant of proportionality that will allow p(θ) to
be a proper density, i.e., to integrate to one. In that case we have an improper
prior. Notice that this is different from expressing the prior by the means of
an unnormalized density h, which can be normalized to be a proper density.
Sometimes we get a proper posterior, if we multiply an improper prior with the
likelihood and then normalize.

For example, consider one normally distributed observation Y ∼ N(θ, τ2)
with a known variance τ2, and take

p(θ) ∝ 1, θ ∈ R .

This prior is intended to represent complete prior ignorance about the unknown
mean: all possible values are deemed equally likely. Calculating formally,

p(θ | y) ∝ p(y | θ) p(θ) ∝ exp
(
− 1

2τ2
(y − θ)2

)
∝ N(θ | y, τ2)

We obtain the same result in the limit, if we take N(µ0, σ
2
0) as the prior and

then let the prior variance σ2
0 go to infinity.

One often uses improper priors in a location-scale model, with a location
parameter µ and a scale parameter σ. Then it is conventional to take the prior
of the location parameter to be uniform and to let the logarithm of the scale
parameter σ have a uniform distribution and to take them to be independent
in their improper prior. This translates to an improper prior of the form

p(µ, σ) ∝ 1
σ
, µ ∈ R, σ > 0 (5.10)

by using (formally) the change of variables formula,

p(σ) = p(τ)
∣∣∣∣dτdσ

∣∣∣∣ ∝ 1
σ
,

when τ = log σ and p(τ) ∝ 1.
Some people use the so called Jeffreys’ prior, which is designed to have a

form which is invariant with respect to one-to-one reparametrizations. Also
this leads typically to an improper prior. There are also other processes which
attempt produce non-informative priors, which often turn out to be improper.
(A prior is called non-informative, vague, diffuse or flat, if it plays a minimal
role in the posterior distribution.)

Whereas the posterior derived from a proper prior is automatically proper,
the posterior derived from an improper prior can be either proper or improper.
Notice, however, that an improper posterior does not make any sense.
If you do use an improper prior, it is your duty to check that the posterior is
proper.

5.8 Summarizing the posterior

The posterior distribution gives a complete description of the uncertainty con-
cerning the parameter after the data has been observed. If we use conjugate
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analysis inside a well-understood conjugate family, then we need only report
the hyperparameters of the posterior. E.g., if the posterior is a multivariate
normal (and the dimensionality is low) then the best summary is to give the
mean and the covariance matrix of the posterior. However, in more complicated
situations the functional form of the posterior may be so opaque that we need
to summarize the posterior.

If we have a univariate parameter, then the best description of the posterior
is the plot of its density function. Additionally, we might want to calculate such
summaries as the posterior mean the posterior variance, the posterior mode, the
posterior median, and other selected posterior quantiles. If we cannot plot the
density, but are able to simulate from the posterior, we can plot the histogram
and calculate summaries (mean, variance, quantiles) from the simulated sample.

If we have a two-dimensional parameter, then we can still make contour
plots or perspective plots of the density, but in higher dimensions such plots
are not possible. One practical approach in a multiparameter situation is to
summarize the one-dimensional marginal posteriors of the scalar components of
the parameter.

Suppose that (after a rearrangement of the components) θ = (φ, ψ), where
φ is the scalar component of interest. Then the marginal posterior of φ is

p(φ | y) =
∫
p(φ, ψ | y) dψ

The indicated integration may be very difficult to perform analytically. How-
ever, if one has available a sample

(φ1, ψ1), (φ2, ψ2), ..., (φN , ψN )

from the posterior of θ = (φ, ψ), then φ1, φ2, . . . , φN is a sample from the
marginal posterior of φ. Hence we can summarize the marginal posterior of
φ based on the sample φ1, . . . , φN .

5.9 Posterior intervals

One conventional summary of a univariate posterior is a 100(1−α)% posterior
interval of the scalar parameter θ, which is any interval C in the parameter
space such that

P (Θ ∈ C | Y = y) =
∫

C

p(θ | y) dθ = 1− α. (5.11)

Some authors call such intervals credible intervals (or credibility intervals)
and others may call them Bayesian confidence intervals.

