The $\bar{\partial}$-method for non-linear inverse problems

Kim Knudsen
Department of Mathematics
Technical University of Denmark

Lecture 3-4
Summer school on computational solution of inverse problems University of Helsinki 2010

Outline

1. A primer on complex analysis
2. The Davey-Stewartson II equation
3. Scattering transform, inverse scattering transform and the $\bar{\partial}$-equation
4. Numerical solution of the $\bar{\partial}$-equation

1. A primer on complex analysis

A primer on complex analysis

Concerns properties of functions $f: \mathbb{C} \mapsto \mathbb{C}$. Special attention is given to the operators $\bar{\partial}$ and ∂ defined by

$$
\bar{\partial}=\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right), \quad \partial=\partial_{z}=\frac{1}{2}\left(\partial_{x_{1}}-i \partial_{x_{2}}\right),
$$

where the variables are $z=x_{1}+i x_{2}$.
We call a function analytic in the domain Ω if

$$
\bar{\partial} u=0 \quad z \in \Omega .
$$

Liouville's theorem:
Suppose u is analytic on \mathbb{C} and bounded. Then u is constant.

Pseudo-analytic functions

The $\bar{\partial}$-equation has the form

$$
\bar{\partial} u(z)=a(z) \bar{u}(z), z \in \Omega .
$$

We say that such a u is pseudoanalytic in Ω. In the sequel we will consider the $\bar{\partial}$-equation in the whole plane

$$
\bar{\partial} u(z)=a(z) \bar{u}(z), z \in \mathbb{C}
$$

assuming

$$
a \in L^{2-\epsilon} \cap L^{2+\epsilon}\left(\mathbb{R}^{2}\right)
$$

We would like to solve this equation in $L^{q}(\mathbb{C})$.

The solid Cauchy operator

To transform the $\bar{\partial}$-equation to an integral equation we need a $\bar{\partial}^{-1}$-operator. This is achived by convolution with Green's function for

$$
\begin{aligned}
\bar{\partial} g(z)= & -\delta_{0}(z) \text { with } \lim _{|z| \rightarrow \infty} g(z)=0 \\
& \Rightarrow g(z)=\frac{1}{\pi z}
\end{aligned}
$$

Solid Cauchy transform:

$$
C \phi(z)=\bar{\partial}^{-1} \phi(z)=\frac{1}{\pi} \int_{\mathbb{R}^{2}} \frac{\phi\left(z^{\prime}\right)}{z-z^{\prime}} d \mu\left(z^{\prime}\right)
$$

Satisfies for $\phi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$

$$
\overline{\partial \partial}^{-1} \phi=\phi, \quad \bar{\partial}^{-1} \bar{\partial} \phi=\phi
$$

Properties of $\bar{\partial}^{-1}$

Mapping properties:

$$
\begin{aligned}
& C: L^{p}\left(\mathbb{R}^{2}\right) \rightarrow L^{\tilde{p}}\left(\mathbb{R}^{2}\right), 1<p<2, \frac{1}{\tilde{p}}=\frac{2-p}{2 p} \\
& C: L^{p_{1}} \cap L^{p_{2}}\left(\mathbb{R}^{2}\right) \rightarrow C^{\alpha}\left(\mathbb{R}^{2}\right), \alpha=1-\frac{2}{p_{2}}
\end{aligned}
$$

For $a \in L^{2}\left(\mathbb{R}^{2}\right)$ the operator

$$
u \mapsto C(a u)
$$

is compact in $L^{r}\left(\mathbb{R}^{2}\right)$ for any $r>2$.

Integral equation of the 2nd kind

Let us apply C to the equation

$$
\bar{\partial} u=a \bar{u}+f
$$

Then

$$
\begin{gathered}
u-C(a \bar{u})=C(f) \\
\Leftrightarrow \quad u(z)-\frac{1}{\pi} \int \frac{a\left(z^{\prime}\right) \bar{u}\left(z^{\prime}\right)}{z-z^{\prime}} d \mu\left(z^{\prime}\right)=F(z), \quad F=C(f) .
\end{gathered}
$$

Integral equation in $L^{\tilde{p}}\left(\mathbb{R}^{2}\right)$.
For $a \in L^{2}\left(\mathbb{R}^{2}\right)$ the operator $u \mapsto C(a \bar{u})$ is real-linear and compact on $L^{r}\left(\mathbb{R}^{2}\right), r>2$.: Fredholms alternative states that either

1. $\left(I-C\left(a^{-}\right)\right)^{-1}$ exists or
2. the homogeneous problem

$$
(u-C(a \bar{u}))=0
$$

has a nontrivial solution.

