## The $\bar{\partial}$-method for non-linear inverse problems

Kim Knudsen<br>Department of Mathematics<br>Technical University of Denmark<br>k.knudsen@mat.dtu.dk



Lecture 5-6
Summer school on computational solution of inverse problems
University of Helsinki 2010

## Outline

1. The inverse conductivity problem
2. Solution in 2D by the $\bar{\partial}$-method
3. Solution to the 3D problem
4. References

## 1. The inverse conductivity problem

## The conductivity equation

Smooth bounded domain $\Omega \subset \mathbb{R}^{n}, n=2,3$; conductivity coefficient $\gamma \in L^{\infty}(\Omega), C^{-1} \leq \operatorname{Re}(\gamma) \leq C$, for $C>0$.
A voltage potential $u$ in $\Omega$ generated by Dirichlet data $f$

$$
\begin{aligned}
\nabla \cdot \gamma \nabla u & =0 \text { in } \Omega . \\
f & =\left.u\right|_{\partial \Omega}
\end{aligned}
$$

Corresponding Neumann data:

$$
g=\left.\gamma \partial_{\nu} u\right|_{\partial \Omega}
$$

Dirichlet to Neumann map

$$
\left.\begin{array}{rl}
\Lambda_{\gamma}: H^{1 / 2}(\partial \Omega) & \rightarrow H^{-1 / 2}(\partial \Omega) \\
& f
\end{array}\right) .
$$

## Inverse problem

Consider the (non-linear) mapping

$$
\Lambda: \gamma \mapsto \Lambda_{\gamma} .
$$

This mapping encodes the direct problem.
The Calderón problem (the inverse conductivity problem):

- Uniqueness: is $\wedge$ injective?
- Reconstruction: how can $\gamma$ be computed from $\Lambda_{\gamma}$ ?

Applications include Electrical Impedance Tomography, emerging technology for medical imaging.

## Short and incomplete history

1980 Calderón: Problem posed, uniqueness for linearized problem, and linear, approximate reconstruction algorithm
3D
1987 Sylvester and UhImann: Uniqueness for smooth conductivities. Implicit reconstruction algorithm
1987-88 Novikov, Nachman-Sylvester-Uhlmann, Nachman: Uniqueness for conductivities with 2 derivatives and explicit high frequency reconstruction algorithm. Multidimensional D-bar equation.
2003 Brown-Torres, Päivärinta-Panchenko-Uhlmann: Uniqueness for conductivities with $3 / 2$ derivatives.
2006 Cornean-Knudsen-Siltanen: Low frequency reconstruction algorithm
2010 Bikowski-Knudsen-Mueller: Numerical implementation of reconstruction algorithms
2D
1996 Nachman: Uniqueness and reconstruction for $W^{2, p}(\Omega)$ conductivities.
1997 Brown-Torres: Uniqueness for $W^{1}, p(\Omega)$ conductivities
2001 Knudsen-Tamasan: Reconstruction for $C^{1+\epsilon}$ conductivties
2005 Astala-Päivärinta: Uniqueness and reconstruction for $L^{\infty}(\Omega)$
2009 Knudsen-Lassas-Mueller-Siltanen: Regularized $\bar{\partial}$-method

## Assumptions

Assume throughout that

1. $\Omega$ and $\gamma$ are sufficiently smooth
2. $\gamma=1$ near $\partial \Omega$
3. $\gamma$ is extended to $\mathbb{R}^{n} \backslash \Omega$ by $\gamma=1$
4. In 2D assume $\gamma$ is real

Note that 1. and 4. are restrictive, but 2.-3. can be assumed WLOG.

## 2. Solution in 2D by the $\bar{\partial}$-method

Recall from yesterday the scattering and inverse scattering transforms

$$
q \leftrightarrow S
$$

associated with the system

$$
\begin{gathered}
(D-Q) \Psi=0, \quad D=\left(\begin{array}{cc}
\partial_{\bar{z}} & 0 \\
0 & \partial_{z}
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & q \\
\bar{q} & 0
\end{array}\right) . \\
S(k)=\frac{-i}{\pi} \int_{\mathbb{R}^{2}} e(z, k) \bar{q}(z) m_{1}(z, k) d \mu(z)
\end{gathered}
$$

facilitated by the exponentially growing Jost solutions

$$
\Psi(z, k)=e^{i z k} m(z, k)=e^{i z k}\binom{m_{1}(z, k)}{m_{2}(z, k)}, \quad \lim _{|z| \rightarrow \infty} m=\binom{1}{0}
$$

