
Iterative solution methods for inverse problems: I Regularization methods for linear problems

Iterative solution methods for inverse problems:
I Regularization methods for linear problems

Barbara Kaltenbacher, University of Graz

22. Juni 2010



Iterative solution methods for inverse problems: I Regularization methods for linear problems

Overview

Inverse problems as operator equations

Linear Problems

Compact operators and singular system

Generalized inverse and ill-posedness

A class of regularization methods
Error representation
Some examples of methods
Convergence
Convergence rates



Iterative solution methods for inverse problems: I Regularization methods for linear problems

Inverse problems as operator equations

Inverse problems as operator equations

I Often, inverse problems can be formulated as operator
equations

F (x) = y , (1)

where F : D(F )→ Y with domain D(F ) ⊂ X ,
X ,Y Hilbert spaces.

I Measurements are usually contaminated with noise, therefore,
we assume that noisy data y δ with

‖y δ − y‖ ≤ δ . (2)

are given.

I Example: EIT: F : a 7→ Λa, where Λa is the Dirichlet-Neumann
operator for

∇(a∇u) = 0 in Ω



Iterative solution methods for inverse problems: I Regularization methods for linear problems

Linear Problems

Linear Problems
We consider an operator equation

Tx = y (3)

where T ∈ L(X ,Y ) and X and Y are Hilbert spaces.
R(T ) ⊆ Y . . . range of T
N (T ) ⊆ Y . . . nullspace of T

Q = ProjR(T ) , P = ProjN (T ) ,

⊥ . . . orthogonal complement of linear subspace M ⊆ Z :

M⊥ = {z ∈ Z | 〈z ,m〉Z = 0 ∀m ∈ M}

T ∗. . . adjoint operator

〈Tx , y〉Y = 〈x ,T ∗y〉X ∀x ∈ X , y ∈ Y
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Compact operators and singular system

Compact operators and singular system

Theorem
A compact operator T ∈ L(X ,Y ) has a singular system (σj ; uj , vj)j∈N:
(uj)j∈N ⊆ X and (vj)j∈N ⊆ Y orthonormal systems

Tuj = σjvj , span(uj)j∈N = N (T )⊥ = R(T ∗) ,

T ∗vj = σjuj , span(vj)j∈N = R(T ) = N (T ∗)⊥ ,

σj → 0 as j →∞ . (4)

Tx =
∞∑
j=1

σj〈x , uj〉vj , T ∗y =
∞∑
j=1

σj〈y , vj〉uj . (5)

x =
∞∑
j=1

〈x , uj〉uj + Px , y =
∞∑
j=1

〈y , vj〉vj + (I − Q)y .

. . . generalized Fourier series.
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Generalized inverse and ill-posedness

Generalized inverse and ill-posedness
T † . . . generalized inverse of T :

∀y ∈ D(T †) = R(T ) +R(T )⊥ : T †y = (T |N (T )→R(T ))−1Qy .

Compact T with singular system (σj ; uj , vj)j∈N:

T †y =
∞∑
j=1

1

σj
〈y , vj〉uj ,

provided this sum converges:

y ∈ D(T †) ⇐⇒
∞∑
j=1

〈y , vj〉2

σ2
j

<∞ Picard criterion (6)

Note that in general only
∑∞

j=1〈y δ, vj〉2 + ‖(I − Q)y‖2 <∞ and
on the other hand σj → 0 as j →∞ .  ill-posedness:
Noise in the jth generalized Fourier coefficient 〈y , vj〉 is amplified
by 1

σj
 stronger amplification of high frequent noise.
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Generalized inverse and ill-posedness

An Example (1-d source identification):

−∆u = f in Ω
u = 0 on ∂Ω

Identify f ∈ L2(Ω) from given measurements of u
≡ solve TX = y with y = u, x = f , T = ∆−1

X = L2(Ω), Y = L2(Ω) (measure values but not derivatives!)
R(T ) ⊆ H2(Ω) ↪→ L2(Ω) ⇒ T compact.

1-d case Ω = (0, 1): singular system ((πj)−2; sin(πj ·), sin(πj ·)),

y ∈ R(T ) +R(T )⊥ ⇐⇒
∞∑
j=1

j4

(∫
Ω

y(ξ) sin(πjξ) dξ

)2

< ∞
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A class of regularization methods

A class of regularization methods: Definition

Rαy δ := qα(T ∗T )T ∗y δ (7)

qα ∈ C ([0, ‖T ∗T‖])) depending on some regularization parameter
α > 0.
Definition of f (A) by spectral theory for
f . . . piecewise continuous function
A. . . selfadjoint nonnegative definite operator.
Case A compact with eigensystem (σ2

j ; uj)j∈N:

f (A)x =
∞∑
j=1

f (σ2
j )〈x , uj〉uj .