Liouville's theorem for pseudoanalytic functions

Suppose $a \in L^{2}\left(\mathbb{R}^{2}\right)$. Then if $u \in L^{\tilde{p}}\left(\mathbb{R}^{2}\right)$ satisfies the equation

$$
\bar{\partial} u=a \bar{u}
$$

we have $u=0$.
Proof: Define $w=u \exp \left(-C\left(a \frac{\bar{u}}{u}\right)\right)$. Then (if $\left.a \in L^{2-\epsilon} \cap L^{2+\epsilon}\left(\mathbb{R}^{2}\right)\right) w$ is bounded and satisfies

$$
\bar{\partial} w=0 .
$$

Hence $w=0$ which implies $u=0$.
The case $a \in L^{2}\left(\mathbb{R}^{2}\right)$ is more delicate...

$\overline{\bar{\gamma}}$-equation with asymptotic condition

As a consequence of the previous result we have
Lemma:
Suppose $a \in L^{p} \cap L^{2}\left(\mathbb{R}^{2}\right)$. Then the equation

$$
\bar{\partial} m=a \bar{m}
$$

has a unique solution which satisfies $m-1 \in L^{\tilde{p}}\left(\mathbb{R}^{2}\right)$.
Proof: The function $m-1$ satisfies the integral equation

$$
m-1=C(a(m-1))+C(a) .
$$

This is a Fredholm equation of the second kind in $L^{\tilde{p}}\left(\mathbb{R}^{2}\right)$. Uniqueness for the homogeneous problem is ensured by the previous result.

2. The Davey-Stewartson II equation

Davey-Stewartson equation

Davey and Stewartson studied in 1974 three-dimensional packets of surface waves on water of finite depth. It is a partial differential equations for a complex (wave-amplitude) field u. In complex notation $\left(z=x_{1}+i x_{2}, \bar{z}=x_{1}-i x_{2}\right)$ the equation are in a particular case, the Davey-Stewartson II equation (DSII), given by

$$
i u_{t}+u_{z z}+u_{z \bar{z}}+2 u\left(\partial_{\bar{z}}^{-1}\left(|u|^{2}\right)_{z}+\partial_{z}^{-1}\left(|u|^{2}\right)_{\bar{z}}\right)=0, \quad z \in \mathbb{C}, t>0
$$

The equation is equipped with an initial condition

$$
u(z, 0)=u_{0}(z)
$$

and asymptotic condition

$$
\lim _{|z| \rightarrow \infty} u(z, t)=0
$$

This system is an example of a soliton equation in two spatial + one time dimenions.

The linearized DSII

The linearized DSII

$$
2 i u_{t}+u_{x_{1} x_{1}}-u_{x_{2} x_{2}}=0, u(z, 0)=u_{0}, \lim _{|z| \rightarrow \infty} u(z, t)=0
$$

Solved via the Fourier transform

$$
\begin{aligned}
& \hat{\phi}(k)=\int_{\mathbb{R}^{2}} \phi(x) e^{-i x \cdot k} d x, \quad x, k \in \mathbb{R}^{2} \\
& \phi(x)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \phi(k) e^{i x \cdot k} d k .
\end{aligned}
$$

Then

$$
2 i \hat{u}_{t}=\left(k_{1}^{2}-k_{2}^{2}\right) \hat{u} .
$$

Linear ODE for $\hat{u}(k, t)$, trivially solved by

$$
\begin{aligned}
\hat{u}(k, t) & =\hat{u}_{0}(k) e^{-\frac{1}{2} i\left(k_{1}^{2}-k_{2}^{2}\right) t} \\
\Leftrightarrow \quad u(x, t) & =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{u}_{0}(k) e^{-\frac{1}{2} i\left(k_{1}^{2}-k_{2}^{2}\right) t+i x \cdot k} d k
\end{aligned}
$$

Solving linearized DSII by $\bar{\partial}$-method

The linearized DSII is equivalent to the two compatibility conditions for the spectral function $m(z, t, k)$ depending on spectral parameter $k \in \mathbb{C}$:

$$
\begin{align*}
m_{\bar{z}}+i k m & =u \tag{1}\\
m_{t}+i m_{z z}+i k^{2} m & =i m_{\bar{z}}+k u . \tag{2}
\end{align*}
$$

The equations (1)- (2) constitute a Lax pair for the linearized DSII.
Strategy: Construct solution to (1), take the $\partial_{\bar{k}}$ derivative to get scattering / inverse scattering transform. Then look for evolution of the scattering data...

