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1. The inverse conductivity problem
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The conductivity equation

Smooth bounded domain Q ¢ R", n = 2, 3; conductivity coefficient
v eL>(Q), Ct <Re(y) <C,forC > 0.
A voltage potential u in Q generated by Dirichlet data f
o2
V-AVu=0inQ.
f =ulsq

Corresponding Neumann data:
g= 7auu|8Q~
Dirichlet to Neumann map

A, HY2(8Q) — H7Y2(00Q)
f—g.
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Inverse problem

Consider the (non-linear) mapping
Ny = A,
This mapping encodes the direct problem.

The Calderon problem (the inverse conductivity problem):
e Uniqueness: is A injective?
e Reconstruction: how can -y be computed from A,?

Applications include Electrical Impedance Tomography, emerging
technology for medical imaging.
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1980

1987
1987-88

2003
2006
2010

1996
1997

2001
2005

2009

Short and incomplete history

Calderon: Problem posed, uniqueness for linearized problem, and linear, approximate reconstruction
algorithm

3D
Sylvester and Uhimann: Uniqueness for smooth conductivities. Implicit reconstruction algorithm

Novikov, Nachman-Sylvester-Uhlmann, Nachman: Uniqueness for conductivities with 2 derivatives and
explicit high frequency reconstruction algorithm. Multidimensional D-bar equation.

Brown-Torres, Péivarinta-Panchenko-Uhlmann: Uniqueness for conductivities with 3 /2 derivatives.
Cornean-Knudsen-Siltanen: Low frequency reconstruction algorithm
Bikowski-Knudsen-Mueller: Numerical implementation of reconstruction algorithms

2D
Nachman: Uniqueness and reconstruction for W 2P (Q) conductivities.

Brown-Torres: Uniqueness for W 1, p(22) conductivities

Knudsen-Tamasan: Reconstruction for C 1+¢ conductivties
Astala-Péivarinta: Uniqueness and reconstruction for L ©° ()

Knudsen-Lassas-Mueller-Siltanen: Regularized &-method
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Assumptions

Assume throughout that
1. Q and ~ are sufficiently smooth
2. v=1near 9Q
3. yvisextendedto R"\ Qby~y=1
4. In 2D assume ~ is real
Note that 1. and 4. are restrictive, but 2.-3. can be assumed WLOG.
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2. Solution in 2D by the 9-method
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Recall from yesterday the scattering and inverse scattering
transforms

q& S

associated with the system

o po(% 9) o_(0a
e-ov-0 o-(% 2). o= (5 &)

S(k) =~ | ez ka@ms(z.k)du(z)

™

facilitated by the exponentially growing Jost solutions

ety (BE) - 3

|z] =00
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The conductivity equation as a first order system
Let u be a solution to the conductivity equation.
Then (v,w) = 4%/2(du, du) solves in R?

"\)’ & (D -Q)(v,w) =0,

[l
olQ

Q
g%

where

q= —")/_1/28’)/1/2
a:(axl_iaxz)/z, 5:(8)(1448)(2)/2

Consequence for conductivty equation: there is a unique complex
geometrical optics solution ¢

V- ’YVQO(Zv k) =0, e_iZkgo(Zv k) —7|z|—o0=1
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Reconstruction algorithm

Reconstruction is based on the decomposition

Ay S(k) 2 q(7)
Facts

1. S is computable from the boundary measurements A,
2. The second step is facilitated by the inverse scattering transform
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A, —S

From previous lecture

s = = | ez.ka@m(zkduz)

Implies
S(k) = — [ ofe(z,K)ma(z,K))du(2)

™ JR2
=5 o mz(z,Kk)(v1 + ivp)do(z).
In terms of ¢ the formula becomes
_ 1

where ¢ is the complex geometrical optics solution (¢(z,k) ~ e%¥) to
the conductivity equation.
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How to compute ¢|yq?

Let Sk denote the single layer potential with Faddeev’s Green'’s
function Gy for —A :

Sd0) = [ Gelx ~y)i(y)day).
Then ¢|sq is the unique solution to
p(2,k) = % — S (A, — M),
This is a Fredholm equation of the second kind; uniqueness for

homogeneous problem follows from uniugness of Jost solutions
(complex geometrical optics).

