Kombinatoriikka (Combinatorics) Excercise 2

In excercises 1-3 use combinatorial reasoning.

1. Show that for all $0 \le b \le a$ one has

$$\binom{a}{b} = \sum_{k=b}^{a} \binom{k-1}{b-1}$$

[Hint: each subset of [a] has a greatest element.]

2. Show that for all $a, b \ge 0, n \le a + b$ one has

$$\binom{a+b}{n} = \sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}$$

3. Show that for all $n \ge 1$ one has

$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$$

4. A meeting is attended by n elegible voters. In how many ways can one form a simple majority (i.e. a set strictly larger than its complement) out of the voters?

5. An (unordered) partition of a set S is a set \mathcal{A} of disjoint subsets of S that cover S i.e. each $s \in S$ is in some $A \in \mathcal{A}$. For example $\{\{1\}, \{2, 4\}, \{3, 5, 6\}\}$ is a partition of the set [6]. The number B_n of partitions of the set [n] is called the *n*:th Bell number B_n . Use combinatorial reasoning to show that the Bell numbers satisfy the following recursion:

$$B_n = \sum_{k=1}^n \binom{n-1}{k-1} B_{n-k}.$$