Constructing the spectral function

Equation (1) is equivalent to

$$
\partial_{\bar{z}}\left(m e^{i(k \bar{z}+z \bar{k})}\right)=u(z, t) e^{i(k \bar{z}+z \bar{k})}
$$

Let us suppress notation

$$
\begin{equation*}
\partial_{\bar{z}}(m e(z, \bar{k}))=u(z, t) e(z, \bar{k}), \quad e(z, k)=e^{i(z k+\bar{z} \bar{k})} \tag{3}
\end{equation*}
$$

Solved by the Solid Cauchy transform

$$
m(z, t, k)=\frac{1}{\pi} \int \frac{u\left(z^{\prime}, t\right)}{z-z^{\prime}} e\left(z^{\prime}-z, \bar{k}\right) d \mu\left(z^{\prime}\right)
$$

Let us apply the $\partial_{\bar{k}}$ operator:

$$
\begin{aligned}
\partial_{\bar{k}} m(z, t, k) & =\frac{1}{\pi} \int_{\mathbb{R}^{2}} u\left(z^{\prime}, t\right) e\left(z^{\prime}-z, \bar{k}\right) d \mu\left(z^{\prime}\right) \\
& =\tilde{u}(k, t) e(z,-\bar{k})
\end{aligned}
$$

with

$$
\tilde{u}(k, t)=\int_{\mathbb{R}^{2}} u\left(z^{\prime}, t\right) e\left(z^{\prime}-z, \bar{k}\right) d \mu\left(z^{\prime}\right)=\hat{u}(-2 k, t) .
$$

Same structure as (3)!! Moreover $\lim _{k \rightarrow \infty} m=0$ and hence

$$
\begin{equation*}
m(z, t, k)=\frac{1}{\pi^{2}} \int_{\mathbb{R}^{2}} \frac{\tilde{u}\left(k^{\prime}, t\right)}{k-k^{\prime}} e\left(z,-\overline{k^{\prime}}\right) d \mu\left(k^{\prime}\right) \tag{4}
\end{equation*}
$$

Inserting the rhs in (3) yields

$$
u(z, t)=\frac{1}{\pi^{2}} \int_{\mathbb{R}^{2}} \tilde{u}\left(k^{\prime}, t\right) e\left(z,-\overline{k^{\prime}}\right) d \mu\left(k^{\prime}\right)
$$

The evolutionary part (2) can now be used to show that necessarily the spectral function $\tilde{u}(k, t)$ evolves according to

$$
\tilde{u}_{t}+i\left(k^{2}+\bar{k}^{2}\right) \tilde{u}=0 .
$$

Solution

$$
\tilde{u}(k, t)=\tilde{u}_{0}(k) \exp \left(-i\left(k^{2}+\bar{k}^{2}\right) t\right)
$$

By inversion of the scattering transform

$$
u(z, t)=\frac{1}{\pi^{2}} \int_{\mathbb{R}^{2}} \tilde{u}_{0}\left(k^{\prime}\right) e\left(z,-\overline{k^{\prime}}\right) e^{-i\left(k^{2}+\bar{k}^{2}\right) t} d \mu\left(k^{\prime}\right)
$$

Same formula as before - but different method.
Second method generalizes to non-linear DSII!

$\bar{\partial}$-method for DS II

Lax pair for spectral vector $\Psi(z, k, t)=\left(\psi_{1}(z, k, t), \psi_{2}(z, k, t)\right)$:

$$
\begin{align*}
& \partial_{\bar{z}} \psi_{1}=u \psi_{2}, \quad \partial_{z} \psi_{2}=\bar{u} \psi_{1} \tag{5}\\
& i\left(\psi_{1}\right)_{t}+\left(\psi_{1}\right)_{z z}+u\left(\psi_{2}\right)_{\bar{z}}-u_{\bar{z}} \psi_{2}+2 \partial_{\bar{z}}^{-1}\left(\left(|u|^{2}\right)_{z} \psi_{1}\right)=0 \tag{6}\\
&-i\left(\psi_{2}\right)_{t}+\left(\psi_{2}\right)_{\overline{z z}}-\bar{u}\left(\psi_{1}\right)_{z}+\bar{u}_{z} \psi_{1}+2 \partial_{z}^{-1}\left(\left(|u|^{2}\right)_{\bar{z}} \psi_{2}\right)=0 . \tag{7}
\end{align*}
$$

As before the equations above has a solution $\left(\psi_{1}, \psi_{2}\right)$ if and only if u satisfies DSII.