‘&-method 13/40



The algorithm

1. Solveforz ¢ 9Q andk € C
o(z,k) = e — S (A — A1),

and compute

Sk)= == [ €A, — A)p(- K)do(z) k € C
2. Could go for g by inverse scattering transform. However, it turns

out that
7(2) = Re(m*(z,k))?
with m* the solution to the g-equation

om™(z,k) = S(—k)e(z, —k)m*(z,k), lim =1.

|k|—o0

Step 1. is severely ill-posed but step 2. is well-posed.
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Regularization of the algorithm

In practice we cut off the spectral scattering data S(k) for k > R. This
is a regularization strategy.

Suppose we measure noisy data /N\W =N\, + £ where
1€ ls(H1/2(50),H-1/2(90)) = €- Then there is a choice of R(e) such that if

we solve
B(z,k) = e™ —S¢ (R, — A)p, K| <R(e)
compute
$( = ¢ [ (R, A3 k)do@), K| <R()
and solve the d-equation with this compactly supported §, then
7(z) — ~(z) for e — 0.

Exact regularization algorithm for a non-linear inverse problem.
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Numerical results

"o
N0

r L

Reconstructions with noiselevel 10~2,10~* and 10~5. Error in
approximation is 52%, 14% and 12% respectively.
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3. Solution to the 3D problem
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Transformation to Schrédinger equation

Suppose u solves
V- -AVu=0in £, Ulga =f.
Thenv = ~~1/2y solves
(A+qv=0inQ  v|pg =~ Y2,
with q = —Ay1/2/4Y2 & (A + g2 = 0.
Dirichlet to Neumann map Aqf = d,v. If v = 1 near 9Q then Aq = A,

The operator (A + q) plays the same role in 3D as (D — Q) in 2D.
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Complex geometrical optics (CGO)

Let ¢ € C2 such that ¢ - ¢ = 0. For sufficiently large ¢ there is a unique
CGO solution to the problem

(A +a)u(x,¢) = 0in R®,
Y(x,¢) ~ eX< for large |x| or |¢].

Lippmann-Schwinger-Faddeev (LSF) equation
D(x,¢) = X< + /Q Ge(x —y)a(y)e(y,Q)dx,  AG¢ =4, G¢~e™<.

Moreover, 1|pq satisfies the solvable Fredholm equation

B0 + /8 Gelx =), — Aty daly) = e, x € o9
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The scattering transform

The key intermediate object, the non-physical scattering transform,

(e.0) = /Q e~ (€ (x)(x, )X
_ /8 Qe—ix~<€+<>(m—Al)w(x,ormda(x), (E+¢)?=0.

t satisfies the estimate

14(¢) — (&, )l = O(1/I<)

Sets up a scattering inverse scattering transform

q et
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Non-linear direct reconstruction algorithm

Ay = 1(&,€) = a(x) = 7(x)

Steps
1. ¢|sq can be computed from boundary measurements by solving

Y+ SNy, — M)y =e*¢ x€aQ

and t can be computed from boundary data and | 5q
2. q can be computed from t using

lim t(¢,¢) =4(¢)

(—o0

3. v can be computed from g by solving
(A+gp?=0inQ,7"?|sq =1
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Connection to Calderon’s linearized reconstruction
Near-field scattering transform:

t*°(&,¢) = <(AW — Ap)e™ <, e—ix~(<+§)>

= [(66) - )7u(x,)- Ve " ax,
Q

with V- ’que"p =0in Q.and Uap|aﬂ = eiX'C'
Replacing in Q u®® by X< gives

1 —
(€, Q) & =5 1€ (v = 1)(©)-
This algorithm was proposed by Calder6n in 1980.
In 2D (Siltanen-lsaacson-Mueller, 2001) t was replaced by t** before

0-equation was solved. In 3D similar substitution can be done.
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0-equation in 3D

As in 2D we can apply a differential operator in the spectral
paramater ¢ to the special solutions (X, ¢). Let us write

(%, ¢) = e <(x, ¢).
Then it turns out that

W - Jep(X, C) = W/B ™ SH(E, O)u(x, ¢ + E)(w - €)dor(€)

¢

where B, = {£ € R": (¢ + ¢)? = 0} is the ball in the plane
¢ -Im(¢) = 0 centred at c = —Re(¢) with radius r = |Re((¢)|.

