Iterative solution methods for inverse problems: IV Newton type methods

Iterative solution methods for inverse problems: IV Newton type methods

Barbara Kaltenbacher, University of Graz

22. Juni 2010

Iterative solution methods for inverse problems: IV Newton type methods

overview

Newton's method

Levenberg-Marquardt

Monotonicity of the errors Convergence

Convergence rates

Iteratively regularized Gauss-Newton method (IRGNM)

Convergence and convergence rates

Newton's method

$$F'(x_k^{\delta})(x_{k+1}^{\delta} - x_k^{\delta}) = y^{\delta} - F(x_k^{\delta}). \tag{1}$$

formulation as least squares problem

$$\min_{\mathbf{x} \in \mathcal{D}(F)} \| \mathbf{y}^{\delta} - F(\mathbf{x}_k^{\delta}) - F'(\mathbf{x}_k^{\delta})(\mathbf{x} - \mathbf{x}_k^{\delta}) \|^2$$

→ ill-posedness → apply Tikhonov regularization:

Levenberg-Marquardt method:

$$\min_{x \in \mathcal{D}(F)} \|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x - x_k^{\delta})\|^2 + \alpha_k \|x - x_k^{\delta}\|^2, \quad (2)$$

Iteratively regularized Gauss-Newton method (IRGNM)

$$\min_{x \in \mathcal{D}(F)} \| y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x - x_k^{\delta}) \|^2 + \alpha_k \| x - x_0 \|^2$$
 (3)

choice of sequence α_k and convergence analysis different for both methods.

Levenberg-Marquardt

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})), \quad (4)$$

Choice of α_k :

$$\|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha_k) - x_k^{\delta})\| = q\|y^{\delta} - F(x_k^{\delta})\|$$
 (5)

for some $q \in (0,1) \rightsquigarrow$ inexact Newton method.

$$(5)$$
 has a unique solution $lpha_k$ provided that for some $\gamma>1$

 $\|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x^{\dagger} - x_k^{\delta})\| \leq \frac{q}{\gamma} \|y^{\delta} - F(x_k^{\delta})\|$ (6) which can be guaranteed by a condition on $F: \forall x, \tilde{x} \in \mathcal{B}_{2\rho}(x_0) \subseteq \mathcal{D}(F)$

$$||F(x) - F(\tilde{x}) - F'(x)(x - \tilde{x})|| < c||x - \tilde{x}|| \, ||F(x) - F(\tilde{x})||,$$
 (7)

Choice of stopping index k_* : discrepancy principle:

$$\|y^{\delta} - F(x_{k_*}^{\delta})\| \le \tau \delta < \|y^{\delta} - F(x_k^{\delta})\|, \qquad 0 \le k < k_*,$$
 (8)

[Hanke 1996]

Levenberg-Marquardt: Monotonicity of the errors

Theorem

Let $0 < q < 1 < \gamma$ and assume that F(x) = y has a solution and that (6) holds so that α_k can be defined via (5). Then, the following estimates hold:

$$\|x_k^{\delta} - x^{\dagger}\|^2 - \|x_{k+1}^{\delta} - x^{\dagger}\|^2 \ge \|x_{k+1}^{\delta} - x_k^{\delta}\|^2,$$
 (9)

$$||x_{k}^{\delta} - x^{\dagger}||^{2} - ||x_{k+1}^{\delta} - x^{\dagger}||^{2}$$

$$\geq \frac{2(\gamma - 1)}{\gamma \alpha_{k}} ||y^{\delta} - F(x_{k}^{\delta}) - F'(x_{k}^{\delta})(x_{k+1}^{\delta} - x_{k}^{\delta})||^{2} (10)$$

$$\geq \frac{2(\gamma - 1)(1 - q)q}{\gamma ||F'(x_{k}^{\delta})||^{2}} ||y^{\delta} - F(x_{k}^{\delta})||^{2}.$$
(11)

