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- Newton's method

Newton's method

F'O) (i —x0) = ¥° = F(xQ).-
formulation as least squares problem

e ly® = FOxR) = F'(x)(x = x)lI12

~> ill-posedness ~~ apply Tikhonov regularization:
Levenberg-Marquardt method:

)
x€D(F

Iteratively regularized Gauss-Newton method (IRGNM)

min, Hy = F(x) = F/() (x = x) 12 + auelx — xol|>

min Hy = FO) = FOR) 0 =312 + allx = x|,

(2)

(3)

choice of sequence ay and convergence anaylsis different for both

methods.
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L Levenberg-Marquardt

Levenberg-Marquardt

Xer1 =%+ (FOR)F0R) + ar) T OR) (v = FO)), (4)
Choice of ay:
ly* = FOR) = F'O) (a(an) =Xl = ally’ = FOI (5)

for some g € (0,1) ~~ inexact Newton method.
(5) has a unique solution «y provided that for some v > 1

ly® = FO) = F/Oq) (T =Xl < 21y° = F)Il-— (6)
which can be guaranteed by a condition on F: Vx,X € Bo,(x0) C D(F)
IF(x) = F(%) = F'()(x = X)|| < cllx = %] [IF(x) = F)I . (7)
Choice of stopping index k: discrepancy principle:
ly* = FO)Il <78 < Iy’ = FOQIl. 0<k <k, (8)
[Hanke 1996]
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LMonotonicity of the errors

Levenberg-Marquardt: Monotonicity of the errors

Theorem

Let 0 < g < 1 <~ and assume that F(x) =y has a solution and
that (6) holds so that o can be defined via (5). Then, the
following estimates hold:

§ 8
e = xT11% = lxeys —xH1% = lIxys —x2lI%, (9)

Ixg — xT12 = [|xg41 — xT||2
2(y —1)
> o ly? = F(x0) — F/(x) (xt — x)[|% (10)
2(y=1)(1-q)q
Z 1( 0\ || 2
YIF )

ly® = FO)I1? (11)
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L Monotonicity of the errors

Levenberg-Marquardt: Monotonicity proof
(K Ky +ouc)7Hy’ = FO) = y* = FOx) — Kielxin — x3)

g — X112 = flxf — x|
2(le+1 —xp.xp —x) + HXI(<S+1 — xp||?
= ((KKi + o) — F(xD),
2K — x1) + (KK + aud) KK = F(xD)) )
= 20 (KK + aud) 20— F ()2
— (kg K+ )RG5 — F )2
+2( (KeKi + )72y’ = F()),y® = FO) — Kielx! = x9))
< = e = xBI% =20 Y’ FO) — Kilxfar — X)) -
(Iy® = FOed) = Kicbxan = DI = Iy* = Fxd) = Kilxt = DI

Iy° = FO) = KilxT =)l <97 Hly? = FOQ) — Kby = X1 -
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L Convergence

Levenberg-Marquardt method: Convergence

Theorem

Let 0 < g < 1 and assume that F(x) = y is solvable in B,(xo),
that F' is uniformly bounded in B,(x"), and that the Taylor
remainder of F satisfies (7) for some ¢ > 0. Then the
Levenberg-Marquardt method with exact data y° =y,

Ixo — xT|| < q/c and ay determined from (5), converges to a
solution of F(x) =y as k — oo.

Theorem

Let the assumptions of Theorem 2 hold. Additionally let

ki = k«(3,y°) be chosen according to the stopping rule (8) with
7> 1/q and let ||xg — xT|| be sufficiently small. Then for some
solution x, of F(x) =y

ke(3,y%) = O(L +|Ind|) and ||x{ —x.|| = 0asd —0
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- Convergence rates

Levenberg-Marquardt method: Convergence rates

Theorem
Let a solution xT of F(x) = y exist and let

F'(x) = ReF'(x") and ||I-Ry|| < crllx—xT||, x € B,(x0) C D((Q)’
xJr —x0 = (F/(XT)*F/(XT))‘“V, = N(/_—/(XT))J_ (13)

hold with some 0 < 1 < 1/2 and ||v|| sufficiently small. Moreover,
let o and k. be chosen according to (5) and (8), respectively with
7>2and1l>q>1/7. Then the Levenberg-Marquardt iterates
defined by (4) remain in B,(xo) and converge with the rate

2,
Ix, = xt| = o(s7%1).

