Computation (chapter 10)

- Crude estimation
 - posterior mode
 - "empirical Bayes"
- How many simulation draws are needed
 - Monte Carlo error

Slide 1

About distributions

- Log-densities
 - to prevent over- and underflows in floating point computation log-densities are often used
 - exponentiation should be made last
 - eg. in Metropolis-algorithm instead of computing ratio of densities, compute difference of log-densities

About distributions

- Normalized and unnormalized distributions
 - often computing normalization is difficult
 - often unnormalized is sufficient for computation
 - $q(\theta|y)$ is unnormalized density if $q(\theta|y)/p(\theta|y)$ is constant depending only y
 - eg. $p(y|\theta)p(\theta)$ is unnormalized posterior density

Slide 3

Crude estimation

- Before using complicated computational methods it is good to make crude estimate
 - sensibility check
 - initial guess for more sophisticated models
- Hierarchical models
 - approximate hyperparameters

Slide 4

• Posterior modes

- find joint- or marginal mode(s) using optimization algorithm
- normal, mixture normal, etc. approximation

Crude estimation

- If model is so complex, that it is difficult to make simple posterior approximation
 - \rightarrow start with simpler model
 - · simpler model gives baseline accuracy
 - · works as a sensibility check

Slide 5

Slide 6

Monte Carlo - history*

- Used before computers, eg.
 - Buffon (1700's)
 - De Forest, Darwin, Galton (1800's)
 - Pearson (1800's)
 - Gosset (ie. Student, 1908)
- "Monte Carlo method" terms was proposed by Metropolis, von Neumann or Ulam in the end of 1940's
 - Metropolis, Ulam and von Neumann worked together in A-bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949
 - Users of Bayesian methods started to have enough cheap computational in 1990's
 - before usage was rare, although some Bayesians developed MCMC methods

Monte Carlo

- Sample from distribution
- Compute and plot
 - averages and variances
 - quantiles
 - histograms
 - marginals
 - etc.

Slide 7

How many simulation draws are needed?

• Expectation

$$\mathbf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L large and $\theta^{(l)}$ independent samples, may assume asymptotic normality with variance σ_{θ}^2/L

- this variance is independent of number of dimensions
- Slide 8

- combined variance is sum of data variance and simulation variance

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/L = \sigma_{\theta}^2(1 + 1/L)$$

- e.g. if L=100, simulation inflates the variance by $\sqrt{1+1/L}=1.005$

- remember the counter examples to asymptotic normality

How many simulation draws are needed?

Posterior probability

$$p(\theta \in A) \approx \frac{1}{L} \sum_{l} I(\theta^{(l)} \in A)$$

where $I(\theta^{(l)} \in A) = 1$ if $\theta^{(l)} \in A$

- $I(\cdot)$ binomially distributed with parameters $p(\theta \in A)$
- Slide 9
- deviation is $\sqrt{p(1-p)/L}$ (s. 577)
- if L = 100 and p about 0.5, $\sqrt{p(1-p)/L} = 0.05$ i.e. 5%-unit accuracy (deviation)
- with L=2500 samples, accuracy 1%-unit
- To estimate small probabilities need many samples
 - enough many samples have to have $\theta^{(l)} \in A,$ i.e. $L \gg 1/p$

How many simulation draws are needed?

- Quantiles
 - for $q\mbox{-}{\rm quantile},$ choose a for which

$$p(\theta < a) = q$$

ie

$$\frac{1}{L} \sum_{l} I(\theta^{(l)} < a) \approx q$$

- for good estimate, need many samples for which $\theta^{(l)} < a$ or $\theta^{(l)} > a$, and thus $L \gg 1/q$ or $L \gg 1/(1-q)$
- cf. previous slide

How many simulation draws are needed?

- · Monte Carlo error can be estimated using simulation too
 - use approximative distribution for samples and use Bayesian inference
- e.g. non-parametric approach using Dirichlet-model (Rubin, 1981)
 - works for non-normal distributions, too

Slide 11

How many simulation draws are needed?

- · Less samples are needed if marginalisation is used
 - density can be often factored and lowest level marginalized

$$\mathbf{E}(\theta) \approx \frac{1}{L} \sum_{l} \mathbf{E}(\theta | \phi^{(l)})$$

where $\phi^{(l)}$ are samples from the marginal of hyper parameters

Slide 12

- almost always can be used for predictive densities

- SAT-example
 - probability that effect of school A is larger than 50
 - with plain simulation 3 samples of 10000 larger than 50
 - computing analytically $\Pr(\theta_1 > 50 | \mu, \tau, y),$ good accuracy achieved with 200 samples

Direct simulation

- Direct simulation produces independent samples
- Requirement is (pseudo) random number from uniform distribution
 - in Bayesian analysis good pseudo random number generators when used appropriately are good enough
 - eg. Matlab's default generator is excellent (Mersenne Twister algorithm) and for special cases latest version includes alternatives

Slide 13

Direct simulation

- Uniform random numbers can be used to get samples from some basic distributions using transformations and factoring (see e.g. appendix A)
- 1-3 dimensionals can be handled also with inverse-cdf/grid-approach

