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1. The inverse conductivity problem
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The conductivity equation
Smooth bounded domain Ω ⊂ Rn, n = 2,3; conductivity coefficient
γ ∈ L∞(Ω), C−1 ≤ Re(γ) ≤ C, for C > 0.
A voltage potential u in Ω generated by Dirichlet data f

∇ · γ∇u = 0 in Ω.

f = u|∂Ω

Corresponding Neumann data:

ν

f , g

∂Ω

Ω
γ(x)

g = γ∂νu|∂Ω.
Dirichlet to Neumann map

Λγ : H1/2(∂Ω) → H−1/2(∂Ω)

f �→ g.
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Inverse problem

Consider the (non-linear) mapping

Λ: γ �→ Λγ .

This mapping encodes the direct problem.

The Calderón problem (the inverse conductivity problem):
• Uniqueness: is Λ injective?
• Reconstruction: how can γ be computed from Λγ?

Applications include Electrical Impedance Tomography, emerging
technology for medical imaging.
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Short and incomplete history

1980 Calderón: Problem posed, uniqueness for linearized problem, and linear, approximate reconstruction
algorithm

3D

1987 Sylvester and Uhlmann: Uniqueness for smooth conductivities. Implicit reconstruction algorithm

1987-88 Novikov, Nachman-Sylvester-Uhlmann, Nachman: Uniqueness for conductivities with 2 derivatives and
explicit high frequency reconstruction algorithm. Multidimensional D-bar equation.

2003 Brown-Torres, Päivärinta-Panchenko-Uhlmann: Uniqueness for conductivities with 3/2 derivatives.

2006 Cornean-Knudsen-Siltanen: Low frequency reconstruction algorithm

2010 Bikowski-Knudsen-Mueller: Numerical implementation of reconstruction algorithms

2D

1996 Nachman: Uniqueness and reconstruction for W 2,p(Ω) conductivities.

1997 Brown-Torres: Uniqueness for W 1, p(Ω) conductivities

2001 Knudsen-Tamasan: Reconstruction for C 1+ε conductivties

2005 Astala-Päivärinta: Uniqueness and reconstruction for L ∞(Ω)

2009 Knudsen-Lassas-Mueller-Siltanen: Regularized ∂-method
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Assumptions

Assume throughout that
1. Ω and γ are sufficiently smooth
2. γ = 1 near ∂Ω
3. γ is extended to Rn \ Ω by γ = 1
4. In 2D assume γ is real

Note that 1. and 4. are restrictive, but 2.-3. can be assumed WLOG.
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2. Solution in 2D by the ∂-method
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Recall from yesterday the scattering and inverse scattering
transforms

q ↔ S

associated with the system

(D − Q)Ψ = 0, D =

(
∂z 0
0 ∂z

)
, Q =

(
0 q
q 0

)
.

S(k) =
−i
π

∫
R2

e(z, k)q(z)m1(z, k)dμ(z)

facilitated by the exponentially growing Jost solutions

Ψ(z, k) = eizkm(z, k) = eizk
(

m1(z, k)
m2(z, k)

)
, lim

|z|→∞
m =

(
1
0

)
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The conductivity equation as a first order system

Let u be a solution to the conductivity equation.
Then (v ,w) = γ1/2(∂u, ∂u) solves in R2

∂v = qw
∂w = qv

⇔ (D − Q)(v ,w)′ = 0,

where

q = −γ−1/2∂γ1/2

∂ = (∂x1 − i∂x2)/2, ∂ = (∂x1 + i∂x2)/2.

Consequence for conductivty equation: there is a unique complex
geometrical optics solution ϕ

∇ · γ∇ϕ(z, k) = 0, e−izkϕ(z, k) →|z|→∞=1
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Reconstruction algorithm

Reconstruction is based on the decomposition

Λγ
1→ S(k) 2→ q(γ)

Facts

1. S is computable from the boundary measurements Λγ

2. The second step is facilitated by the inverse scattering transform
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Λγ → S
From previous lecture

S(k) =
−i
π

∫
R2

e(z, k)q(z)m1(z, k)dμ(z)

Implies

S(k) =
−i
π

∫
R2
∂(e(z, k)m2(z, k))dμ(z)

=
−i
2π

∫
∂Ω

m2(z, k)(ν1 + iν2)dσ(z).

In terms of ϕ the formula becomes

S(k) =
−1
2k

∫
∂Ω

eizk(Λγ − Λ1)ϕ(·, k)dσ(z)

where ϕ is the complex geometrical optics solution (ϕ(z, k) ∼ eizk ) to
the conductivity equation.
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How to compute ϕ|∂Ω?

Let Sk denote the single layer potential with Faddeev’s Green’s
function Gk for −Δ :

Skf (x) =
∫
∂Ω

Gk (x − y)f (y)dσ(y).