Levenberg-Marquardt Monotonicity of the errors

Levenberg-Marquardt: Monotonicity proof

Leveliberg-inarquardt. Monotonicity proof
$$\alpha_k(K_{\iota}K_{\iota}^* + \alpha_k I)^{-1}(y^{\delta} - F(x_{\iota}^{\delta})) = y^{\delta} - F(x_{\iota}^{\delta}) - K_k(x_{\iota+1}^{\delta} - x_{\iota}^{\delta}).$$

$$\|x_{k+1}^{\delta} - x^{\dagger}\|^2 - \|x_k^{\delta} - x^{\dagger}\|^2$$

$$||x_{k+1}^{o} - x^{\dagger}||^{2} - ||x_{k}^{o} - x^{\dagger}||^{2}$$

$$= 2\langle x_{k+1}^{\delta} - x_k^{\delta}, x_k^{\delta} - x^{\dagger} \rangle + \|x_{k+1}^{\delta} - x_k^{\delta}\|^2$$

=
$$\langle (K_k K_k^* + \alpha_k I)^{-1} (v^{\delta} - F(x_k^{\delta})).$$

$$(+\alpha_k I)^{-1}(y^{\delta} - F(x_k^{\delta}))$$

$$(\kappa_k^{\delta} - \kappa^{\dagger}) + (\kappa_k \kappa_k^* + \alpha_k)$$

$$2K_k(x_k^{\delta} - x^{\dagger}) + (K_k K_k^* + \alpha_k I)^{-1} K_k K_k^* (y^{\delta} - F(x_k^{\delta}))$$

$$= -2\alpha_k \| (K_k K_k^* + \alpha_k I)^{-1} (y^{\delta} - F(x_k^{\delta})) \|^2$$
$$- \| (K_k^* K_k + \alpha_k I)^{-1} K_k^* (y^{\delta} - F(x_k^{\delta})) \|^2$$

$$-\|(K_k^*K_k + \alpha_k I)^{-1}K_k^*(y^{\delta} - F(x_k^{\delta}))\|^2$$

$$+2\langle (K_k K_k^* + \alpha_k I)^{-1}(y^{\delta} - F(x_k^{\delta})), y^{\delta} - F(x_k^{\delta}) - K_k(x^{\dagger} - x_k^{\delta}) \rangle$$

$$\leq -\|x_{k+1}^{\delta} - x_{k}^{\delta}\|^{2} - 2\alpha_{k}^{-1}\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta})\| \cdot \left(\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta})\| - \|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x^{\dagger} - x_{k}^{\delta})\|\right).$$

Levenberg-Marquardt method: Convergence

Theorem

Let 0 < q < 1 and assume that F(x) = y is solvable in $\mathcal{B}_{\rho}(x_0)$, that F' is uniformly bounded in $\mathcal{B}_{\rho}(x^{\dagger})$, and that the Taylor remainder of F satisfies (7) for some c > 0. Then the Levenberg-Marquardt method with exact data $y^{\delta} = y$, $\|x_0 - x^{\dagger}\| < q/c$ and α_k determined from (5), converges to a solution of F(x) = y as $k \to \infty$.

Theorem

Let the assumptions of Theorem 2 hold. Additionally let $k_* = k_*(\delta, y^\delta)$ be chosen according to the stopping rule (8) with $\tau > 1/q$ and let $\|x_0 - x^\dagger\|$ be sufficiently small. Then for some solution x_* of F(x) = y

$$k_*(\delta,y^\delta) = \mathit{O}(1+|\ln\delta|)$$
 and $\|x_{k_*}^\delta - x_*\| o 0$ as $\delta o 0$

Levenberg-Marquardt method: Convergence rates

Theorem

Let a solution x^{\dagger} of F(x) = y exist and let

$$F'(x) = R_x F'(x^{\dagger}) \text{ and } ||I - R_x|| \le c_R ||x - x^{\dagger}||, x \in \mathcal{B}_{\rho}(x_0) \subseteq \mathcal{D}(F),$$

$$(12)$$

$$x^{\dagger} - x_0 = (F'(x^{\dagger})^* F'(x^{\dagger}))^{\mu} v, \quad v \in \mathcal{N}(F'(x^{\dagger}))^{\perp}$$