The elliptic system (5) has an associated scattering / inverse scattering transform, which enables the solution of DSII.

3. Scattering transform, inverse scattering transform and the $\bar{\partial}$-equation

The direct scattering transform

We suppress the t-variable and write the equation in the form

$$
(D-Q) \Psi=0, \quad D=\left(\begin{array}{cc}
\partial_{\bar{z}} & 0 \\
0 & \partial_{z}
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & u \\
\bar{u} & 0
\end{array}\right) .
$$

and look for Jost solutions

$$
\Psi(z, k)=e^{i z k} m(z, k)=e^{i z k}\binom{m_{1}(z, k)}{m_{2}(z, k)}
$$

with asymptotic behaviour

$$
\lim _{|z| \rightarrow \infty} m=\binom{1}{0}
$$

The equations for m_{1}, m_{2} :

$$
\partial_{\bar{z}} m_{1}=u m_{2}, \quad\left(\partial_{z}+i k\right) m_{2}=\bar{u} m_{1} .
$$

The Jost solutions

Lemma: Suppose $Q \in L^{2}\left(\mathbb{R}^{2}\right)$. Then there is a unique Jost solution. Proof: The functions

$$
m_{ \pm}=m_{1} \pm \overline{m_{2}} e(z,-k)
$$

satisfy the $\bar{\partial}$-equation

$$
\partial_{\bar{z}} m_{ \pm}= \pm u e(z,-k) \overline{m_{ \pm}}
$$

together with the asymptotic condition $\lim _{|z|} m_{ \pm}=1$. Such an equation has a unique solution whenever $u \in L^{2}\left(\mathbb{R}^{2}\right)$.

In addition it can be shown that with respect to the spectral parameter k the solution satisfies

$$
\lim _{|k| \rightarrow \infty}\binom{m_{1}}{m_{2}}=\binom{1}{0} .
$$

The scattering transform

The scattering data is now defined by the formula

$$
S(k)=\frac{-i}{\pi} \int_{\mathbb{R}^{2}} e(z,-k) \bar{u}(z) m_{1}(z, k) d \mu(z)
$$

The mapping $u \mapsto S$ will be called the scattering transform.
Notice the familiarity with the Fourier transform; we can think of it as a non-linear Fourier transform. For $u \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ one can show that

- $S \in \mathcal{S}\left(\mathbb{R}^{2}\right)$
- $\|S\|_{L^{2}\left(\mathbb{R}^{2}\right)}=\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}$

Asymptotically

$$
\lim _{|k| \rightarrow \infty} S(k)=\hat{u}\left(2 k_{1},-2 k_{2}\right) .
$$

The $\bar{\partial}$-equation

Applying the operator $\partial_{\bar{k}}$ to the Jost solution gives the following

$$
\partial_{\bar{k}}\left(m_{1} \pm m_{2}\right)= \pm S(k) e(z,-k) \overline{\left(m_{1} \pm m_{2}\right)} .
$$

Now this is again a $\bar{\partial}$-equation, now in the k variable. These equations have unique solutions, and hence we can from the scattering data $S(k)$ compute the Jost solution $\left(m_{1}, m_{2}\right)$. Moreover we retrieve the potential

$$
u(z)=\frac{-i}{2 \pi} \int_{R^{2}} m_{1}(z, k) e(z,-k) \overline{S(k)} d \mu(k)
$$

Facilitated by the Jost solution we then have the inverse scattering transform

$$
S \mapsto u
$$

Evolution of scattering transform

When $u(z, t)$ solves DSII, then we can consider the assocated scattering transform $S(k, t)$. From the evolutionary part of the Lax equation it follows that

$$
\frac{d}{d t} S(k, t)=\left(k^{2}+\bar{k}^{2}\right) S(k, t) \Leftrightarrow S(k, t)=S_{0}(k) e^{\left(k^{2}+\bar{k}^{2}\right) t}
$$

Applying the inverse scattering transform yields

$$
u(z, t)=\frac{-i}{2 \pi} \int_{\mathbb{R}^{2}} m_{1}(z, k, t) e(z,-k) \overline{S(k, t)} d \mu(k)
$$

with $m_{1}(z, k, t)$ found from
$\partial_{\bar{k}}\left(m_{1}(z, k, t) \pm m_{2}(z, k, t)\right)= \pm S(k, t) e(z,-k) \overline{\left(m_{1}(z, k, t) \pm m_{2}(z, k, t)\right)}$.