[Hanke 2009]
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L Convergence rates

Remarks

» rates with a priori ay, ki:

akx = apg®, forsome a9 >0, qe€(0,1),
c(ko+1)~ 1) “*2 <6< c(kr1) 0T o<k <k,

2
ke = O(+ndl),  lx,—xt = O((6 (14 Ino]) ANzt

[BK&Neubauer&Scherzer 2008]

> generalization to other regularization methods (e.g., CG) in
place of Tikhonov [Hanke 1997], [Rieder 1999, 2001, 2005]
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|teratively regularized Gauss-Newton method (IRGNM)

Xes1 = Xt (F/(xR)"F/(x)+aud ) TH(F/ ()" (v = F (xg)) +ak(x0—x¢)) -

(14)
a-priori choice of ay:
g .
ag >0, 1< <r, lim a, =0, (15)
(a7 k—o0
for some r > 1.
a-priori or a posteriori choice of k,
Iy = FORI <78 < Iy’ = F(x)I,  0<k <k, (16)

[Bakushinski 1992], see also the book [Bakushinski&Kokurin 2004];
[BK&Neubauer&Scherzer 1997], see also the book [BK& Neubauer&Scherzer 2008
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LCon\/ergence and convergence rates

IRGNM: Convergence and convergence rates: idea of proof |
key idea:
[x0, 1 — xT|| &~ o wi (1) with w(s) as in the following lemma.

Lemma
Let K € L(X,)Y), s €[0,1], and let {a} be a sequence satisfying
ay >0 and oy — 0 as k — o0o. Then it holds that

wie(s) == o I(K* K+aud ) HK*K) v < s%(1—=5)" "% [v]| < |lv]]
(17)
and that

lim wi(s) =4 O 0ss<1,
koo T v s=1,

for any v € N(A)*.
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IRGNM: Convergence and convergence rates: idea of proof |

Indeed, in the linear and noiseless case (F(x) = Kx, 0 = 0) we get
from (14) using Kx' = y and (13)

Xk+1 —x!
= xx — X'+ (K*K 4+ ap) YK K (xT = xi) + ax(x0 — xT + xT = xx))
= —a(K*K + ap) LK K)!v

To take into account noisy data and nonlinearity, we rewrite (14) as
x,f+1 —x' = —ap(K*K 4+ apl) L (K*K)"v
— ak(KiK, + akl)’l(K*K - K;Kk) (18)
(K*K + a,)"HK*K)*v
+ (K Ky + ard) TR (y® = F(x) + Kielxg — x1).

where we set Ky := F'(x?), K := F'(x1).
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LConvergence and convergence rates

IRGNM: Convergence and convergence rates

Theorem
Let By,(x0) € D(F) for some p > 0, (15),

FI(8) = R(&%X)F(x)+ Q(%,x)
IM=RE ) < e, IQEX) < collF'(x)(x =)

and

xt—xo = (F'(xX")*F'(x")v, veN(F'(xH)*t
for some 0 < 11 < 1/2, and let k. = k.(d) be chosen according to
the discrepancy principle (16) with 7 > 1. Moreover, we assume
v||, 1/7, p, and cgr are sufficiently small. Then
we obtain the rates

g2

2pu+1

uxi*—xw:{"( ). o
O(\/g)v M=
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LConvergence and convergence rates

Remarks

» The same convergence rates result can be shown with the a
priori stopping rule

N[

ky, — 00 and nzéa,; — 0 as 6 —0. (19)

for 4 =0 and
1 1
nozf:jz << 770/,:4_2 , 0< k< k, (20)

even for 0 < pu < 1.
» The a priori result remains valid under the alternative weak
nonlinearity condition

F'(%) = F(x)R(%,x)  and |l —R(x,x)| < crl% — x||
(21)

for x, X € Boy(xo) and some positive constant cg.
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LCon\/ergence and convergence rates

Further remarks

» logarithmic rates: [Hohage 1997]

> generalization to regularization methods R, (F’'(x)) =~ F'(x)f
in place of Tikhonov [BK 1997]

Xyt = X0+ Ray (F ()’ = F(x) = F' () (xo = 1)) - (22)

continuous version [BK&Neubauer&Ramm 2002]
projected version for constrained problems [BK&Neubauer 2006]
analysis with stochastic noise [Bauer&Hohage&Munk 2009]

vV v.v Yy

analysis in Banach space [Bakushinski&Konkurin 2004], [BK&
Schopfer&Schuster 2009], [BK& Hofmann 2010]

» preconditioning [Egger 2007], [Langer 2007]
» quasi Newton methods [BK 1998]
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