The posterior intervals have the direct probabilistic interpretation (5.11).
In contrast, the confidence intervals of frequentist statistics have probability
interpretations only with reference to (hypothetical) sampling of the data under
identical conditions.

Within the frequentist framework, the parameter is an unknown determinis-
tic quantity. A frequentist confidence interval either covers or does not cover the
true parameter value. A frequentist statistician constructs a frequentist confi-
dence interval at significance level α100% in such a way that if it were possible
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to sample repeatedly the data under identical conditions (i.e., using the same
value for the parameter), then the relative frequency of coverage in a long run
of repetitions would be about 1 − α. But for the data at hand, the calculated
frequentist confidence interval still either covers or does not cover the true pa-
rameter value, and we do not have guarantees for anything more. Many naive
users of statistics (and even some textbook authors) mistakenly believe that
their frequentist confidence intervals have the simple probability interpretation
belonging to posterior intervals.

The coverage requirement (5.11) does not by itself determine any interval in
the parameter space but needs to be supplemented by other criteria. In practice
it is easiest to use the equal tail interval (or central interval), whose end points
are selected so that α/2 of the posterior probability lies to the left and α/2 to
the right of the intervals. If q is the quantile function of the posterior, then the
equal tail posterior interval is given by

[q(α/2), q(1− α/2)]. (5.12)

If the quantile function is not available, but one has available a sample θ1, . . . , θN

from the posterior, then one can use the empirical quantiles calculated from the
sample.

Many authors recommend the highest posterior density (HPD) region,
which is defined as the set

Ct = {θ : fΘ|Y (θ | y) ≥ t},

where the threshold t has to be selected so that

P (Θ ∈ Ct) = 1− α.

Often (but not always) the HPD region turns out to be an interval. Then it
can proven to be the shortest interval with the desired coverage 100(1− α)%.
However, calculating a HPD interval is more difficult than calculating an equal
tail interval.

In a multiparameter situation one usually examines one parameter at a time.
Let φ be the scalar parameter of interest in θ = (φ, ψ), and suppose that we
have available a sample

(φ1, ψ1), (φ2, ψ2), ..., (φN , ψN )

from the posterior. Then φ1, φ2, . . . , φN is a sample from the marginal posterior
of φ. Hence the central marginal posterior interval of φ can be calculated as
in (5.12), when q is the empirical quantile function based on φ1, . . . , φN .

5.10 Literature

See, e.g., Bernardo and Smith [1] for further results on conjugate analysis. The
books by Gelman et al. [3], Carlin and Louis [2] and O’Hagan and Forster [4]
are rich sources of ideas on Bayesian modeling and analysis. Sufficiency is a
central concept in parametric statistics. See, e.g., Schervish [5] for a discussion.
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Appendix A

Probability distributions

This appendix contains a summary of certain common distributions. Each dis-
tribution has a symbol, and depends on a number of parameters. We use the
symbol of the distribution to denote its probability mass function (pmf) or
probability density function (pdf) writing the argument on the left-hand side of
the vertical bar, and the parameters on its right-hand side. For instance, the
binomial distribution with sample size parameter n and probability parameter
p is denoted Bin(n, p), and its pmf at argument x is denoted Bin(x | n, p). The
normal distribution with mean µ and variance σ2 is denoted N(µ, σ2), and its
pdf at x is denoted by N(x | µ, σ2). Notice that different authors and different
computing environments use different parametrizations for the distributions.
We illustrate the distributions using the R language.

A.1 Probability distributions in the R language

R is an open-source general purpose statistical package, where one uses the R
language. It is very handy for experimenting with various distributions.

The R language has available facilities for calculating the density function,
the distribution function, the quantile function and for simulating the distri-
bution for a wide variety of univariate distributions. For a discrete distribu-
tion, density function means the probability mass function. The values of the
functions are calculated by calling functions, which all have the same naming
conventions. Each built-in distribution of the R language has an R name, which
is an abbreviation of the name of the distribution. For each R name name, there
are four functions:

• dname calculates the density,

• pname calculates the distribution function,

• qname calculates the quantile function,

• rname simulates the distribution.