Picture

The solution strategy for the DSII

- The solution strategy opens up for theoretical analysis of DSII
- Could be used as basis for numerical computations

4. Numerical solution of the $\bar{\partial}$-equation

Numerical solution of the $\bar{\partial}$-equation

With J. Mueller and S. Siltanen.
For the scattering / inverse cattering problem solving a $\bar{\partial}$-equation is important. We will now consider the numerical solution of such an equation: We would like to solve the integral equation

$$
\begin{equation*}
v(k)=1-\frac{1}{\pi} \int_{\mathbb{R}^{2}} \frac{T\left(k^{\prime}\right)}{k-k^{\prime}} \overline{v\left(k^{\prime}\right)} d k_{1}^{\prime} d k_{2}^{\prime}, \quad k=k_{1}^{\prime}+i k_{2}^{\prime} \in \mathbb{C} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
v(k)=1-g *(T(k) \overline{v(k)}) . \tag{9}
\end{equation*}
$$

Assume that T is compactly supported in a bounded domain Ω.

Inspired by G. Vainikko:
Let $S=[-s, s]^{2}$ be a square such that $\bar{\Omega} \subset S$. Choose $m \in \mathbb{Z}_{+}, M=2^{m}, h=2 s / M$. Define a grid $\mathcal{G}_{m} \subset S$ by

$$
\begin{aligned}
& \mathcal{G}_{m}=\left\{j h \mid j \in \mathbb{Z}_{m}^{2}\right\} \\
& \mathbb{Z}_{m}^{2}=\left\{j=\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{2} \mid-2^{m-1} \leq j_{l}<2^{m-1}\right\}
\end{aligned}
$$

Grid approximation $\phi_{h}: \mathbb{Z}_{m}^{2} \rightarrow \mathbb{C}$ of a function ϕ by

$$
\phi_{h}(j)=\phi(j h), \quad \text { for } j \in \mathbb{Z}_{m}^{2}
$$

Grid approximation of Green's function:

$$
g_{h}(j)= \begin{cases}g(j h) & j \in \mathbb{Z}_{m}^{2}, j \neq(0,0) \\ 0 & j=(0,0)\end{cases}
$$

Discrete approximation

The discrete convolution operator A_{h}

$$
\left(A_{h} \phi_{h}\right)(j)=h^{2} \sum_{l \in \mathbb{Z}_{m}^{2}} g_{h}(j-l) \phi_{h}(I), \quad \text { for } j \in \mathbb{Z}_{m}^{2}
$$

Important fact:

$$
A_{h} \phi_{h}=h^{2} \operatorname{IFFT}\left(\operatorname{FFT}\left(g_{h}\right) \cdot \operatorname{FFT}\left(\phi_{h}\right)\right)
$$

i.e. the implementation is fast.

We approximate the integral equation by the discrete eqation

$$
\begin{equation*}
\left[I+A_{h}\left(T_{h} \cdot^{-}\right)\right] w_{h}=1 \tag{10}
\end{equation*}
$$

It has a solution for sufficiently large m. The equation is rela linear, so by keeping real and imaginary parts seperately we can solve the linear system using GMRES.

- Linear convergence of algorithm
- Complexity of algorithm is $\emptyset\left(M^{2} \log (M)\right)$
- Complexity of scattering / inverse scattering transform is $\varnothing(M t \log (M))$
- Multigrid extension of algorithm is possible.
- Speed up possible (Huhtanen and Perämäki, 2010)

Pictures of potential and reconstruction

Picture of scattering data

Conclusions

- Scattering /inverse scattering transform is a non-linear, generalized Fourier transform
- Facilitates the solution of DSII
- Several inverse problems can be solved using Scattering /inverse scattering - inverse conductivity problem tomorrow
- Radon transform and inversion formula can be found using similar ideas
- Novikov inversion formula for attenuated Radon transform can also be found using similar ideas

