Iterative solution methods for inverse problems: I Regularization methods for linear problems

Barbara Kaltenbacher, University of Graz

22. Juni 2010

Overview

Inverse problems as operator equations

Linear Problems

Compact operators and singular system

Generalized inverse and ill-posedness

A class of regularization methods

Error representation Some examples of methods Convergence

Convergence rates

Iterative solution methods for inverse problems: I Regularization methods for linear problems Inverse problems as operator equations

Inverse problems as operator equations

 Often, inverse problems can be formulated as operator equations

$$F(x) = y, \qquad (1)$$

where $F : \mathcal{D}(F) \to \mathcal{Y}$ with domain $\mathcal{D}(F) \subset \mathcal{X}$, \mathcal{X}, \mathcal{Y} Hilbert spaces.

Measurements are usually contaminated with noise, therefore, we assume that noisy data y^δ with

$$\|y^{\delta} - y\| \le \delta.$$
 (2)

are given.

Example: EIT: F : a → Λ_a, where Λ_a is the Dirichlet-Neumann operator for

$$abla(a
abla u) = 0$$
 in Ω

Iterative solution methods for inverse problems: I Regularization methods for linear problems \Box Linear Problems

Linear Problems

We consider an operator equation

$$Tx = y \tag{3}$$

where $T \in L(X, Y)$ and X and Y are Hilbert spaces. $\mathcal{R}(T) \subseteq Y \dots$ range of T $\mathcal{N}(T) \subseteq Y \dots$ nullspace of T

$$Q = \operatorname{Proj}_{\overline{\mathcal{R}(\mathcal{T})}}, \quad P = \operatorname{Proj}_{\mathcal{N}(\mathcal{T})},$$

^{\perp} ... orthogonal complement of linear subspace $M \subseteq Z$:

$$M^{\perp} = \{ z \in Z \mid \langle z, m \rangle_Z = 0 \,\,\forall m \in M \}$$

 T^* ...adjoint operator

$$\langle Tx, y \rangle_Y = \langle x, T^*y \rangle_X \quad \forall x \in X, y \in Y$$

Compact operators and singular system

Compact operators and singular system

Theorem

A compact operator $T \in L(X, Y)$ has a singular system $(\sigma_j; u_j, v_j)_{j \in \mathbb{N}}$: $(u_j)_{j \in \mathbb{N}} \subseteq X$ and $(v_j)_{j \in \mathbb{N}} \subseteq Y$ orthonormal systems

$$Tu_{j} = \sigma_{j}v_{j}, \quad span(u_{j})_{j\in\mathbb{N}} = \mathcal{N}(T)^{\perp} = \overline{\mathcal{R}(T^{*})},$$

$$T^{*}v_{j} = \sigma_{j}u_{j}, \quad span(v_{j})_{j\in\mathbb{N}} = \overline{\mathcal{R}(T)} = \mathcal{N}(T^{*})^{\perp},$$

$$\sigma_{j} \to 0 \text{ as } j \to \infty.$$
(4)

$$Tx = \sum_{j=1}^{\infty} \sigma_j \langle x, u_j \rangle v_j, \quad T^* y = \sum_{j=1}^{\infty} \sigma_j \langle y, v_j \rangle u_j.$$
 (5)

$$x = \sum_{j=1}^{\infty} \langle x, u_j \rangle u_j + Px, \quad y = \sum_{j=1}^{\infty} \langle y, v_j \rangle v_j + (I - Q)y.$$

Generalized inverse and ill-posedness

Generalized inverse and ill-posedness

 T^{\dagger} ... generalized inverse of T:

$$\forall y \in \mathcal{D}(T^{\dagger}) = \mathcal{R}(T) + \mathcal{R}(T)^{\perp}$$
 : $T^{\dagger}y = (T|_{\mathcal{N}(T) \to \mathcal{R}(T)})^{-1}Qy$.

Compact *T* with singular system $(\sigma_j; u_j, v_j)_{j \in \mathbb{N}}$:

$$T^{\dagger}y = \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \langle y, v_j \rangle u_j \,,$$

provided this sum converges:

$$y \in \mathcal{D}(T^{\dagger}) \iff \sum_{j=1}^{\infty} \frac{\langle y, v_j \rangle^2}{\sigma_j^2} < \infty$$
 Picard criterion (6)

Note that in general only $\sum_{j=1}^{\infty} \langle y^{\delta}, v_j \rangle^2 + \|(I-Q)y\|^2 < \infty$ and on the other hand $\sigma_j \to 0$ as $j \to \infty$. \rightsquigarrow ill-posedness: Noise in the *j*th generalized Fourier coefficient $\langle y, v_j \rangle$ is amplified by $\frac{1}{\sigma_j} \rightsquigarrow$ stronger amplification of high frequent noise.

