Hypercomplex numbers

Johanna Rämö
Queen Mary, University of London
Goldsmiths' Company Mathematics Course for Teachers
22.7.2010

A family of number systems

- Real numbers
- Complex numbers
- Quaternions
- Octonions

History of complex numbers

- Italy in the 16 th century
- Discovered when looking for a general solution to cubic equations

$$
x^{3}+a x^{2}+b x+c=0
$$

- Geometrical interpretation in the 19th century

Real numbers

- Addition: $a+b$
- Subtraction: $a-b$
- Multiplication: $a \cdot b$
- Division: a / b
- Length (or norm): $|a|=\sqrt{a^{2}}$

Complex numbers

- $a+b i$, where $i=\sqrt{-1}$
- Addition: $(a+b i)+(c+d i)=(a+c)+(b+d) i$
- Subtraction: $(a+b i)-(c+d i)=(a-c)+(b-c) i$
- Multiplication: $(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i$
- Division:

$$
\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{-a d+b c}{c^{2}+d^{2}} i
$$

Complex numbers

- Length:

$$
|a+b i|=\sqrt{a^{2}+b^{2}}
$$

- Complex conjugate:

$$
\overline{a+b i}=a-b i
$$

- Division:

$$
\frac{a+b i}{c+d i}=\frac{1}{|c+d i|^{2}} \cdot(a+b i) \cdot(\overline{c+d i}) .
$$

Complex numbers

- Can be written as pairs of real numbers: (a, b)
- Two dimensional space \mathbb{R}^{2}
- Addition: $(a, b)+(c, d)=(a+c, b+d)$
- Multiplication: $(a, b) \cdot(c, d)=(a c-b d, b c+a d)$
- You can multiply and divide vectors!
\nleftarrow

How to define multiplication?

- Would $(a, b) \cdot(c, d)=(a c, b d)$ work?

How to define multiplication?

- Multiplication: $(a, b) \cdot(c, d)=(a c, b d)$
- Division: $\frac{(a, b)}{(c, d)}=\left(\frac{a}{c}, \frac{b}{d}\right)$
- But now $\frac{(2,1)}{(1,0)}=\left(\frac{2}{1}, \frac{1}{0}\right)$.

Higher dimensions

- Real numbers - 1-dimensional number system
- Complex numbers - 2-dimensional number system
- Is there a 3-dimensional number system that has the same nice properties?
- Can you multiply and divide triples?
- Hamilton in 1843 Dublin

Higher dimensions

- It is impossible to divide triples.
- One needs four dimensions!

Quaternions \mathbb{H}

- Three square roots of -1 : i, j, k
- $a+b i+c j+d k$, where a, b, c, d are real numbers
- 4-dimensional: (a, b, c, d)

Quaternions \mathbb{H}

- Addition:

$$
\begin{aligned}
& (a+b i+c j+d k)+\left(a^{\prime}+b^{\prime} i+c^{\prime} j+d^{\prime} k\right) \\
& =\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i+\left(c+c^{\prime}\right) j+\left(d+d^{\prime}\right) k
\end{aligned}
$$

- Length:

$$
|a+b i+c j+d k|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

- Conjugation:

$$
\overline{a+b i+c j+d k}=a-b i-c j-d k
$$

Quaternion multiplication

- Multiplication: $i j=k, j k=i, k i=j, j i=-k, j k=-i, i k=-j$
- Division:

$$
\frac{x}{y}=\frac{1}{|x|^{2}} \cdot x \cdot \bar{y}
$$

Quaternion multiplication

Quaternion multiplication

- $(1+j) \cdot(-2+k)$
- $(3-2 i+2 j) \cdot(1+i-4 j+k)$

Quaternion multiplication

- Quaternion multiplication is not commutative: $i j \neq j i$.

What do we have this far?

- Real numbers - 1-dimensional
- Complex numbers - 2-dimensional
- Quaternions - 4-dimensional

Higher dimensions

- Is thre a 8-dimensional number system that has the same nice properties?
- Hamilton's friend Graves in 1843

Octonions \mathbb{O}

- Seven square roots of -1 : $i_{0}, i_{1} \ldots, i_{6}$
- $a+a_{0} i_{0}+\cdots+a_{6} i_{6}$, where a, a_{0}, \ldots, a_{6} are real numbers
- 8-dimensional: $\left(a, a_{0}, \ldots, a_{6}\right)$

Octonions \mathbb{O}

- Addition, norm and conjugation as before

Octonion multiplication

Quaternion multiplication

- $\left(1+i_{0}\right) \cdot\left(-2 i_{1}+i_{3}\right)$
- $\left(4+i_{2}-i_{5}\right) \cdot\left(2 i_{0}+i_{2}-3 i_{3}\right)$

Octonion multiplication

- Octonion multiplication is not associative: the place of the brackets matters.
- $\left(i_{0} i_{1}\right) i_{2}=i_{3} i_{2}=-i_{5}$
- $i_{0}\left(i_{1} i_{2}\right)=i_{0} i_{4}=i_{5}$

Higher dimensions

- Real numbers - 1-dimensional
- Complex numbers - 2-dimensional
- Quaternions - 4-dimensional
- Octonions - 8-dimensional
- Is there a 16-dimensional number system that has the same nice properties?

Hurwitz's theorem (1898)

- You can divide only in dimensions 1, 2, 4 and 8.

Hurwitz's theorem

- New number systems can be built from the old ones by doubling them
$-\mathbb{C}=\mathbb{R}+\mathbb{R} i$
$-\mathbb{H}$ from two copies of \mathbb{C}
- (O) from two copies of \mathbb{H}
- The dimensions are doubled too!

Hurwitz's theorem

- If we double octonions, then we get a 16-dimensional number system.
- It is not possible to divide in this number system.

My research

- I am studying structures called Lie algebras, and especially the Lie algebra E_{8}
- Lie algebras are important in theoretical physics, where they can be used in describing interactions between particles.
- E_{8} has 248 dimensions and is quite difficult to handle.
- I have found a new simple construction for E_{8} that uses octonions.

Further reading

- Paul Nahin: An imaginary tale: The story of $\sqrt{-1}$
- John Baez: The octonions (the beginning)
- Helen Joyce: Curious quaternions (Plus magazine)
- Helen Joyce: Ubiquitous octonions (Plus magazine)