E.g., the univariate normal distribution has the R name norm, so R has the
functions dnorm, pnorm, qnorm and rnorm. For the uniform distribution on an
interval, the R name is unif and R has the functions dunif, punif, qunif and
runif, and so on for other distributions.
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The R names for some standard univariate discrete distributions are

binom, nbinom, pois, geom, hyper.

The R names for some standard univariate continuous distributions are

unif, norm, lnorm, chisq, t, f, exp, gamma, weibull, cauchy, beta.

You can read the documentation of the functions, e.g., by giving the command
?dname, where name is the R name of the distribution. The you can find out
how R parametrizes the distributions. In R, the parameters of functions can
have default values, and you do not need to give those function parameters,
whose default values are what you want.

A.2 Gamma and beta functions

Gamma and beta functions are special functions which are needed for the nor-
malizing constants of some of the standard distributions.

Gamma function can be defined by the integral

Γ(z) =
∫ ∞

0

xz−1e−x dx, z > 0.

It satisifies the functional equation

Γ(z + 1) = z Γ(z), for all z > 0,

and besides Γ(1) = 1, from which it follows that

Γ(n) = (n− 1)!, when n = 1, 2, 3, . . . .

Therefore the gamma function is a generalization of the factorial. The
value of, Γ(z) for half-integer arguments can be calculated using its func-
tional equation and the value Γ( 1

2 ) =
√
π.

Evaluating Γ(z) with R:
gamma(z)

Evaluating ln(Γ(z)) with R:

lgamma(z)

Beta function can be defined by the integral

B(a, b) =
∫ 1

0

ua−1(1− u)b−1 du, a, b > 0.

It has the following connection with the gamma function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

Evaluating B(a, b) with R:
beta(a, b)

Evaluating ln(B(a, b)) with R:

lbeta(a, b)
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A.3 Univariate discrete distributions

Binomial distribution Bin(n, p), n positive integer, 0 ≤ p ≤ 1, has pmf

Bin(x | n, p) =
(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

Evaluating Bin(x | n, p) and simulating k independent draws from Bin(n, p):

dbinom(x, n, p)
rbinom(k, n, p)

Geometric distribution Geom(p) with probability parameter 0 < p < 1 has
pmf

Geom(x | p) = p (1− p)x, x = 0, 1, 2, . . .

Evaluating Geom(x | p) and simulating n independent draws from Geom(p):

dgeom(x, p)
rgeom(n, p)

Negative binomial distribution NegBin(r, p) with “size” parameter r > 0 and
probability parameter 0 < p < 1 has pmf

NegBin(x | r, p) =
Γ(r + x)
Γ(r)x!

pr (1− p)x, x = 0, 1, 2, . . .

Evaluating NegBin(x | r, p) and simulating n independent draws from
NegBin(r, p):

dnbinom(x, r, p)
rnbinom(n, r, p)

Geometric distribution Geom(p) is the same as NegBin(1, p).

Poisson distribution Poi(θ) with parameter θ > 0 has pmf

Poi(x | θ) = e−θ θ
x

x!
, x = 0, 1, 2, . . .

Evaluating Poi(x | θ) and simulating n independent draws from Poi(θ):

dpois(x, theta)
rpois(n, theta)

A.4 Univariate continuous distributions

Beta distribution Be(a, b) with parameters a > 0, b > 0 has pdf

Be(x | a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1.

B(a, b) is the beta function with arguments a and b. Evaluating Be(x | a, b)
and simulating n independent draws from Be(a, b):

dbeta(x, a, b)
rbeta(n, a, b)
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Cauchy distribution Cau(µ, σ) with location parameter µ and scale parameter
σ > 0 has the pdf

Cau(x | µ, σ) =
1

σπ
(
1 + (x−µ)2

σ2

) .
Cauchy distribution is the same as the t distribution with one degree of
freedom. Evaluating Cau(x | µ, σ) and simulating n independent draws
from Cau(µ, σ):

dcauchy(x, mu, sigma)
rcauchy(n, mu, sigma)

Chi squared distribution χ2
ν with ν > 0 degrees of freedom is the same as the

gamma distribution

Gam(
ν

2
,
1
2
).

