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1. A primer on complex analysis
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A primer on complex analysis

Concerns properties of functions f: C — C.
Special attention is given to the operators 9 and 0 defined by

= 1 . 1 .
3:%: E(ax1 +Ia)(2), 82822 §(8X1 _Iaxz),

where the variables are z = x; + ixo.
We call a function analytic in the domain € if

u=0 zeq.

Liouville’s theorem:
Suppose u is analytic on C and bounded. Then u is constant.
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Pseudo-analytic functions

The 0-equation has the form
ou(z) = a(2)u(z), z € Q.

We say that such a u is pseudoanalytic in Q.
In the sequel we will consider the 0-equation in the whole plane

ou(z) = a(2)u(z), ze C
assuming
ac 27N [2T¢(R?)

We would like to solve this equation in L9(C).
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The solid Cauchy operator

To transform the d-equation to an integral equation we need a
§_1-operator. This is achived by convolution with Green’s function for
0 :

09(2) = —dp(z2) with  lim g(z) =0

|z|]—o0

coz) =0 o)=L [ X auz)

rR2Z—2'
Satisfies for ¢ € S(R?)
90 'o=0, 0 0p=0
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Properties of 9 '

Mapping properties:

5 1 2-p
(%) P(R2), 1 <p<2, 1 =2
C: [P N LP(R?) = C*(R2), a=1— 5
2

For a € L?(R?) the operator
u— C(au)

is compact in L"(R?) for any r > 2.
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Integral equation of the 2nd kind
Let us apply C to the equation

ou=au+f.
Then
u— C(au) = C(f)
1 [a)u(Z)
s u@)- [ 2 gz~ F@). F-ci)
Integral equation in LP(R?).
For a € L?(R?) the operator u — C(al) is real-linear and compact on
L"(R?), r > 2.: Fredholms alternative states that either
1. (I- C(a 7))~ ! exists or
2. the homogeneous problem
(u—C(au))=0

has a nontrivial solution.
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Liouville’s theorem for pseudoanalytic functions

Suppose a € L?(R?). Then if u € LP(R?) satisfies the equation
ou=au
we have u = 0.

Proof: Define w = uexp(—C(al)). Then (if a € L27< N L2+(R?)) w is
bounded and satisfies

ow = 0.

Hence w = 0 which implies u = 0.
The case a € L?(R?) is more delicate...
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0-equation with asymptotic condition
As a consequence of the previous result we have

Lemma:
Suppose a € LP N L2(R?). Then the equation

has a unique solution which satisfies m — 1 € LP(R?).
Proof: The function m — 1 satisfies the integral equation
m—1=C(a(m—1))+ C(a).

This is a Fredholm equation of the second kind in LP(R?). Uniqueness
for the homogeneous problem is ensured by the previous result.
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2. The Davey-Stewartson Il equation
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Davey-Stewartson equation

Davey and Stewartson studied in 1974 three-dimensional packets of
surface waves on water of finite depth. It is a partial differential
equations for a complex (wave-amplitude) field u. In complex notation
(z = x1 + ixo, Z= Xy — ix2) the equation are in a particular case, the
Davey-Stewartson Il equation (DSII), given by

iUt + Uzz + Ugzz +20(82 (|uf?)2 + 07 '(Jul?)z) =0, z€C, t>0.
The equation is equipped with an initial condition
u(z,0) = up(2)
and asymptotic condition

lim u(z,t)=0.
|z]—o0
This system is an example of a soliton equation in two spatial + one

time dimenions.
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The linearized DSII
The linearized DSII

2iUt + Ux,x, — Uxpx, = 0, U(Z2,0) = up, lim u(z,t) =0.

|z|]—o0
Solved via the Fourier transform
= / p(x)e" kdx, x, k € R?
RZ
1

) = p |, AR Kk
Then
2ily = (k? — k2)0.
Linear ODE for d(k, t), trivially solved by
u

(k. ) = Bo(k)e™#(KFKD)!
u(x,

) = (21)2/ (k)6 SiK—R) ik g
R2
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Solving linearized DSII by 9-method

The linearized DSlI is equivalent to the two compatibility conditions
for the spectral function m(z, t, k) depending on spectral parameter
keC:

mz + ikm = u, (1)
m; + imzz + ik?m = im5 + ku. (2)

The equations (1)- (2) constitute a Lax pair for the linearized DSII.

Strategy: Construct solution to (1), take the J, derivative to get
scattering / inverse scattering transform. Then look for evolution of
the scattering data...
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Constructing the spectral function

Equation (1) is equivalent to
B:( mei(kﬂzﬁ)) = u(z, 1) ei(k?—&-z?)‘
Let us suppress notation
dz(me(z,k)) = u(z, t)e(z, k), e(z, k) = e/(Z+7k),

Solved by the Solid Cauchy transform

m(z,t,k) = % / ’“;(Z' ’Zt,) e(z — 2, K)du(Z).
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Let us apply the & operator:

oem(z,t, k) = 717/ u(Z,te(z' — z, k)du(z')
R2

= Uk, H)e(z, —k),

with
bk, 1) = / U2, t)e(Z — 2, K)du(2) = O(—2k, 1),
R2

Same structure as (3)!! Moreover lim,_,., m = 0 and hence

m(z,t, k) = % /R 2 L/I<(li kt,) e(z, —K)du(K'). (4)

Inserting the rhs in (3) yields

uz 1) = / b(k', H)e(z, —K)du(K').
RZ

2
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The evolutionary part (2) can now be used to show that necessarily
the spectral function t(k, t) evolves according to

b + i(k? + K°)0 = 0.
Solution
bk, t) = do(k)exp(—i(k? + K)1).

By inversion of the scattering transform

J— . —2
u(z,t) = % /R lo(K')e(z, —k')e I+t gy (K'Y,

Same formula as before - but different method.