The 0-equation can be solved and a reconstruction can be obtained
by evaluating v(x) = u(x,0)2.

This approach can be made rigorous when ~ is sufficienly close to
constant.
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4. Implementation details and numerical results
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Implementation details t*°

1. Solve numerically using comsol multiphysics (FEM)
V - yVUu®® = 0 with u®|yq = e*¢

2. Integrate numerically

t*°(¢, ) = /Q(’y —1)Vu*® . Ve E+dx.
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Implementation details t
Computation of Green’s function G,(x) = e*¢g.(x) :

Ji(rv1—u?)du, |x|<2R

e—r+x2—ix1 1 1 e—I'U—‘er—iX]_
. X)o= — — -
gel-l-lez( ) Arnr A s m
from [Newton, 1989] + symmetry.

Computation of ¢ : technique of Vainikko for solving
Lippman-Schwinger eq.

p(x, Q) = p(x, e <
9c(x) = Ge(x)e™<.
Then

—1+/g<><— a(y)u(y,¢)dy.
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Implementation details t

/g<><— a(y)u(y,)dy = 1.

Note

e RHS is periodic

¢ Integral is on bounded domain (compact support of q)
Periodic equation for p" :

- [ et =@y dy = 1

e Periodic equation is uniquely solvable and on Q p°(x, ¢) = u(x, ()
e Solved efficiently using FFT and GMRES
Numerical integration

(e.0) = /Q e~ (Eg (x)ib(x, C)dx
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Example 1: radially symmetric conductivity
Take Q = B(0,1) and definefora« e Ry and0 <d <1

2
__ Ix?
v(x) = <1+ae <x2d2>2> , Ix[<d
1, d<|x|] <1
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Convergence of scattering transform

Particular example with o =2, d = .9:

Scattering transform t(&,() for different values of {. Compared to FT q(§)

—g=2
10

Error:

[¢l=2 : 54%
[¢l=4: 229%

= 1¢1=8 : 8%

| | | | | | | | 1§) = 16: 4%

10 12 14 16 18

20
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Scattering data

With o« = .3 d = .9. Crossection through plane £3 = 0. Upper row real
and imaginary part of t. Lower row t*®.

x10™*

2
5 1
0
10 a
-2
15
5 10 15
05
-05
5 10 15

o
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Reconstructions

With o = .3 d = .9. Crossection through plane £3 = 0. Left
reconstruction based on t**, middle true conductivity, right Calderon’s
method.

1.5

I =

-1 -05 0 05 -1 -05 0 05 -1 -05 0 05
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Example 2: Non-radially symmetric conductivity:

Take Q = B(0, 1). Conductivity has uniform background 1 and
contains inclusion centered at (0, .1, .3) with radius .6.
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Scattering data

Crossection through plane ¢3 = 0 Upper row real and imaginary part
of t. Lower row t*®.

0.5
5
0.2 0
-0.4
-0.6 -0.5
-0.8
5 10 15
0
0.5
-0.5 0
10 -05
-1
15 15 -1
5 10 15 5 10 15
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Crossection through plane x5 = .3 Left reconstruction based on t*®,

Reconstructions

middle true conductivity, right Calderén’s method.
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Example 3: Complex conductivity

Take Q = B(0, 1). Conductivity is a complex superposition of previous
two
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Reconstruction real part

Crossection through plane x3 = .3 Left reconstruction based on t*®,
middle true conductivity, right Calderén’s method.

-1 -05 0 05 -1 -05 0 05 -1 -05 0 05
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Reconstruction imaginary part

Crossection through plane x3 = .3 Left reconstruction based on t*®,
middle true conductivity, right Calderén’s method.

-1 -05 0 05 -1 -05 0 05 -1 -05 0 05
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Conclusion

Solution of the inverse conductivty problem in 2D by the
0-method

Similar ideas apply in 3D
Nunmerical implementations in 2D and 3D
Especially in 3D there are open ends:

e Can 0-equation be solved for general conductivities
¢ Numerical implementation of the full non-linear inversion
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Thank you
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