## The conductivity equation as a first order system

Let $u$ be a solution to the conductivity equation.
Then $(v, w)=\gamma^{1 / 2}(\partial u, \bar{\partial} u)$ solves in $\mathbb{R}^{2}$

$$
\begin{aligned}
& \bar{\partial} v=q w \\
& \partial w=\frac{\bar{q} v}{} \Leftrightarrow \Leftrightarrow(D-Q)(v, w)^{\prime}=0, ~
\end{aligned}
$$

where

$$
\begin{gathered}
q=-\gamma^{-1 / 2} \partial \gamma^{1 / 2} \\
\partial=\left(\partial_{x_{1}}-i \partial_{x_{2}}\right) / 2, \quad \bar{\partial}=\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) / 2 .
\end{gathered}
$$

Consequence for conductivty equation: there is a unique complex geometrical optics solution $\varphi$

$$
\nabla \cdot \gamma \nabla \varphi(z, k)=0, \quad e^{-i z k} \varphi(z, k) \rightarrow_{|z| \rightarrow \infty=1}
$$

## Reconstruction algorithm

Reconstruction is based on the decomposition

$$
\Lambda_{\gamma} \xrightarrow{1} S(k) \xrightarrow{2} q(\gamma)
$$

## Facts

1. $S$ is computable from the boundary measurements $\Lambda_{\gamma}$
2. The second step is facilitated by the inverse scattering transform

$$
\Lambda_{\gamma} \rightarrow S
$$

From previous lecture

$$
S(k)=\frac{-i}{\pi} \int_{\mathbb{R}^{2}} e(z, k) \bar{q}(z) m_{1}(z, k) d \mu(z)
$$

Implies

$$
\begin{aligned}
S(k) & =\frac{-i}{\pi} \int_{\mathbb{R}^{2}} \partial\left(e(z, k) m_{2}(z, k)\right) d \mu(z) \\
& =\frac{-i}{2 \pi} \int_{\partial \Omega} m_{2}(z, k)\left(\nu_{1}+i \nu_{2}\right) d \sigma(z) .
\end{aligned}
$$

In terms of $\varphi$ the formula becomes

$$
S(k)=\frac{-1}{2 k} \int_{\partial \Omega} e^{i \overline{z k}}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \varphi(\cdot, k) d \sigma(z)
$$

where $\varphi$ is the complex geometrical optics solution $\left(\varphi(z, k) \sim e^{i z k}\right)$ to the conductivity equation.

## How to compute $\left.\varphi\right|_{\partial \Omega}$ ?

Let $S_{k}$ denote the single layer potential with Faddeev's Green's function $G_{k}$ for $-\Delta$ :

$$
S_{k} f(x)=\int_{\partial \Omega} G_{k}(x-y) f(y) d \sigma(y)
$$

Then $\left.\varphi\right|_{\partial \Omega}$ is the unique solution to

$$
\varphi(z, k)=e^{i z k}-S_{k}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \varphi
$$

This is a Fredholm equation of the second kind; uniqueness for homogeneous problem follows from uniuqness of Jost solutions (complex geometrical optics).

## The algorithm

1. Solve for $z \in \partial \Omega$ and $k \in \mathbb{C}$

$$
\varphi(z, k)=e^{i z k}-S_{k}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \varphi
$$

and compute

$$
S(k)=\frac{-1}{2 k} \int_{\partial \Omega} e^{i \overline{z k}}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \varphi(\cdot, k) d \sigma(z) k \in \mathbb{C}
$$

2. Could go for $q$ by inverse scattering transform. However, it turns out that

$$
\gamma(z)=\operatorname{Re}\left(m^{+}(z, k)\right)^{2}
$$

with $m^{+}$the solution to the $\partial_{\bar{k}}$-equation

$$
\partial_{\bar{k}} m^{+}(z, k)=\overline{S(-k)} e(z,-k) \overline{m^{+}(z, k)}, \quad \lim _{|k| \rightarrow \infty}=1 .
$$

Step 1. is severely ill-posed but step 2 . is well-posed.

## Regularization of the algorithm

In practice we cut off the spectral scattering data $S(k)$ for $k>R$. This is a regularization strategy.

