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Content of this minicourse

Monday Nonlinear wave motion in 1D, the Korteweg - deVries
equation, solitons and the inverse scattering method

Wednesday Complex analysis, Davey-Stewartson II system,
∂-equation and its solution (theoretical and numerical)

Thursday The inverse conductivity problem, solution by the ∂
method in 2D and 3D
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Outline

1. Solitary waves and the KdV-equation
2. The Borg-Levinson problem
3. An inverse scattering problem
4. The Gelfand-Levitan inversion
5. Inverse scattering method for the KdV-equation
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1. Solitary waves and the KdV-equation
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Waves of translation

First observed by John Scott Russell on the Union
Canal at Hermiston, Scotland, in 1834, when he was
conducting experiments for the design of canal boats.
Described to the British Association for the Advance-
ment of Science in 1844:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat

suddenly stopped not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the

vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a

large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel

apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of

some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of

August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of

Translation.”
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Russell’s experimets
From Russell’s report
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The linear wave equation
The linear wave equation in 1D has the form

utt − c2uxx = 0, x ∈ R, t > 0.

Equivalent to

(∂t − c∂x)(∂t + c∂x)u = 0.

Equiped with asymptotic conditions and initial conditions

lim
|x |→∞

u = 0, u(x ,0) = φ(x), ut(x ,0) = ψ(x).

The solution has the form of two waves traveling in opposite
directions

u(x , t) = f (x − ct) + g(x + ct),

f (x) =
φ(x)− c−1ψ(x)

2
, g(x) =

φ(x) + c−1ψ(x)
2

.
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The Korteweg - de Vries equation
Solitary waves were studied further by Joseph Boussinesq (1871)
and Lord Rayleigh (1876).

A reasonable mathematical model of waves on shallow water was
formulated by Korteweg and de Vries (1895) - the KdV equation:

ut + uxxx + 6uux = 0 x ∈ R, t > 0.

• Assumption: wave height is small compared to the depth, which
again is small compared to the wave length.

• This is a non-linear, dispersive wave-equation.

The equation is equipped with the conditions

lim
|x |→∞

u = 0, u(x ,0) = φ(x).
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Traveling wave solution

Let’s look for traveling wave solutions to the KdV equation:

u(x , t) = f (x − ct),

such that u and its derivatives tend to zero for large x .
Wave speed equals c.

Insert u into

ut + uxxx + 6uux = 0 x ∈ R, t > 0.

Gives the ODE

−cf ′ + f ′′′ + 6ff ′ = 0.
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Solving the ODE
Integrating the ODE gives

− cf ′ + f ′′′ + 6ff ′ = 0

⇔ − cf + f ′′ + 3f 2 = a

⇔ − c
2

f 2 +
1
2
(f ′)2 + f 3 = af + b

Decay condition implies a = b = 0. The solution to the ODE now
turns out to be

f (y) =
c
2

sech2
(√

c
2

(y − y0)

)
, with y0 ∈ R.

Recall

sech(y) =
1

cosh(y)
=

2
ey + e−y .

These traveling wave solutions were already found by Joseph
Boussinesq and Lord Raleigh.

∂-method 10/31



The wave of translation
Height of f proportional to c; width of f proportional to

√
c.

f can be
• fast, tall and thin Movie fast
• slow, low and fat. Movie slow
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Solitons, interaction and stability
Invention of computers enabled a numerical investigation of solutions
of the KdV equation by Zabusky and Kruskal in 1965.
Let us look at a numerical solution to the KdV equation with initial
condition

u0(x ,0) =
1
2

sech2
(

1
2

x
)
+ sech2

(√
2

2
(x − x0)

)
. Movie

Let us take other initial conditions

u(x ,0) = sech2(x/8). Movie

u(x ,0) =
2

1 + x2 . Movie

Realized that the solution to the KdV equation consist of a
superposition of solitary waves, solitons, moving left and a wave train
moving right.
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Conclusion from early studies and numerical
experiments

• The KdV-equation has traveling wave solutions, solitons
• The solitons are remarkably stable
• The interaction of the solitons is non-linear, but the solitons

comes out unchanged
• All initial data gives rise to solitons moving left and a wave train

moving right.
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2. The Borg-Levinson problem
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The Sturm-Liouville problem

Let 0 ≤ x ≤ 1 suppose q ∈ L2((0,1)) is real. Consider the
Schrödinger equation

Lu =

(
− d2

dx2 + q
)

u = 0.

Eigenvalue problem

Lφ = λφ,

φ(0) = 0, φ′(1) = 0.

Sequence of eigenvalues {λn}∞n=1 with λn →∞ as n→∞, and
associated eigenfunction φn.

We normalize φn such that φ′n(0) = 1.
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Ambartsumyan’s result

Example: for the free problem q = 0 we have

λn = n2π2, φn(x) =
sin(nπx)

nπ
, n ∈ N.

Ambartsumyan (1929): The only operator with spectrum λn = n2π2 is
the free operator, i.e. (q = 0).
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Borg-Levinson

Direct problem: Determine the spectrum {λn} for a potential q.
“Determine the tones of a guiter string from knowledge of the physical
properties of the string”

Inverse problem: Determine the potential q from the spectrum {λn}.
“ Determine the physical properties of a guitar string from its tones”

One sequence of eigenvalues is insufficient (clearly from symmetry)

Borg (1946) - Levinson (1949) theorem:
Knowledge of the spectrum λn and normalising constants
cn = ‖φn‖L2((0,1)) determines the potential.

Alternatively, another spectrum from different boundary conditions
together with {λn} suffices for uniqueness.
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3. An inverse scattering problem
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Schrödinger operator on the line
Assume q is real and satisfies∫

R
(1 + |x |)|q(x)|dx ≤ ∞.