Then ϕ|∂Ω is the unique solution to

ϕ(z, k) = eizk − Sk(Λγ − Λ1)ϕ,

This is a Fredholm equation of the second kind; uniqueness for
homogeneous problem follows from uniuqness of Jost solutions
(complex geometrical optics).
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The algorithm

1. Solve for z ∈ ∂Ω and k ∈ C

ϕ(z, k) = eizk − Sk(Λγ − Λ1)ϕ,

and compute

S(k) =
−1
2k

∫
∂Ω

eizk(Λγ − Λ1)ϕ(·, k)dσ(z) k ∈ C

2. Could go for q by inverse scattering transform. However, it turns
out that

γ(z) = Re(m+(z, k))2

with m+ the solution to the ∂k -equation

∂km+(z, k) = S(−k)e(z,−k)m+(z, k), lim
|k |→∞

= 1.

Step 1. is severely ill-posed but step 2. is well-posed.
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Regularization of the algorithm
In practice we cut off the spectral scattering data S(k) for k > R. This
is a regularization strategy.

Suppose we measure noisy data Λ̃γ = Λγ + E where
‖E‖B(H1/2(∂Ω),H−1/2(∂Ω)) = ε. Then there is a choice of R(ε) such that if
we solve

ϕ̃(z, k) = eizk − Sk(Λ̃γ − Λ1)ϕ̃, |k | < R(ε)

compute

S̃(k) =
−1
2k

∫
∂Ω

eizk(Λ̃γ − Λ1)ϕ̃(·, k)dσ(z), |k | < R(ε)

and solve the ∂-equation with this compactly supported S̃, then

γ̃(z) → γ(z) for ε→ 0.

Exact regularization algorithm for a non-linear inverse problem.
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Numerical results

Reconstructions with noiselevel 10−2,10−4 and 10−6. Error in
approximation is 52%,14% and 12% respectively.
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3. Solution to the 3D problem
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Transformation to Schrödinger equation

Suppose u solves

∇ · γ∇u = 0 in Ω, u|∂Ω = f .

Then v = γ−1/2u solves

(Δ + q)v = 0 in Ω v |∂Ω = γ−1/2f ,

with q = −Δγ1/2/γ1/2 ⇔ (Δ + q)γ1/2 = 0.

Dirichlet to Neumann map Λqf = ∂νv . If γ = 1 near ∂Ω then Λq = Λγ .

The operator (Δ + q) plays the same role in 3D as (D − Q) in 2D.
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Complex geometrical optics (CGO)

Let ζ ∈ C3 such that ζ · ζ = 0. For sufficiently large ζ there is a unique
CGO solution to the problem

(Δ + q)ψ(x , ζ) = 0 in R3,

ψ(x , ζ) ∼ eix ·ζ for large |x | or |ζ|.
Lippmann-Schwinger-Faddeev (LSF) equation

ψ(x , ζ) = eix ·ζ +
∫
Ω

Gζ(x − y)q(y)ψ(y , ζ)dx , ΔGζ = δ, Gζ ∼ eix ·ζ .

Moreover, ψ|∂Ω satisfies the solvable Fredholm equation

ψ(x , ζ) +
∫
∂Ω

Gζ(x − y)(Λγ − Λ1)ψ(y , ζ)dσ(y) = eix ·ζ , x ∈ ∂Ω.
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The scattering transform

The key intermediate object, the non-physical scattering transform,

t(ξ, ζ) =
∫
Ω

e−ix ·(ξ+ζ)q(x)ψ(x , ζ)dx

=

∫
∂Ω

e−ix ·(ξ+ζ)(Λγ − Λ1)ψ(x , ζ)|∂Ωdσ(x), (ξ + ζ)2 = 0.

t satisfies the estimate

|q̂(ξ)− t(ξ, ζ)| = O(1/|ζ|)
Sets up a scattering inverse scattering transform

q ↔ t.
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Non-linear direct reconstruction algorithm

Λγ → t(ξ, ζ) → q(x) → γ(x)

Steps
1. ψ|∂Ω can be computed from boundary measurements by solving

ψ + Sζ(Λγ − Λ1)ψ = eix ·ζ , x ∈ ∂Ω

and t can be computed from boundary data and ψ|∂Ω
2. q can be computed from t using

lim
ζ→∞

t(ξ, ζ) = q̂(ξ)

3. γ can be computed from q by solving

(Δ + q)γ1/2 = 0 in Ω, γ1/2|∂Ω = 1
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Connection to Calderón’s linearized reconstruction
Near-field scattering transform:

texp(ξ, ζ) =
〈
(Λγ − Λ1)e

ix ·ζ ,e−ix ·(ζ+ξ)
〉

=

∫
Ω
(γ(x)− 1)∇uexp(x , ζ) · ∇e−ix ·(ξ+ζ)dx ,

with ∇ · γ∇uexp = 0 in Ω and uexp|∂Ω = eix ·ζ .
Replacing in Ω uexp by eix ·ζ gives

texp(ξ, ζ) ≈ −1
2
|ξ|2 ̂(γ − 1)(ξ).

This algorithm was proposed by Calderón in 1980.