The R name is chisq.

Exponential distribution Exp(λ) with rate λ > 0 has pdf

Exp(x | λ) = λ e−λx, x > 0.

Evaluating Exp(x | λ) and simulating n independent draws from Exp(λ):

dexp(x, lambda)
rexp(n, lambda)

Gamma distribution Gam(a, b) with parameters a > 0, b > 0 has pdf

Gam(x | a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

Γ(a) is the gamma function. Evaluating Gam(x | a, b) and simulating n
independent draws from Gam(a, b):

dgamma(x, a, b)
rgamma(n, a, b)

Generalized gamma distribution with parameters a, b > 0 and r 6= 0 has pdf

f(x | a, b, r) =
rb

Γ(a)
(bx)ra−1 exp(−(bx)r), x > 0.

This is the distribution of X = Y 1/r/b when Y ∼ Gam(a, 1). (Here
Y = (bX)r.)

Normal distribution N(µ, σ2) with mean µ and variance σ2 > 0 has pdf

N(x | µ, σ2) =
1

σ
√

2π
exp

(
−1

2
(x− µ)2

σ2

)
.
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Notice that R parametrizes the normal distribution by the mean and the
standard deviation (square root of variance). Evaluating N(x | µ, σ2) and
simulating n independent draws from N(µ, σ2):

dnorm(x, mu, sigma)
rnorm(n, mu, sigma)

Student’s t distribution t(ν, µ, σ) with ν > 0 degrees of freedom, location µ
and scale parameter σ > 0 has pdf

t(x | ν, µ, σ) =
Γ((ν + 1)/2)
σ
√
πν Γ(ν/2)

(
1 +

1
ν

(x− µ)2

σ2

)−(ν+1)/2

.

t(ν) or tν is short for t(ν, 0, 1). Evaluating t(x | ν) = t(x | ν, 0, 1) in R:

dt(x, nu)

Evaluating t(x | ν, µ, σ) and simulating n independent draws from t(ν, µ, σ):

dt((x− mu)/sigma, nu)/sigma
mu + sigma ∗ rt(n, nu)

Representation as a scale mixture of normals: if ν > 0 and Y ∼ Gam(ν/2, ν/2)
and [X | Y = y] ∼ N(0, 1/y), then X ∼ t(ν).

Uniform distribution Uni(a, b) on the interval (a, b), where a < b, has pdf

Uni(x | a, b) =
1

b− a
, a < x < b.

Evaluating Uni(x | a, b) and simulating n independent draws from Uni(a, b):

dunif(x, a, b)
runif(n, a, b)

Weibull distribution Weib(α, σ) with shape parameter α > 0 and scale param-
eter β > 0 has pdf

Weib(x | α, β) =
α

β

(
x

β

)α−1

exp
(
−
(
x

β

)α)
, x > 0.

Evaluating Weib(x | α, β) and simulating n independent draws from Weib(α, β):

dweibull(x, alpha, beta)
rweibull(n, alpha, beta)

A.5 Multivariate discrete distributions

Multinomial distribution Mult(n, (p1, p2, . . . , pk)) with sample size n and prob-
ability vector parameter (p1, . . . , pk) has pmf

Mult(x1, . . . , xk | n, (p1, . . . , pk)) =
n!∏k

i=1 xi!

k∏
j=1

p
xj

j ,
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when x1, . . . , xk ≥ 0 are integers summing to n (and the pmf is zero
otherwise). Evaluating Mult(x1, . . . , xk | n, (p1, . . . , pk)) in R, when x is a
k-vector containing the components xi and p is a k-vector containing the
components pi (p need not be normalized):

dmultinom(x, n, p)

Simulating m independent draws from the distribution: the call

rmultinom(m, n, p)

returns a k ×m matrix whose column vectors are the simulated draws.

A.6 Multivariate continuous distributions

Multivariate normal distribution (in d dimensions), Nd(µ,Σ) with mean vec-
tor µ ∈ Rd and covariance matrix Σ (a symmetric, positive definite d× d
matrix) has pdf

Nd(x | µ,Σ) = (2π)−d/2(detΣ)−1/2 exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

In terms of the mean vector and the precision matrix Q = Σ−1, the pdf
is given by

Nd(x | µ,Q−1) = (2π)−d/2(detQ)1/2 exp
(
−1

2
(x− µ)TQ(x− µ)

)
.