Consider the Schrödinger operator in L2(R)

Lu =

(
− d2

dx2 + q
)

u.

The spectrum is now more complicated:
1. Eigenvalues: λn ∈ σdisc ⊂ R such that there is an eigenfunction

φn ∈ L2(R) with

Lφn = λnφn.

2. Continuous spectrum: λ ∈ σcont ⊂ R such that (L− λ) is not
bijective, but λ is not an eigenvalue.
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Examples
Example 1: For q = 0, σcont = ∅ and σdisc = [0,∞).

Example 2: For q = 1/r (the Hydrogen atom) σdisc = {− 1
n2 : n ∈ N}

and σcont = [0,∞).

In general under our assumption

σdisc ⊂ R−, σcont = R+.

As before there is more spectral information than just the actual
spectrum (e.g. the impact of eigenvalues). Best described by a
spectral measure ρ(λ).
In Example 1

ρ(λ) = λ3/2dλ, λ > 0.

Inverse problems: Does ρ determine q?
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A scattering problem
The spectrum has a counterpart in scattering theory:

1. For the eigenvalues λn = −k2
n ∈ σdisc, the normalized

eigenfunction ψn (‖φn‖ = 1) satisfies

ψn = cne−knx as x →∞.

The cn’s are called normalizing constants.
2. For λ = k2 ∈ σcont there is a generalized eigenfunction ψ(x , k)

with Lψ = λψ which satisfies the asymptotic condition

ψ ∼ e−ikx + R(k)eikx as x →∞,
ψ ∼ T (k)e−ikx as x → −∞.

R(k) and T (k) are called the reflection and transmission
coefficients, respectively.
The spectral measure ρ(λ) is equivalent to the scattering data
λn, cn,R,T .
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Direct/inverse scattering problem

Direct scattering problem:
Given the potential q, find the eigenvalues λn and normalizing
constants cn, and the reflection and transmission coefficients
R(k),T (k .)

Inverse scattering problem:
Given the eigenvalues λn and normalizing constants cn, as well as
the reflection and transmission coefficients R(k),T (k), determine
and compute the potential q.

Inverse problem considered by Gelfand-Levitan (1951), Marchenko
(1952), Kreı̆n (1953)... and more recently by B. Simon (1999).
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4. The Gelfand-Levitan inversion scheme
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The inverse problem: Jost solution

Introduce the Jost solution φk (x)

φk (x) = eikx +

∫ ∞
x

K (x , s)eiksds.

Satisfies

φk (x)→ eikx as x →∞.

The kernel K (x , y) can be computed from q (by solving a so-called
Goursat problem).
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Gelfand-Levitan integral equation

Remarkable property: K satisfies the Gelfand-Levitan integral
equation

K (x , y) + B(x + y) +
∫ ∞
−∞

K (x , s)B(s + y)ds = 0, (1)

where B is given by the spectral information

B(z) =
∞∑

n=1

c2
ne−knz +

1
2π

∫ ∞
−∞

R(k)eikzdk .

The equations (1) is a solvable Fredholm equation of the second kind.
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Inversion scheme

1. Given the scattering data λn, cn,R(k); compute B(z).
2. Solve the Gelfand-Levitan integral equation for K .
3. Compute q(x) = −2 d

dx K (x , x).

Scattering transform:

q 7→ (kn, cn,R(k)).

Inverse scattering transform

(kn, cn,R(k)) 7→ q.
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5. Inverse scattering method for the KdV-equation
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Inverse scattering transform and KdV
Gardner, Greene, Kruskal and Miura, 1967 showed that the solutions
of the KdV equation and the solitons can be explained by the inverse
scattering transform!!

Denote by u(x , t) the solution of the KdV equation. Consider t as a
parameter, and let us regard the function u(x , t) as a potential in the
Schrödinger equation:

− d2

dx2φ(x) + u(x , t)φ(x) = λφ(x).

Let us denote the scattering data by (λn(t), cn(t),R(t)).
The evolution of the scattering data turns out to be linear:

d
dt
λn = 0,

d
dt

cn(t) = 4k3
n cn(t),

d
dt

R(t) = 8ik3R(t).
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Thus

λn(t) = λn(0), cn(t) = cn(0)e4k3
n t , R(t) = R(0)e8ik3t .

The solution u(x , t) to the KdV equation can then be determined by
the inverse scattering transform:

(λn, cn(t),R(k , t)) 7→ u(x , t).

Schematic:

u0(x)
scattering transform−−−−−−−−−−−→ (λn, cn(0),R(k ,0))y yLinear evolution

u(x , t) ←−−−−−−−−−−−−−−−−
inverse scattering transform

(λn, cn(t),R(k , t))

Impact of the spectrum on the solution:
• Eigenvalues: solitons moving right
• Continuous spectrum: Wave train moving left
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Lax pairs
Peter Lax discovered in 1968 a way to explain the inverse scattering
method. Introduce two linear operators, L,B, and consider the two
equations

Lψ = λψ

ψt = Bψ.

In the concrete problem we could take

L = − d2

dx2 + u, B = −4
d3

dx3 + 6u
d
dx

+ 3
∂u
∂x
.

The two two linear equations are compatible if and only if u satisfies
the KdV equation.
Moreover, one can show that the evolution of the spectrum λ is
constant if and only if

Lt = [B,L] = BL− LB. (2)

The operators L,B is called the Lax pair and the equation (2) is called
the Lax equation.
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Applications of solitons

Modern applications of solitons include
1. Plasma physics
2. Optical fiber communication

The ideas behind have led to computational methods and enormous
insight in the field of Inverse Problems.
More on Wednesday...
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