An Example (1-d source identification):

$$\begin{array}{rcl} -\Delta u &=& f & \text{in } \Omega \\ u &=& 0 & \text{on } \partial \Omega \end{array}$$

Identify $f \in L^2(\Omega)$ from given measurements of u \equiv solve TX = y with y = u, x = f, $T = \Delta^{-1}$ $X = L^2(\Omega)$, $Y = L^2(\Omega)$ (measure values but not derivatives!) $\mathcal{R}(T) \subseteq H^2(\Omega) \hookrightarrow L^2(\Omega) \Rightarrow T$ compact.

1-d case $\Omega = (0, 1)$: singular system $((\pi j)^{-2}; \sin(\pi j \cdot), \sin(\pi j \cdot))$,

$$y \in \mathcal{R}(T) + \mathcal{R}(T)^{\perp} \iff \sum_{j=1}^{\infty} j^4 \left(\int_{\Omega} y(\xi) \sin(\pi j \xi) \, d\xi \right)^2 < \infty$$

A class of regularization methods: Definition

$$R_{\alpha}y^{\delta} := q_{\alpha}(T^*T)T^*y^{\delta}$$
(7)

 $q_{\alpha} \in C([0, ||T^*T||]))$ depending on some regularization parameter $\alpha > 0$.

Definition of f(A) by spectral theory for

f... piecewise continuous function

A... selfadjoint nonnegative definite operator.

Case A compact with eigensystem $(\sigma_i^2; u_j)_{j \in \mathbb{N}}$:

$$f(A)x = \sum_{j=1}^{\infty} f(\sigma_j^2) \langle x, u_j \rangle u_j.$$

Notation: $x_{\alpha} := R_{\alpha}y$, $x_{\alpha}^{\delta} := R_{\alpha}y^{\delta}$, $x^{\dagger} := T^{\dagger}y$

A class of regularization methods

Error representation

A class of regularization methods: Error representation

Reconstruction error for exact data:

$$x^{\dagger} - x_{\alpha} = (I - q_{\alpha}(T^*T)T^*T)x^{\dagger} = r_{\alpha}(T^*T)x^{\dagger}$$
(8)

$$r_{\alpha}(\lambda) := 1 - \lambda q_{\alpha}(\lambda), \qquad \lambda \in [0, \|T^*T\|].$$
(9)

Total error:

$$x^{\dagger} - x_{\alpha}^{\delta} = \underbrace{r_{\alpha}(T^{*}T)x^{\dagger}}_{\text{approximation error}} + \underbrace{R_{\alpha}(y - y^{\delta})}_{\text{propagated noise}}$$

A class of regularization methods

Error representation

A class of regularization methods: Some examples

Tikhonov regularization (Tikh)
min
$$\{ \|Tx - y^{\delta}\|^2 + \alpha \|x - x_0\|^2 \}$$
, which is equivalent to

$$x_{\alpha}^{\delta} = (T^*T + \alpha I)^{-1} (T^* y^{\delta} + \alpha x_0).$$
(10)

iterated Tikhonov regularization (itTikh)

$$\begin{array}{rcl} x_{\alpha,0}^{\delta} & := & 0 & (11a) \\ x_{\alpha,n+1}^{\delta} & := & (T^*T + \alpha I)^{-1} (T^* y^{\delta} + \alpha x_{\alpha,n}^{\delta}), & n \ge 0 (11b) \end{array}$$

▶ Landweber iteration (LW): with $||T||^2 \le 2$ (scaling) $\alpha = \frac{1}{n}$

$$x_0 = 0$$
 (12a)

$$x_{n+1} = x_n - T^*(Tx_n - y^{\delta}), \quad n \ge 0,$$
 (12b)

A class of regularization methods

Error representation

Tikh
$$q_{\alpha}(\lambda) = \frac{1}{\lambda + \alpha}$$
 $r_{\alpha}(\lambda) = \frac{\alpha}{\lambda + \alpha}$
itTikh $q_{\alpha}(\lambda) = \frac{(\lambda + \alpha)^n - \alpha^n}{\lambda(\lambda + \alpha)^n}$ $r_{\alpha}(\lambda) = \left(\frac{\alpha}{\lambda + \alpha}\right)^n$
LW $q_n(\lambda) = \sum_{j=0}^{n-1} (1 - \lambda)^j$ $r_n(\lambda) = (1 - \lambda)^n$
TSVD $q_{\alpha}(\lambda) = \begin{cases} \lambda^{-1}, & \lambda \ge \alpha \\ 0, & \lambda < \alpha \end{cases}$ $r_{\alpha}(\lambda) = \begin{cases} 0, & \lambda \ge \alpha \\ 1, & \lambda < \alpha \end{cases}$