Example of transformation*

• Box-Muller -methods:

If U_1 and U_2 are independent samples from distribution $\mathrm{U}(0,1)$, and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$

then X_1 and X_2 are independent from the distribution $\mathrm{N}(0,1)$

- not the fastest choice due to trigonometric computations

- for normal distribution more than ten different methods
- Matlab uses fast Ziggurat method
- For basic distributions usually functions available

Grid sampling

- · Generalizes inverse-cdf
- · Suffers from curse of dimensionality

Slide 16

Grid sampling

- E.g.: SAT
 - 10 parameters
 - if location of essential posterior mass is unknown
 - $\cdot\,$ lower and upper limits for discretization need to be loose
 - need to have enough grid points, so that some of them falls to high density area
- Slide 17
- e.g. 1000 grid points per dimension
 - \rightarrow 1000¹⁰ = total of 1e30 grid points
- Matlab computes normal density function about 4 million times per second
 - $\rightarrow\,$ evaluation in all grid points would take about 1e18 years

Curse of dimensionality

- Example
 - reasonable guess having posterior mass in 1/3 of the guessed limits
 - \cdot 1 parameter \rightarrow 1/3 evaluations in interesting area
 - $\cdot\,$ 2 parameters \rightarrow 1/9 evaluations in interesting area \ldots
 - \cdot 3 parameters \rightarrow 1/27 evaluations in interesting area . . .
 - $\cdot d$ parameters \rightarrow 1/3^d evaluations in interesting area ...

Markov chain Monte Carlo (MCMC) (chapter 11)

- Markov chain
 - a sequence of variables $\theta^1, \theta^2, \ldots$, for which with all t, distribution of θ^t depends only on θ^{t-1}
 - starting point θ^0
 - transition distribution $T_t(\theta^t | \theta^{t-1})$
 - suitably constructed Markov chain converges to unique stationary distribution $p(\theta|y)$

Slide 19

- Pros/cons
 - + general use
 - + chain tends to find where the mass is
 - dependent samples
 - construction of efficient transition distribution may be difficult

Metropolis-algorithm

- Metropolis-algorithm and its generalizations are base of all MCMC-algorithms
- Algorithm
 - 1. starting point θ^0
 - **2**. $t = 1, 2, \ldots$
 - (a) pick proposal θ^* from proposal distribution $J_t(\theta^*|\theta^{t-1})$ proposal distribution has to be symmetric, ie.

Slide 20

 $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b (b) compute ratio

$$r = \frac{p(\theta^*|y)}{p(\theta^{t-1}|y)}$$

(c) set

$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

- transition distribution is mixture of point a point mass at $\theta^t = \theta^{t-1}$ and a weighted version of the proposal distribution $J_t(\theta^*|\theta^{t-1})$

Metropolis-algorithm

- Algorithm
 - 1. starting point θ^0
 - **2**. $t = 1, 2, \ldots$
 - (a) pick proposal θ^* from proposal distribution $J_t(\theta^*|\theta^{t-1})$ proposal distribution has to be symmetric, ie.

 $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b

(b) compute ratio

$$r = \frac{p(\theta^*|y)}{p(\theta^{t-1}|y)}$$

(c) set

$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

- instead of $p(\theta|y)$, unnormalized $q(\theta|y)$ can be used
- step c is done by using uniform random number $\mathrm{U}(0,1)$
- rejection of proposal is also one iteration (ie *t* increases by one)

Metropolis algorithm

- Example: one observation (y_1, y_2)
 - normal model with unknown mean and known variance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \middle| y \sim \mathcal{N} \left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

- proposal distribution $J_t(\theta^*|\theta^{t-1}) = \mathrm{N}(\theta^*|\theta^{t-1}, 0.8^2)$

Slide 22

Slide 21

• Esim7_1.m

Burn-in and convergence diagnostics

- How long it does to chain converge?
 - \rightarrow burn-in = remove samples from the beginning of the chain

Slide 23

Dependent samples and auto-correlation

- Autocorrelation describes how much samples correlate on average with samples with certain lag
 - how quickly chain forgets previous states
 - how efficient algorithm is
- Autocorrelation can be used to estimate the effective number of samples

Why Metropolis-algorithm works

- Intuitively more samples are accepted from higher density areas
- 1. Prove, that simulated series is Markov-chain, which has unique stationary distribution
- 2. Prove, that stationary distribution is desired target distribution

Slide 25

Slide 26

Why Metropolis-algorithm works

- 1. Prove, that simulated series is Markov-chain, which has unique stationary distribution; show that chain chain is
 - a) irreducible
 - $\cdot\,$ positive probability to reach any state from any other state
 - b) aperiodic
 - \cdot return time i can be any number
 - holds for random walk and any proper distribution except for trivial exceptions
 - c) recurrent / not transient
 - \cdot probability to return to state i is 1
 - holds for random walk and any proper distribution except for trivial exceptions