$$(13)$$

hold with some $0 < \mu \le 1/2$ and $\|v\|$ sufficiently small. Moreover, let α_k and k_* be chosen according to (5) and (8), respectively with $\tau > 2$ and $1 > q > 1/\tau$. Then the Levenberg-Marquardt iterates defined by (4) remain in $\mathcal{B}_{\rho}(x_0)$ and converge with the rate

$$\|x_{k_*}^{\delta}-x^{\dagger}\|=O\left(\delta^{\frac{2\mu}{2\mu+1}}\right).$$

Remarks

rates with a priori α_k , k_* :

$$\begin{split} \alpha_k &= \alpha_0 q^k \,, \qquad \text{for some} \quad \alpha_0 > 0 \,, \quad q \in (0,1) \,, \\ c(k_*+1)^{-(1+\varepsilon)} \alpha_{k_*}^{\mu+\frac{1}{2}} &\leq \delta < c(k+1)^{-(1+\varepsilon)} \alpha_k^{\mu+\frac{1}{2}} \,, \qquad 0 \leq k < k_* \,, \\ k_* &= O(1+|\ln \delta|) \,, \quad \|x_{k_*}^{\delta} - x^{\dagger}\| = O\Big((\delta \, (1+|\ln \delta|)^{(1+\varepsilon)})^{\frac{2\mu}{2\mu+1}} \Big) \,. \end{split}$$
 [BK&Neubauer&Scherzer 2008]

▶ generalization to other regularization methods (e.g., CG) in place of Tikhonov [Hanke 1997], [Rieder 1999, 2001, 2005]

Iteratively regularized Gauss-Newton method (IRGNM)

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} (F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) + \alpha_k (x_0 - x_k^{\delta})).$$
(14)

 $\alpha_k > 0$, $1 \le \frac{\alpha_k}{\alpha_{k+1}} \le r$, $\lim_{k \to \infty} \alpha_k = 0$,

(15)

a-priori choice of α_k :

for some r > 1. a-priori or a posteriori choice of k_*

$$\|y^{\delta} - F(x_{\nu}^{\delta})\| < \tau \delta < \|y^{\delta} - F(x_{\nu}^{\delta})\|, \qquad 0 < k < k_*, \quad (16)$$

[Bakushinski 1992], see also the book [Bakushinski&Kokurin 2004];

[BK&Neubauer&Scherzer 1997], see also the book [BK& Neubauer&Scherzer 2008

Literatively regularized Gauss-Newton method (IRGNM)
Convergence and convergence rates

IRGNM: Convergence and convergence rates: idea of proof I

key idea:

$$\|x_{k+1}^{\delta}-x^{\dagger}\|pprox lpha_k^{\mu}w_k(\mu)$$
 with $w_k(s)$ as in the following lemma.

Lemma

Let $K \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $s \in [0, 1]$, and let $\{\alpha_k\}$ be a sequence satisfying $\alpha_k > 0$ and $\alpha_k \to 0$ as $k \to \infty$. Then it holds that

$$w_k(s) := \alpha_k^{1-s} \| (K^*K + \alpha_k I)^{-1} (K^*K)^s v \| \le s^s (1-s)^{1-s} \| v \| \le \| v \|$$
(17)

and that

$$\lim_{k \to \infty} w_k(s) = \left\{ egin{array}{ll} 0\,, & 0 \le s < 1\,, \\ \|v\|\,, & s = 1\,, \end{array}
ight.$$

for any $v \in \mathcal{N}(A)^{\perp}$.

Lactively regularized Gauss-Newton method (IRGNM)
Lactively regularized Gauss-Newton method (IRGNM)

IRGNM: Convergence and convergence rates: idea of proof I

Indeed, in the linear and noiseless case (F(x) = Kx, $\delta = 0$) we get from (14) using $Kx^{\dagger} = y$ and (13)

$$x_{k+1} - x^{\dagger}$$
= $x_k - x^{\dagger} + (K^*K + \alpha_k I)^{-1}(K^*K(x^{\dagger} - x_k) + \alpha_k(x_0 - x^{\dagger} + x^{\dagger} - x_k))$
= $-\alpha_k(K^*K + \alpha_k I)^{-1}(K^*K)^{\mu}v$