A class of regularization methods

Convergence

A class of regularization methods: Convergence

In all these examples the functions r_{α} , q_{α} satisfy

$$\lim_{\alpha \to 0} r_{\alpha}(\lambda) = \begin{cases} 0, & \lambda > 0\\ 1, & \lambda = 0 \end{cases}$$
(13)

$$|r_{lpha}(\lambda)| \leq C_{\mathrm{r}}$$
 for $\lambda \in [0, \|\mathcal{T}^*\mathcal{T}\|]$ (14)

$$|q_{\alpha}(\lambda)| \leq \frac{\mathcal{L}_{q}}{\alpha} \quad \text{for } \lambda \in [0, \|\mathcal{T}^{*}\mathcal{T}\|] \quad (15)$$

└─A class of regularization methods

- Convergence

Theorem

If (13) and (14) hold true, then the operators R_{α} defined by (7) converge pointwise to T^{\dagger} on $\mathcal{D}(T^{\dagger})$ as $\alpha \to 0$. With the additional assumption (15) the norm of the regularization operators can be estimated by

$$\|R_{\alpha}\| \leq \sqrt{\frac{(C_{\rm r}+1)C_{\rm q}}{\alpha}}.$$
(16)

If $\overline{\alpha}(\delta, y^{\delta})$ is a parameter choice rule satisfying

$$\overline{\alpha}(\delta, y^{\delta}) \to 0, \quad \text{and} \quad \delta/\sqrt{\overline{\alpha}(\delta, y^{\delta})} \to 0 \quad \text{as } \delta \to 0,$$
 (17)

then $(R_{\alpha}, \overline{\alpha})$ is a regularization method in the sense that

$$\lim_{\delta \to 0} \sup \left\{ \|R_{\overline{\alpha}(\delta, y^{\delta})} y^{\delta} - T^{\dagger} y\| : y^{\delta} \in Y, \|y^{\delta} - y\| \le \delta \right\} = 0 \quad (18)$$

for all $y \in \mathcal{D}(T^{\dagger})$..

A class of regularization methods

Convergence rates

Convergence rates under source conditions

source wise representation condition

$$x^{\dagger} = (T^*T)^{\mu}w, \qquad w \in X, \|w\| \le \rho.$$
 (19)

 ${\cal T}$ \ldots smoothing operator $\ \Rightarrow (19)$ is abstract smoothness condition.

For the above methods (Tikh, itTikh, LW, TSVD), there exist $\mu_0 \in (0, \infty]$ (qualification), $C_{\mu} > 0$ such that

$$\sup_{\lambda \in [0, \|\mathcal{T}^* \mathcal{T}\|]} |\lambda^{\mu} r_{\alpha}(\lambda)| \le C_{\mu} \alpha^{\mu} \quad \text{for } 0 \le \mu \le \mu_0.$$
 (20)

A class of regularization methods

- Convergence rates

Theorem

Assume that (19) and (20) hold. Then the approximation error and its image under T satisfy

$$\begin{aligned} \|x^{\dagger} - x_{\alpha}\| &\leq C_{\mu}\alpha^{\mu}\rho, \quad \text{for } 0 \leq \mu \leq \mu_{0}, \\ \|Tx^{\dagger} - Tx_{\alpha}\| &\leq C_{\mu+1/2}\alpha^{\mu+1/2}\rho, \quad \text{for } 0 \leq \mu \leq \mu_{0} - \frac{1}{2} \end{aligned}$$

If the regularization parameter α is chosen according to

$$\alpha^{\mu + \frac{1}{2}} \sim \delta \tag{21}$$

then the optimal convergence rate

$$\|x_{\alpha}^{\delta} - x^{\dagger}\| \leq \tilde{C}_{\mu} \delta^{\frac{2\mu}{2\mu+1}} \text{ for } 0 \leq \mu \leq \mu_0$$

$$(22)$$

is obtained.

└─A class of regularization methods

Convergence rates

Remarks

- ▶ a posteriori regularization parameter choice rules ("µ-free")
 - Morozov's discrepancy principle: α = max s.t. ||Tx^δ_α - y^δ|| ≤ δ ,: optimal rates (24) for μ ≤ μ₀ - ½ [Morozov 1968]; mod.vers.: (24) for μ ≤ μ₀: [Raus 1988, Engl&Gfrerer 1988]
 - balancing principle (or Lepskii rule) [Goldenshluger&Perverzev 2000, Bauer&Perverzev 2005]:
 - optimal rates $\left(24\right)\!\!,$ also stochastic setting
 - generalized cross validation [Wahba 1977, Lukas 2006] for stochastic setting
 - L-curve [Hansen 1992] "δ-free" (Bakushinski veto)
- logarithmic source conditions for severely ill-posed problems [Hohage 1999]

 ▶ alternative choice of regularization term in Tikhonov: TV, L¹ to enhance sparsity → analysis in Banach spaces [Burger&Osher 2004, Schöpfer&Louis&Schuster 2006]