Suppose we measure noisy data $\tilde{\Lambda}_{\gamma}=\Lambda_{\gamma}+\mathcal{E}$ where $\|\mathcal{E}\|_{B\left(H^{1 / 2}(\partial \Omega), H^{-1 / 2}(\partial \Omega)\right)}=\epsilon$. Then there is a choice of $R(\epsilon)$ such that if we solve

$$
\tilde{\varphi}(z, k)=e^{i z k}-S_{k}\left(\tilde{\Lambda}_{\gamma}-\Lambda_{1}\right) \tilde{\varphi}, \quad|k|<R(\epsilon)
$$

compute

$$
\tilde{S}(k)=\frac{-1}{2 k} \int_{\partial \Omega} e^{i \overline{z k}}\left(\tilde{\Lambda}_{\gamma}-\Lambda_{1}\right) \tilde{\varphi}(\cdot, k) d \sigma(z), \quad|k|<R(\epsilon)
$$

and solve the $\bar{\partial}$-equation with this compactly supported $\tilde{S}$, then

$$
\tilde{\gamma}(z) \rightarrow \gamma(z) \text { for } \epsilon \rightarrow 0
$$

Exact regularization algorithm for a non-linear inverse problem.

## Numerical results



Reconstructions with noiselevel $10^{-2}, 10^{-4}$ and $10^{-6}$. Error in approximation is $52 \%, 14 \%$ and $12 \%$ respectively.

## 3. Solution to the 3D problem

## Transformation to Schrödinger equation

Suppose $u$ solves

$$
\nabla \cdot \gamma \nabla u=0 \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=f
$$

Then $v=\gamma^{-1 / 2} u$ solves

$$
(\Delta+q) v=0 \text { in }\left.\Omega \quad v\right|_{\partial \Omega}=\gamma^{-1 / 2} f
$$

with $q=-\Delta \gamma^{1 / 2} / \gamma^{1 / 2} \Leftrightarrow(\Delta+q) \gamma^{1 / 2}=0$.
Dirichlet to Neumann map $\Lambda_{q} f=\partial_{\nu} v$. If $\gamma=1$ near $\partial \Omega$ then $\Lambda_{q}=\Lambda_{\gamma}$.
The operator $(\Delta+q)$ plays the same role in 3D as $(D-Q)$ in 2D.

## Complex geometrical optics (CGO)

Let $\zeta \in \mathbb{C}^{3}$ such that $\zeta \cdot \zeta=0$. For sufficiently large $\zeta$ there is a unique CGO solution to the problem

$$
\begin{array}{r}
(\Delta+q) \psi(x, \zeta)=0 \text { in } \mathbb{R}^{3}, \\
\psi(x, \zeta) \sim e^{i x \cdot \zeta} \text { for large }|x| \text { or }|\zeta| .
\end{array}
$$

Lippmann-Schwinger-Faddeev (LSF) equation
$\psi(x, \zeta)=e^{i x \cdot \zeta}+\int_{\Omega} G_{\zeta}(x-y) q(y) \psi(y, \zeta) d x, \quad \Delta G_{\zeta}=\delta, \quad G_{\zeta} \sim e^{i x \cdot \zeta}$.
Moreover, $\left.\psi\right|_{\partial \Omega}$ satisfies the solvable Fredholm equation

$$
\psi(x, \zeta)+\int_{\partial \Omega} G_{\zeta}(x-y)\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi(y, \zeta) d \sigma(y)=e^{i x \cdot \zeta}, \quad x \in \partial \Omega .
$$

## The scattering transform

The key intermediate object, the non-physical scattering transform,

$$
\begin{aligned}
\mathbf{t}(\xi, \zeta) & =\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) \psi(x, \zeta) d x \\
& =\left.\int_{\partial \Omega} e^{-i x \cdot(\xi+\zeta)}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi(x, \zeta)\right|_{\partial \Omega} d \sigma(x), \quad(\xi+\zeta)^{2}=0
\end{aligned}
$$

t satisfies the estimate

$$
|\hat{q}(\xi)-\mathbf{t}(\xi, \zeta)|=\mathcal{O}(1 /|\zeta|)
$$

Sets up a scattering inverse scattering transform

$$
q \leftrightarrow \mathbf{t} .
$$

## Non-linear direct reconstruction algorithm

$$
\Lambda_{\gamma} \rightarrow \mathbf{t}(\xi, \zeta) \rightarrow q(x) \rightarrow \gamma(x)
$$

Steps

1. $\left.\psi\right|_{\partial \Omega}$ can be computed from boundary measurements by solving

$$
\psi+S_{\zeta}\left(\Lambda_{\gamma}-\Lambda_{1}\right) \psi=e^{i x \cdot \zeta}, \quad x \in \partial \Omega
$$

and $\mathbf{t}$ can be computed from boundary data and $\left.\psi\right|_{\partial \Omega}$
2. $q$ can be computed from $t$ using

$$
\lim _{\zeta \rightarrow \infty} \mathbf{t}(\xi, \zeta)=\hat{q}(\xi)
$$

3. $\gamma$ can be computed from $q$ by solving

$$
(\Delta+q) \gamma^{1 / 2}=0 \text { in } \Omega,\left.\gamma^{1 / 2}\right|_{\partial \Omega}=1
$$