Why Metropolis-algorithm works

v

Slide 27

- 2. Prove, that stationary distribution is desired target distribution
 - start at time t-1 by picking θ^{t-1} from the target distribution $p(\theta|y)$
 - choose two points θ_a and θ_b , which have been picked from $p(\theta|y)$ and named so that $p(\theta_b|y) \geq p(\theta_a|y)$
 - density for transition from θ_a to θ_b

$$p(\theta^{t-1} = \theta_a, \theta^t = \theta_b) = p(\theta_a | y) J_t(\theta_b | \theta_a),$$

where acceptance probability is 1 due to selected naming

- density for transition from θ_b to θ_b

$$p(\theta^{t} = \theta_{a}, \theta^{t-1} = \theta_{b}) = p(\theta_{b}|y)J_{t}(\theta_{a}|\theta_{b})\left(\frac{p(\theta_{a}|y)}{p(\theta_{b}|y)}\right)$$
$$= p(\theta_{a}|y)J_{t}(\theta_{a}|\theta_{b}),$$

which is same as for transition from θ_a to θ_b since $J_t(\cdot|\cdot)$ is symmetric

- since joint distribution is symmetric, marginal of θ^t and θ^{t-1} are same and thus $p(\theta|y)$ is stationary distribution of the Markov-chain

Metropolis-Hastings algorithm

- · Generalization of Metropolis algorithm to asymmetric proposal distributions
- sometimes Hastings dropped
- asymmetry is taken into account in computation of acceptance probability

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta^{t-1})}{p(\theta^{t-1}|y)/J_t(\theta^{t-1}|\theta^*)} = \frac{p(\theta^*|y)J_t(\theta^{t-1}|\theta^*)}{p(\theta^{t-1}|y)J_t(\theta^*|\theta^{t-1})}$$

Slide 29

- possible to use more efficient proposal distributions
- proof as previously, but name θ_a and θ_b so that $p(\theta_b|y)J_t(\theta_a|\theta_b) \ge p(\theta_a|y)J_t(\theta_b|\theta_a)$

Metropolis-Hastings - algorithm

- Generalization of Metropolis algorithm to asymmetric target distribution
- More efficient algorithms
 - proposal distribution can resemble more target distribution
 - · more efficient acceptance
 - eg. proposal distribution which leans on direction of gradient (*Langevin-Hastings-algorithm*)

Slide 30

 $\cdot\,$ chain has tendency to travel towards higher mass

Metropolis-Hastings-Green algorithm (s. 338-339)

- Reversible jump Markov chain Monte Carlo (RJMCMC)
- Metropolis-Hastings generalised to jumps between different parameter spaces
 - trans-dimensional method

Slide 31

Metropolis-Hastings

- Ideal proposal distribution is the target distribution
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance 1
 - independent samples
- Good proposal resembles the target distribution
- Slide 32 Good scale can be selected by using rejection rate of 60–90%

Metropolis-Hastings

- Updates
 - jointly
 - blocked
 - single-component

Slide 33

Gibbs sampling

- Called Gibbs sampling by Geman & Geman (1984) in physics also known as heat bath method
- Gibbs sampling is special case of Metropolis-Hastings
 - single component (usually)
 - proposal distribution is the full conditional distribution of given parameter
 - \rightarrow proposal and target distributions are same

Slide 34

ightarrow acceptance probability is 1

Gibbs sampling

• Sample from each full conditional full conditional distribution

$$p(\theta_j | \theta_{-j}^{t-1}, y)$$

where $\boldsymbol{\theta}_{-j}^{t-1}$ is

$$\theta_{-j}^{t-1} = (\theta_1^t, \dots, \theta_{j-1}^t, \theta_{j+1}^{t-1}, \dots, \theta_d^{t-1})$$

Slide 35

- in one time step t update all parameters $heta_j$ (although not necessary)

Gibbs sampling

- Example: one observation (y_1, y_2)
 - normal model with unknown mean and known variance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \mid y \sim \mathcal{N} \left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

- conditional distributions (book s. 86 and 288)

Slide 36

$$\begin{aligned} \theta_1 | \theta_2, y &\sim & \mathrm{N}(y_1 + \rho(\theta_2 - y_2), 1 - \rho^2) \\ \theta_2 | \theta_1, y &\sim & \mathrm{N}(y_2 + \rho(\theta_1 - y_1), 1 - \rho^2) \end{aligned}$$

• Esim7_2.m

Gibbs sampling

- Use of semi-conjugate priors in hierarchical models, produces often nice conditional distributions
 - WinBUGS/OpenBUGS
- No tunable algorithm parameters
- If some of the conditionals not in nice form may use e.g.. grid sampling, Metropolis-Hastings or slice sampling
- Slide 37
- Sometimes blocking used (cf. Metropolis-Hastings)

Burn-in and convergence diagnostics

- Start with visual inspection
 - Esim7_3.m

Use of several chains

- Initialization of chains
 - start from different points
 - overdispersed starting points
 - different random number generator seeds
- Compare interesting scalars, eg:
- parameters

Slide 39

- future predictions
- log-posterior density
- log-predictive density

MCMC samples not independent

- Monte Carlo estimates still valid
- Monte Carlo error estimates slightly more difficult
 - time series analysis
 - thinning
 - batching
- Slide 40 Estimation of the effective number of samples
 - comparison of independent chains
 - time series analysis