In 2D (Siltanen-Isaacson-Mueller, 2001) t was replaced by texp before
∂-equation was solved. In 3D similar substitution can be done.
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∂-equation in 3D
As in 2D we can apply a differential operator in the spectral
paramater ζ to the special solutions ψ(x , ζ). Let us write

μ(x , ζ) = eix ·ζψ(x , ζ).

Then it turns out that

w · ∂ζμ(x , ζ) = −1
(2π)n−1

∫
Bζ

eix ·ξt(ξ, ζ)μ(x , ζ + ξ)(w · ξ)dσ(ξ)

where Bζ = {ξ ∈ Rn : (ξ + ζ)2 = 0} is the ball in the plane
ξ · Im(ζ) = 0 centred at c = −Re(ζ) with radius r = |Re(ζ)|.

The ∂-equation can be solved and a reconstruction can be obtained
by evaluating γ(x) = μ(x ,0)2.

This approach can be made rigorous when γ is sufficienly close to
constant.
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4. Implementation details and numerical results
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Implementation details texp

1. Solve numerically using comsol multiphysics (FEM)

∇ · γ∇uexp = 0 with uexp|∂Ω = eix ·ζ

2. Integrate numerically

texp(ξ, ζ) =

∫
Ω
(γ − 1)∇uexp · ∇eix ·(ξ+ζ)dx .
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Implementation details t
Computation of Green’s function Gζ(x) = eix ·ζgζ(x) :

ge1+ie2
(x) =

e−r+x2−ix1

4πr
− 1

4π

∫ 1

s

e−ru+x2−ix1

√
1 − u2

J1(r
√

1 − u2)du, |x | < 2R

from [Newton, 1989] + symmetry.

Computation of ψ : technique of Vainikko for solving
Lippman-Schwinger eq.

μ(x , ζ) = ψ(x , ζ)e−ix ·ζ

gζ(x) = Gζ(x)e
−ix ·ζ .

Then

μ(x , ζ) = 1 +

∫
Ω

gζ(x − y)q(y)μ(y , ζ)dy .
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Implementation details t

μ(x , ζ)−
∫
Ω

gζ(x − y)q(y)μ(y , ζ)dy = 1.

Note
• RHS is periodic
• Integral is on bounded domain (compact support of q)

Periodic equation for μp :

μp(x , ζ)−
∫
R3

gp
ζ(x − y)qp(y)μp(y , ζ)dy = 1.

• Periodic equation is uniquely solvable and on Ω μp(x , ζ) = μ(x , ζ)
• Solved efficiently using FFT and GMRES

Numerical integration

t(ξ, ζ) =
∫
Ω

e−ix ·(ξ+ζ)q(x)ψ(x , ζ)dx .
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Example 1: radially symmetric conductivity
Take Ω = B(0,1) and define for α ∈ R+ and 0 < d < 1

γ(x) =

⎧⎪⎨
⎪⎩
(

1 + αe
− |x|2

(|x|2−d2)2

)2

, |x | ≤ d

1, d < |x | ≤ 1.
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Convergence of scattering transform

Particular example with α = 2, d = .9 :

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

10

12

|ξ|

Scattering transform t(ξ,ζ) for different values of ζ. Compared to FT q(ξ)

 

 

|ζ|=2
|ζ|=4
|ζ| = 8
|ζ|=16
FT(q)

Error:
|ζ|=2 : 54%
|ζ|=4 : 22%
|ζ|=8 : 8%
|ζ| = 16: 4%
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Scattering data
With α = .3 d = .9. Crossection through plane ξ3 = 0. Upper row real
and imaginary part of t. Lower row texp.

 

 

5 10 15

5

10

15  

 

5 10 15

5

10

15

 

 

5 10 15

5

10

15  

 

5 10 15

5

10

15

−1

−0.5

0

0.5

−2

−1

0

1

2

x 10
−4

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

∂-method 30/40



Reconstructions
With α = .3 d = .9. Crossection through plane ξ3 = 0. Left
reconstruction based on texp, middle true conductivity, right Calderón’s
method.
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Example 2: Non-radially symmetric conductivity:

Take Ω = B(0,1). Conductivity has uniform background 1 and
contains inclusion centered at (0, .1, .3) with radius .6.
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Scattering data
Crossection through plane ξ3 = 0 Upper row real and imaginary part
of t. Lower row texp.
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Reconstructions
Crossection through plane x3 = .3 Left reconstruction based on texp,
middle true conductivity, right Calderón’s method.
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Example 3: Complex conductivity

Take Ω = B(0,1). Conductivity is a complex superposition of previous
two
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Reconstruction real part
Crossection through plane x3 = .3 Left reconstruction based on texp,
middle true conductivity, right Calderón’s method.
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Reconstruction imaginary part
Crossection through plane x3 = .3 Left reconstruction based on texp,
middle true conductivity, right Calderón’s method.
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Conclusion

• Solution of the inverse conductivty problem in 2D by the
∂-method

• Similar ideas apply in 3D
• Nunmerical implementations in 2D and 3D
• Especially in 3D there are open ends:

• Can ∂-equation be solved for general conductivities
• Numerical implementation of the full non-linear inversion
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