To take into account noisy data and nonlinearity, we rewrite $\left(14\right)$ as

$$x_{k+1}^{\delta} - x^{\dagger} = -\alpha_{k} (K^{*}K + \alpha_{k}I)^{-1} (K^{*}K)^{\mu} v$$

$$-\alpha_{k} (K_{k}^{*}K_{k} + \alpha_{k}I)^{-1} (K^{*}K - K_{k}^{*}K_{k})$$

$$(K^{*}K + \alpha_{k}I)^{-1} (K^{*}K)^{\mu} v$$

$$+ (K_{k}^{*}K_{k} + \alpha_{k}I)^{-1} K_{k}^{*} (v^{\delta} - F(x_{k}^{\delta}) + K_{k}(x_{k}^{\delta} - x^{\dagger})).$$
(18)

where we set $K_k := F'(x_k^{\delta}), K := F'(x^{\dagger}).$

LIteratively regularized Gauss-Newton method (IRGNM)

Convergence and convergence rates

IRGNM: Convergence and convergence rates

Theorem

Let $\mathcal{B}_{2\rho}(x_0) \subseteq \mathcal{D}(F)$ for some $\rho > 0$, (15),

$$F'(\tilde{x}) = R(\tilde{x}, x)F'(x) + Q(\tilde{x}, x) \|I - R(\tilde{x}, x)\| \le c_R, \quad \|Q(\tilde{x}, x)\| \le c_Q \|F'(x^{\dagger})(\tilde{x} - x)\|$$

and

$$x^{\dagger} - x_0 = (F'(x^{\dagger})^* F'(x^{\dagger}))^{\mu} v, \quad v \in \mathcal{N}(F'(x^{\dagger}))^{\perp}$$

for some $0 \le \mu \le 1/2$, and let $k_* = k_*(\delta)$ be chosen according to the discrepancy principle (16) with $\tau > 1$. Moreover, we assume that $\|x_0 - x^{\dagger}\|$, $\|v\|$, $1/\tau$, ρ , and c_R are sufficiently small. Then we obtain the rates

$$\|x_{k_*}^{\delta} - x^{\dagger}\| = \begin{cases} o\left(\delta^{\frac{2\mu}{2\mu+1}}\right), & 0 \le \mu < \frac{1}{2}, \\ O(\sqrt{\delta}), & \mu = \frac{1}{2}. \end{cases}$$

Literatively regularized Gauss-Newton method (IRGNM)
Convergence and convergence rates

Remarks

The same convergence rates result can be shown with the a priori stopping rule

$$k_* \to \infty$$
 and $\eta \ge \delta \alpha_{k_*}^{-\frac{1}{2}} \to 0$ as $\delta \to 0$. (19)

for $\mu = 0$ and

$$\eta \alpha_{k_*}^{\mu + \frac{1}{2}} \le \delta < \eta \alpha_k^{\mu + \frac{1}{2}}, \qquad 0 \le k < k_*,$$
 (20)

even for $0 < \mu \le 1$.

► The a priori result remains valid under the alternative weak nonlinearity condition

$$F'(\tilde{x}) = F'(x)R(\tilde{x}, x)$$
 and $||I - R(\tilde{x}, x)|| \le c_R ||\tilde{x} - x||$ (21)

for $x, \tilde{x} \in \mathcal{B}_{2\rho}(x_0)$ and some positive constant c_R .

Convergence and convergence rates

Further remarks

- ▶ logarithmic rates: [Hohage 1997]
- ▶ generalization to regularization methods $R_{\alpha}(F'(x)) \approx F'(x)^{\dagger}$ in place of Tikhonov [BK 1997]

$$x_{k+1}^{\delta} = x_0 + R_{\alpha_k}(F'(x_k^{\delta}))(y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x_0 - x_k^{\delta})).$$
 (22)

- continuous version [BK&Neubauer&Ramm 2002]
- projected version for constrained problems [BK&Neubauer 2006]
- analysis with stochastic noise [Bauer&Hohage&Munk 2009]
- ► analysis in Banach space [Bakushinski&Konkurin 2004], [BK& Schöpfer&Schuster 2009], [BK& Hofmann 2010]
- preconditioning [Egger 2007], [Langer 2007]
- ▶ quasi Newton methods [BK 1998]