Evaluating Nd(x | µ,Σ) in R using the library mnormt (which may have
to be installed first):

library(mnormt)
dmnorm(x, mu, Sigma)

Above, x may be a matrix and then the x-vectors have to be given as row
vectors of the matrix. Simulating n independent draws from Nd(µ,Σ):
the call

rmnorm(n, mu, Sigma)

returns a n× d matrix whose row vectors are the simulated draws (using
the library mnormt). Alternatively, the draws can be simulated with the
function mvrnorm from library MASS. It is also possible to compute the
Cholesky factor of the covariance matrix first and then produce simula-
tions using d independent draws form the univariate standard normal.

Multivariate t distribution (in d dimensions), td(ν, µ,Σ) with ν > 0 degrees
of freedom, location parameter µ ∈ Rd and dispersion parameter Σ (a
symmetric, positive definite d× d matrix) has pdf

td(x | ν, µ,Σ) =
Γ((ν + d)/2)

νd/2 πd/2 Γ(ν/2)
(detΣ)−1/2

(
1 +

1
ν

(x− µ)T Σ−1(x− µ)
)−(ν+d)/2
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Evaluating td(x | ν, µ,Σ) in R using the library mnormt (which may have
to be installed first):

library(mnormt)
dmt(x, nu, mu, Sigma)

Above, x may be a matrix and then the x-vectors have to be given as row
vectors of the matrix. Simulating n independent draws from td(ν, µ,Σ):
the function

rmt(n, nu, mu, Sigma)

returns a n× d matrix whose row vectors are the simulated draws (using
the library mnormt).

Multivariate t can also be simulated using the mixture representation

X | Y ∼ N(µ,
1
Y

Σ), where Y ∼ Gam(ν/2, ν/2).

A.7 Simulating the general discrete distribution
with a finite range

Suppose w = (w1, w2, . . . , wk) is a vector of nonnegative numbers stored in
the variable w. Then one can simulate an i.i.d. sample of size n from the
corresponding pmf with probabilities

pi =
wi∑k

j=1 wj

, i = 1, . . . , k

with the following call

x <- sample(1:k, size = n, prob = w, replace = TRUE)

See the documentation of sample for the details. Notice that the default value
of the argument replace is FALSE, and this corresponds to sampling without
replacement. Now we want an i.i.d. sample, and this is obtained with replace
= TRUE. In the following example we draw a sample and calculate and plot both
the relative frequencies and the pmf we started from.

n <- 100
w <- c(2, 3, 5)
x <- sample(1:3, size = n, prob = w, replace = TRUE)
# calculate frequencies:
table(x)
# Plot the pmf
plot(1:3, w / sum(w), type = ’h’, ylim = c(0, 1))
# Plot relative frequencies in the sample:
plot(table(x) / n, type = ’h’, ylim = c(0, 1))
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A.8 Combining the histogram and the pdf

If have a sample from some known continuous distribution, then we can plot both
the histogram of the sample and the pdf of the distribution in the same figure.
In order to have a meaningful comparison between the two results, it is necessary
to use a version of the histogram which is normalized to have total area of one
(probability density histogram), instead of the ordinary frequency histogram.
The R function hist with argument freq = FALSE plots a probability density
histogram. Also the truehist function of the MASS library does the same. In
the following example we draw a histogram of values simulated from the N(0, 1)
distribution and plot the pdf of the distribution in the same figure. We set the
axis limits in the call of hist so that both plots fit nicely in the same figure.
Finding proper axis limits may require trial and error.

n <- 100
x <- rnorm(n) # the default values correspond to N(0, 1)
hist(x, freq = FALSE, xlim = c(-4, 4), ylim = c(0, 0.5))
# Add the graph of the N(0, 1) density drawn in red:
t <- seq(-4, 4, len = 401)
lines(t, dnorm(t), col = ’red’)
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