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LInverse problems as operator equations

Inverse problems as operator equations

» Often, inverse problems can be formulated as operator
equations

F(x)=vy, (1)
where F : D(F) — ) with domain D(F) C X,
X, Y Hilbert spaces.

» Measurements are usually contaminated with noise, therefore,
we assume that noisy data y° with

Iy’ —yll <9. (2)

are given.

» Example: EIT: F: a+— A,, where A; is the Dirichlet-Neumann
operator for
V(aVu)=0 inQ
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Linear Problems
We consider an operator equation

Tx=y

where T € L(X,Y) and X and Y are Hilbert spaces.
R(T)C Y ...range of T
N(T)C Y ...nullspace of T

Q = Proj

R(T)’ P= Proj./\/(T) y
L ... orthogonal complement of linear subspace M C Z:

Mt ={zeZ|(z,m)z=0Yme M}
T*...adjoint operator

(Tx,y)y =(x, T'y)x VxeX,yeY
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Compact operators and singular system

Theorem
A compact operator T € L(X,Y) has a singular system (o}; uj, vj)jen:
(uj)jen € X and (vj)jen C Y orthonormal systems

Tuj = ojv;,  span(u)jen = N(T)* =R(T*),
T*v; = oju;,  span(vj)jen = R(T) = N(T*)*

oj—0asj— 0. (4)
o o0

Tx =) oilxu)vi, Ty=> oly,v)u. (5)
j=1 j=1

qujuj-i—Px y = Zy,vjvj + (= Q)y

j=1
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Generalized inverse and ill-posedness
TT ... generalized inverse of T:

Yy e D(TH =R(T)+R(T)* : Tly = (Tln(ry—r(m) Q-

Compact T with singular system (aj; Uj, Vj)jen:

Ty = Z i

provided this sum converges:

eD(TH) «—
y € D(T") JZ;UJ_

>2

< oo Picard criterion  (6)

Note that in general only Zf’;(y‘s, vi)2 + [|(1 — Q)y]|? < oo and
on the other hand o; — 0 as j — co. ~ ill-posedness:
Noise in the jth generalized Fourier coefficient (y, v;) is amplified
by Ui ~> stronger amplification of high frequent noise.

J
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An Example (1-d source identification):

—Au = f inQ
u = 0 ondf2

Identify £ € L?(Q2) from given measurements of u

=solve TX =ywithy=u, x=f, T=A"1

X = [2(Q), Y = L?(Q) (measure values but not derivatives!)
R(T) C H*(Q) — L?(Q) = T compact.

1-d case Q = (0, 1): singular system ((7j)~2;sin(7j-),sin(mj-)),

1 > .4 . . 2
y ER(T)+R(T) = Z_:J < / y(f)sm(mf)d§> <
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A class of regularization methods: Definition

Ro[y‘S =qu(T*T) T*y‘S (7)

da € C([0,]|T*T||])) depending on some regularization parameter
a>0.

Definition of f(A) by spectral theory for

f...piecewise continuous function

A. . .selfadjoint nonnegative definite operator.

Case A compact with eigensystem (o 12 Uj)jen:

[e.e]

X—Zf xuj

Notation: x, 1= Ruy, X} := R,y?, xt := TTy
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A class of regularization methods: Error representation

Reconstruction error for exact data:

X' —xo = (I = qu(T*T)T*T)x" = ry(T*T)x! (8)
ra(A) =1 = Aga(N), A0, ]| T*TI]. (9)
Total error:
XN—x= r(T'T)x + Ry-y)
N—— N——

approximation error propagated noise
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L Error representation

A class of regularization methods: Some examples

» Tikhonov regularization (Tikh)
min {|| Tx — y°||> + a||x — x|}, which is equivalent to

X2 = (T*T +al)"HT*y’ + axp). (10)

» iterated Tikhonov regularization (itTikh)

X9 =0 (11a)
Xoni1 = (T T+al)™ (T’ +ax3,), n>(11b)

» Landweber iteration (LW): with || T||? < 2 (scaling) o = %

x = 0 (12a)
Xn+1l = Xn— T*(Txn - y5)7 n =0, (12b)
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Tikh (M) = 13 ra(A) = 335
itTikh  ga()) = St ra(/\)=(xiﬁ)

W () =570 =AY () =12

-1
s a={ o0 4Ze w={ 0 120

, A< a 1, A<«
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A class of regularization methods: Convergence

In all these examples the functions r,, g, satisfy

. 0, x>0
Jim ra(A) = { 1, A=0 (13)
(N <G for Ae[0,]|T*TI] (14)

C
lga(M < =1 for A€ [0, T7T] (15)
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L Convergence

Theorem

If (13) and (14) hold true, then the operators R, defined by (7)
converge pointwise to TT on D(TT) as a — 0. With the additional
assumption (15) the norm of the regularization operators can be
estimated by

(G+1)G

[Rall < (16)

If (6, y?) is a parameter choice rule satisfying

a(0,y’) —0, and  §/\/a(d,y’)—0 asd—0, (17)
then (Ry, @) is a regularization method in the sense that

lim sup { | Rags,0y” = Tyl :y" € Y.y’ =yl <6} =0 (18)

for ally € D(TT)..
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Convergence rates under source conditions

source wise representation condition
xt = (T*T) w, we X, [[w] <p. (19)

T ...smoothing operator = (19) is abstract smoothness

condition.
For the above methods (Tikh, itTikh, LW, TSVD), there exist
o € (0, 00] (qualification), C,, > 0 such that

sup M (A)| < Cuat for 0 < p < po. (20)
A0, T+ T1]
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Theorem
Assume that (19) and (20) hold. Then the approximation error and
its image under T satisfy

Ix' = xall < Cuatp, for 0 < pu < o,
ITd = Tl S Guapa2, for0<p<po— 3
If the regularization parameter « is chosen according to
al T~ 6 (21)
then the optimal convergence rate
%8 — x| < &,6% for 0 < ju < po (22)

is obtained.
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Remarks

> a posteriori regularization parameter choice rules (“u-free")
» Morozov's discrepancy principle:
a=max s.t. [Tx3 -y’ <6,
optimal rates (24) for 1 < po — & [Morozov 1968];
mod.vers.: (24) for u < po: [Raus 1988, Engl& Gfrerer 1988]
» balancing principle (or Lepskii rule) [Goldenshluger& Perverzev
2000, Bauer&Perverzev 2005]:
optimal rates (24), also stochastic setting
> generalized cross validation [Wahba 1977, Lukas 2006] for
stochastic setting
» L-curve [Hansen 1992] “d-free” (Bakushinski - veto)
» logarithmic source conditions for severely ill-posed problems
[Hohage 1999]
» alternative choice of regularization term in Tikhonov:
TV, L! to enhance sparsity ~ analysis in Banach spaces
[Burger&Osher 2004, Schopfer&Louis&Schuster 2006]
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