## Connection to Calderón's linearized reconstruction

Near-field scattering transform:

$$
\begin{aligned}
\mathbf{t}^{\exp }(\xi, \zeta) & =\left\langle\left(\Lambda_{\gamma}-\Lambda_{1}\right) e^{i x \cdot \zeta}, e^{-i x \cdot(\zeta+\xi)}\right\rangle \\
& =\int_{\Omega}(\gamma(x)-1) \nabla u^{\exp }(x, \zeta) \cdot \nabla e^{-i x \cdot(\xi+\zeta)} d x
\end{aligned}
$$

with $\nabla \cdot \gamma \nabla u^{\text {exp }}=0$ in $\Omega$ and $\left.u^{\text {exp }}\right|_{\partial \Omega}=e^{i x \cdot \zeta}$.
Replacing in $\Omega u^{\text {exp }}$ by $e^{i x \cdot \zeta}$ gives

$$
\mathbf{t}^{\exp }(\xi, \zeta) \approx-\frac{1}{2}|\xi|^{2}(\widehat{\gamma-1})(\xi)
$$

This algorithm was proposed by Calderón in 1980.
In 2D (Siltanen-Isaacson-Mueller, 2001) t was replaced by $\mathbf{t}^{\text {exp }}$ before $\bar{\partial}$-equation was solved. In 3D similar substitution can be done.

## $\bar{\partial}$-equation in 3D

As in 2D we can apply a differential operator in the spectral paramater $\zeta$ to the special solutions $\psi(x, \zeta)$. Let us write

$$
\mu(x, \zeta)=e^{i x \cdot \zeta} \psi(x, \zeta)
$$

Then it turns out that

$$
w \cdot \bar{\partial}_{\zeta} \mu(x, \zeta)=\frac{-1}{(2 \pi)^{n-1}} \int_{B_{\zeta}} e^{i x \cdot \xi} \mathbf{t}(\xi, \zeta) \mu(x, \zeta+\xi)(w \cdot \xi) d \sigma(\xi)
$$

where $B_{\zeta}=\left\{\xi \in \mathbb{R}^{n}:(\xi+\zeta)^{2}=0\right\}$ is the ball in the plane $\xi \cdot \operatorname{Im}(\zeta)=0$ centred at $c=-\operatorname{Re}(\zeta)$ with radius $r=|\operatorname{Re}(\zeta)|$.

The $\bar{\partial}$-equation can be solved and a reconstruction can be obtained by evaluating $\gamma(x)=\mu(x, 0)^{2}$.

This approach can be made rigorous when $\gamma$ is sufficienly close to constant.

## 4. Implementation details and numerical results

## Implementation details $\mathbf{t}^{\text {tp }}$

1. Solve numerically using comsol multiphysics (FEM)

$$
\nabla \cdot \gamma \nabla u^{\mathrm{exp}}=0 \text { with }\left.u^{\mathrm{exp}}\right|_{\partial \Omega}=e^{i x \cdot \zeta}
$$

2. Integrate numerically

$$
\mathbf{t}^{\exp }(\xi, \zeta)=\int_{\Omega}(\gamma-1) \nabla u^{\exp } \cdot \nabla e^{i x \cdot(\xi+\zeta)} d x
$$

## Implementation details $\mathbf{t}$

Computation of Green's function $G_{\zeta}(x)=e^{i x \cdot \zeta} g_{\zeta}(x)$ :
$g_{e_{1}+i e_{2}}(x)=\frac{e^{-r+x_{2}-i x_{1}}}{4 \pi r}-\frac{1}{4 \pi} \int_{s}^{1} \frac{e^{-r u+x_{2}-i x_{1}}}{\sqrt{1-u^{2}}} J_{1}\left(r \sqrt{1-u^{2}}\right) d u, \quad|x|<2 R$
from [Newton, 1989] + symmetry.
Computation of $\psi$ : technique of Vainikko for solving Lippman-Schwinger eq.

$$
\begin{aligned}
\mu(x, \zeta) & =\psi(x, \zeta) e^{-i x \cdot \zeta} \\
g_{\zeta}(x) & =G_{\zeta}(x) e^{-i x \cdot \zeta .}
\end{aligned}
$$