Second method generalizes to non-linear DSII!
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0-method for DS Il

Lax pair for spectral vector V(z, k,t) = (¢1(z, Kk, t),¢2(2, k, 1)) :
0701 = U2,  Oz2 = Uty (5)

i(W1)e + (V1) 2z + U(2)z — Ustho + 202 ((|ul?)z11) =0 (6)
—i(2)t + (V2)zz — U(t1)z + Uzthr + 207" (([ufP)zb2) = 0. (7)

As before the equations above has a solution (1, ¢2) if and only if u
satisfies DSII.

The elliptic system (5) has an associated scattering / inverse
scattering transform, which enables the solution of DSII.
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3. Scattering transform, inverse scattering transform
and the 9-equation
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The direct scattering transform
We suppress the f-variable and write the equation in the form

d 0 (0 u
o-aw-o o-(% 8). o= (2 8).

and look for Jost solutions

W(z,k) = €%m(z, k) = % (%g? k))

lim m= 1
Izl—soo  \O

Ozmy = umso, (07 + ik)me =1um;.

with asymptotic behaviour

The equations for my, ms :
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The Jost solutions

Lemma: Suppose Q < L?(R?). Then there is a unique Jost solution.
Proof: The functions

my = my + moe(z, —k)
satisfy the 9-equation
Ozmy = tue(z, —k)my

together with the asymptotic condition lim; m.. = 1. Such an
equation has a unique solution whenever u € L?(R?).

In addition it can be shown that with respect to the spectral parameter

k the solution satisfies
im (™) = (1
lk|—00 \ /M2 0/)"
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The scattering transform

The scattering data is now defined by the formula

S(k) = ! /R _e(z.~K)u(z)m(z, K)dju(2).

™

The mapping u — S will be called the scattering transform.

Notice the familiarity with the Fourier transform; we can think of it as a
non-linear Fourier transform. For u € S(R?) one can show that

e Sc S(R?)
* [[Sllemey = llull 2(r2)
Asymptotically

lim S(k) = fl(2k1,—2k2).

|K|—o0
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The 0-equation
Applying the operator 9, to the Jost solution gives the following
Ok(my £ mp) = £S(k)e(z, —k)(my + mp).
Now this is again a d-equation, now in the k variable. These
equations have unique solutions, and hence we can from the

scattering data S(k) compute the Jost solution (my, my). Moreover
we retrieve the potential

uz) = [ mi(z.Ketz. ~K)SHu (k)

Facilitated by the Jost solution we then have the inverse scattering
transform

S—u.
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Evolution of scattering transform

When u(z, t) solves DSII, then we can consider the assocated
scattering transform S(k, t). From the evolutionary part of the Lax
equation it follows that

S;S(k t) = (K —|—R2)S(k, t) & S(k,t) = So(k)e(kz-@z)t‘

Applying the inverse scattering transform yields

u(z, 1) / my(z, k, t)e(z, —k)S(k, 1)du(k)

with my(z, k, t) found from

(my(z, k,t) £ mo(z,k, 1)) = £S(k, t)e(z, —k)(m1(z, k, t) £ ma(z, k, 1)).
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Picture

The solution strategy for the DSII

scattering transform

Uo(2) So(k)
DSIIJ lLinear evolution
u(zt) S(k, t) = So(K)e(k*+K )t

inverse scattering transform

e The solution strategy opens up for theoretical analysis of DSII
e Could be used as basis for numerical computations
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4. Numerical solution of the 9-equation
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Numerical solution of the 9-equation

With J. Mueller and S. Siltanen.

For the scattering / inverse cattering problem solving a 9-equation is
important. We will now consider the numerical solution of such an
equation: We would like to solve the integral equation

v(k):11/Rz kT(_k;()/

v(k'akjdky, k=K, +ik,cC, (8)
or

v(k) =1 -9« (T(k)v(k)). )
Assume that T is compactly supported in a bounded domain Q.
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Inspired by G. Vainikko: -
Let S = [—s, s]? be a square such that Q ¢ S. Choose
meZy, M=2" h=2s/M. Define a grid G, C S by

gm = {jh‘j c Z?n}a
78 ={j = (j,fo) € %] —2™ ' <ji< 2™}

Grid approximation ¢y, : Z2, — C of a function ¢ by
on(f) = o(jn),  forj € 74,
Grid approximation of Green’s function:

N _ Ja(ih) jeZs,j#(0,0)
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Discrete approximation
The discrete convolution operator Ay

(Andn)(d) = 02>~ gnli — Nen()), for j € 75,

lez?,
Important fact:
Anén = WP IFFT(FFT(gn) - FFT(¢n)),

i.e. the implementation is fast.
We approximate the integral equation by the discrete eqation

[I+Ah(Th'_)]Wh:1. (10)

It has a solution for sufficiently large m. The equation is rela linear, so
by keeping real and imaginary parts seperately we can solve the
linear system using GMRES.
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e Linear convergence of algorithm

o Complexity of algorithm is @(M? log(M))

e Complexity of scattering / inverse scattering transform is
@(Mtlog(M))

¢ Multigrid extension of algorithm is possible.

e Speed up possible (Huhtanen and Peramaki, 2010)

‘d-method 30/33



Pictures of potential and reconstruction
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Picture of scattering data

Scattering transform (absolute value), one-grid method
20
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Conclusions

e Scattering /inverse scattering transform is a non-linear,
generalized Fourier transform

e Facilitates the solution of DSII

e Several inverse problems can be solved using Scattering
/inverse scattering - inverse conductivity problem tomorrow

e Radon transform and inversion formula can be found using
similar ideas

e Novikov inversion formula for attenuated Radon transform can
also be found using similar ideas
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