Kombinatoriikka (Combinatorics)

Excercise 4

1. Derive the following version of PIE

$$
\left|\left(A_{1} \cup \cdots \cup A_{n}\right)^{C}\right|=\sum_{I \subseteq[n]}(-1)^{|I|}\left|\bigcap_{i \in I} A_{i}\right|
$$

from the form that was proved in the lectures:

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|+1}\left|\bigcap_{i \in I} A_{i}\right| .
$$

2. 24 students arrive for an excercise group. 9 of the students had a fever over the weekend, 10 were at the beach - as it was hot - and 5 had their exercises destroyed by a pet animal. Among the students with a fever 3 spent the weekend at the beach and 3 had their exercises destroyed by a pet. Among those students who were at the beach 2 had their exercises destroyed by a pet and one of these also had a fever.

How many students did not spend the weekend at the beach, have a fever or have their exercises destroyed by a pet?
3. Let D_{n} be the number of derangements i.e. fixed-point free permutations of the set [n]. Show by combinatorial reasoning that

$$
D_{n}=(n-1)\left(D_{n-2}+D_{n-1}\right),
$$

when $n \geq 2$.
[Hint: if $\pi:[n] \rightarrow[n]$ is a derangement then either $\pi(\pi(n))=n$ or $\pi(\pi(n)) \neq$ n. Count both cases.]
4. Around a round table are $n \geq 6$ chairs. In how many ways can one pick a set of 4 chairs, such that no three of them are adjacent?
5. Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of the finite set A. Let I be a nonempty subset of the index set $[n]$. Let B be the set of points $a \in A$ such that $a \in A_{i}$, when $i \in I$ and $a \notin A_{i}$ when $i \notin I$. Show that

$$
|B|=\sum_{I \subseteq J \subseteq[n]}(-1)^{|J \backslash I|}\left|\bigcap_{i \in J} A_{i}\right| .
$$

[One may use PIE for the proof.]