Then

$$
\mu(x, \zeta)=1+\int_{\Omega} g_{\zeta}(x-y) q(y) \mu(y, \zeta) d y .
$$

## Implementation details t

$$
\mu(x, \zeta)-\int_{\Omega} g_{\zeta}(x-y) q(y) \mu(y, \zeta) d y=1
$$

Note

- RHS is periodic
- Integral is on bounded domain (compact support of $q$ )

Periodic equation for $\mu^{\mathrm{p}}$ :

$$
\mu^{\mathrm{p}}(x, \zeta)-\int_{\mathbb{R}^{3}} g_{\zeta}^{\mathrm{p}}(x-y) q^{\mathrm{p}}(y) \mu^{\mathrm{p}}(y, \zeta) d y=1
$$

- Periodic equation is uniquely solvable and on $\Omega \mu^{\mathrm{p}}(x, \zeta)=\mu(x, \zeta)$
- Solved efficiently using FFT and GMRES

Numerical integration

$$
\mathbf{t}(\xi, \zeta)=\int_{\Omega} e^{-i x \cdot(\xi+\zeta)} q(x) \psi(x, \zeta) d x
$$

## Example 1: radially symmetric conductivity

Take $\Omega=B(0,1)$ and define for $\alpha \in \mathbb{R}_{+}$and $0<d<1$

$$
\gamma(x)= \begin{cases}\left(1+\alpha e^{-\frac{|x|^{2}}{\left(\left.|x|\right|^{2}-d^{2}\right)^{2}}}\right)^{2}, & |x| \leq d \\ 1, & d<|x| \leq 1\end{cases}
$$



## Convergence of scattering transform

Particular example with $\alpha=2, d=.9$ :


## Scattering data

With $\alpha=.3 d=.9$. Crossection through plane $\xi_{3}=0$. Upper row real and imaginary part of $\mathbf{t}$. Lower row $\mathbf{t}^{\text {exp }}$.


## Reconstructions

With $\alpha=.3 d=.9$. Crossection through plane $\xi_{3}=0$. Left reconstruction based on $\mathbf{t}^{\text {exp }}$, middle true conductivity, right Calderón's method.


## Example 2: Non-radially symmetric conductivity:

Take $\Omega=B(0,1)$. Conductivity has uniform background 1 and contains inclusion centered at ( $0, .1, .3$ ) with radius .6 .


## Scattering data

Crossection through plane $\xi_{3}=0$ Upper row real and imaginary part of $\mathbf{t}$. Lower row $\mathbf{t e x p}^{\text {exp }}$.


## Reconstructions

Crossection through plane $x_{3}=.3$ Left reconstruction based on $\mathbf{t}^{\text {exp }}$, middle true conductivity, right Calderón's method.


## Example 3: Complex conductivity

Take $\Omega=B(0,1)$. Conductivity is a complex superposition of previous two

## Reconstruction real part

Crossection through plane $x_{3}=.3$ Left reconstruction based on $\mathbf{t}^{\text {exp }}$, middle true conductivity, right Calderón's method.


## Reconstruction imaginary part

Crossection through plane $x_{3}=.3$ Left reconstruction based on $\mathbf{t}^{\text {exp }}$, middle true conductivity, right Calderón's method.


## Conclusion

- Solution of the inverse conductivty problem in 2D by the $\bar{\partial}$-method
- Similar ideas apply in 3D
- Nunmerical implementations in 2D and 3D
- Especially in 3D there are open ends:
- Can $\bar{\partial}$-equation be solved for general conductivities
- Numerical implementation of the full non-linear inversion


## References

Non-linear evolution equations:

- A. S. Fokas, Lax pairs: a novel type of separability, Inverse problems 25 (2009)
- R. Beals and R.R. Coifman, The spectral problem for the Davay-Stewartson and Ishimori hierarchies, in Non-linear evolution equations, Integrability and Spectral methods (1988)
Inverse conductivity problem
- A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980
- J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. 125 (1987)
- R. Novikov, A multidimensional inverse spectral problem for the equation $(v(x)-E u(x))=0$, Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, translation in Funct. Anal. Appl., 22 (1988), no. 4.
- A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1
- R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations 22 (1997), no. 5-6
- K. Astala and L. Päivärinta, Calderónfs inverse conductivity problem in the plane, Ann. of Math. 163 (2006)
- K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, Regularized D-BAR method for the inverse conductivity problem, Inverse problems and Imaging, 3(4), 2009
- J Bikowski, K. Knudsen, J. Mueller, Direct numerical reconstruction of conductivities in 3-D, submitted


## Thank you