Notation: xα := Rαy , xδα := Rαy δ, x† := T †y
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A class of regularization methods

Error representation

A class of regularization methods: Error representation

Reconstruction error for exact data:

x† − xα = (I − qα(T ∗T )T ∗T )x† = rα(T ∗T )x† (8)

rα(λ) := 1− λqα(λ), λ ∈ [0, ‖T ∗T‖]. (9)

Total error:

x† − xδα = rα(T ∗T )x†︸ ︷︷ ︸
approximation error

+ Rα(y − y δ)︸ ︷︷ ︸
propagated noise
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A class of regularization methods

Error representation

A class of regularization methods: Some examples

I Tikhonov regularization (Tikh)
min

{
‖Tx − y δ‖2 + α‖x − x0‖2

}
, which is equivalent to

xδα = (T ∗T + αI )−1(T ∗y δ + αx0). (10)

I iterated Tikhonov regularization (itTikh)

xδα,0 := 0 (11a)

xδα,n+1 := (T ∗T + αI )−1(T ∗y δ + αxδα,n), n ≥ 0(11b)

I Landweber iteration (LW): with ‖T‖2 ≤ 2 (scaling) α = 1
n

x0 = 0 (12a)

xn+1 = xn − T ∗(Txn − y δ), n ≥ 0, (12b)
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A class of regularization methods

Error representation

Tikh qα(λ) = 1
λ+α rα(λ) = α

λ+α

itTikh qα(λ) = (λ+α)n−αn

λ(λ+α)n rα(λ) =
(

α
λ+α

)n

LW qn(λ) =
∑n−1

j=0 (1− λ)j rn(λ) = (1− λ)n

TSVD qα(λ) =

{
λ−1, λ ≥ α
0, λ < α

rα(λ) =

{
0, λ ≥ α
1, λ < α
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A class of regularization methods

Convergence

A class of regularization methods: Convergence

In all these examples the functions rα, qα satisfy

lim
α→0

rα(λ) =

{
0, λ > 0
1, λ = 0

(13)

|rα(λ)| ≤ Cr for λ ∈ [0, ‖T ∗T‖] (14)

|qα(λ)| ≤ Cq

α
for λ ∈ [0, ‖T ∗T‖] (15)
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A class of regularization methods

Convergence

Theorem
If (13) and (14) hold true, then the operators Rα defined by (7)
converge pointwise to T † on D(T †) as α→ 0. With the additional
assumption (15) the norm of the regularization operators can be
estimated by

‖Rα‖ ≤
√

(Cr + 1)Cq

α
. (16)

If α(δ, y δ) is a parameter choice rule satisfying

α(δ, y δ)→ 0, and δ/
√
α(δ, y δ)→ 0 as δ → 0, (17)

then (Rα, α) is a regularization method in the sense that

lim
δ→0

sup
{
‖Rα(δ,yδ)y δ − T †y‖ : y δ ∈ Y , ‖y δ − y‖ ≤ δ

}
= 0 (18)

for all y ∈ D(T †)..
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A class of regularization methods

Convergence rates

Convergence rates under source conditions

source wise representation condition

x† = (T ∗T )µw , w ∈ X , ‖w‖ ≤ ρ. (19)

T . . . smoothing operator ⇒ (19) is abstract smoothness
condition.
For the above methods (Tikh, itTikh, LW, TSVD), there exist
µ0 ∈ (0,∞] (qualification), Cµ > 0 such that

sup
λ∈[0,‖T∗T‖]

|λµrα(λ)| ≤ Cµα
µ for 0 ≤ µ ≤ µ0. (20)
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A class of regularization methods

Convergence rates

Theorem
Assume that (19) and (20) hold. Then the approximation error and
its image under T satisfy

‖x† − xα‖ ≤ Cµα
µρ, for 0 ≤ µ ≤ µ0,

‖Tx† − Txα‖ ≤ Cµ+1/2α
µ+1/2ρ, for 0 ≤ µ ≤ µ0 −

1

2
.

If the regularization parameter α is chosen according to

αµ+ 1
2 ∼ δ (21)

then the optimal convergence rate

‖xδα − x†‖ ≤ C̃µδ
2µ

2µ+1 for 0 ≤ µ ≤ µ0 (22)

is obtained.
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A class of regularization methods

Convergence rates

Remarks
I a posteriori regularization parameter choice rules (“µ-free”)

I Morozov’s discrepancy principle:
α = max s.t. ‖Txδ

α − yδ‖ ≤ δ ,:
optimal rates (24) for µ ≤ µ0 − 1

2 [Morozov 1968];
mod.vers.: (24) for µ ≤ µ0: [Raus 1988, Engl&Gfrerer 1988]

I balancing principle (or Lepskii rule) [Goldenshluger&Perverzev

2000, Bauer&Perverzev 2005]:
optimal rates (24), also stochastic setting

I generalized cross validation [Wahba 1977, Lukas 2006] for
stochastic setting

I L-curve [Hansen 1992] “δ-free” (Bakushinski - veto)

I logarithmic source conditions for severely ill-posed problems
[Hohage 1999]

I alternative choice of regularization term in Tikhonov:
TV, L1 to enhance sparsity  analysis in Banach spaces
[Burger&Osher 2004, Schöpfer&Louis&Schuster 2006]
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