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Computation (chapter 10)

• Crude estimation

- posterior mode

- “empirical Bayes´´

• How many simulation draws are needed

- Monte Carlo error
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About distributions

• Log-densities

- to prevent over- and underflows in floating point computation log-densities are

often used

- exponentiation should be made last

- eg. in Metropolis-algorithm instead of computing ratio of densities, compute

difference of log-densities
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About distributions

• Normalized and unnormalized distributions

- often computing normalization is difficult

- often unnormalized is sufficient for computation

- q(θ|y) is unnormalized density if q(θ|y)/p(θ|y)
is constant depending only y

- eg. p(y|θ)p(θ) is unnormalized posterior density
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Crude estimation

• Before using complicated computational methods it is good to make crude

estimate

- sensibility check

- initial guess for more sophisticated models

• Hierarchical models

- approximate hyperparameters

• Posterior modes

- find joint- or marginal mode(s) using optimization algorithm

- normal, mixture normal, etc. approximation
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Crude estimation

• If model is so complex, that it is difficult to make simple posterior approximation

→ start with simpler model

· simpler model gives baseline accuracy

· works as a sensibility check
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Monte Carlo - history*

• Used before computers, eg.

- Buffon (1700’s)

- De Forest, Darwin, Galton (1800’s)

- Pearson (1800’s)

- Gosset (ie. Student, 1908)

• "Monte Carlo method" terms was proposed by Metropolis, von Neumann or Ulam

in the end of 1940’s

- Metropolis, Ulam and von Neumann worked together in A-bomb project

- Metropolis and Ulam, "The Monte Carlo Method", 1949

• Users of Bayesian methods started to have enough cheap computational in

1990’s

- before usage was rare, although some Bayesians developed MCMC methods
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Monte Carlo

• Sample from distribution

• Compute and plot

- averages and variances

- quantiles

- histograms

- marginals

- etc.
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How many simulation draws are needed?

• Expectation

E(θ) ≈
1

L

∑

l

θ(l)

if L large and θ(l) independent samples, may assume asymptotic normality with

variance σ2
θ/L

- this variance is independent of number of dimensions

- combined variance is sum of data variance and simulation variance

σ2
θ + σ2

θ/L = σ2
θ(1 + 1/L)

- e.g. if L = 100, simulation inflates the variance by
√

1 + 1/L = 1.005

- remember the counter examples to asymptotic normality
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How many simulation draws are needed?

• Posterior probability

p(θ ∈ A) ≈
1

L

∑

l

I(θ(l) ∈ A)

where I(θ(l) ∈ A) = 1 if θ(l) ∈ A

- I(·) binomially distributed with parameters p(θ ∈ A)

- deviation is
√

p(1 − p)/L (s. 577)

- if L = 100 and p about 0.5,
√

p(1 − p)/L = 0.05

i.e. 5%-unit accuracy (deviation)

- with L = 2500 samples, accuracy 1%-unit

• To estimate small probabilities need many samples

- enough many samples have to have θ(l) ∈ A, i.e. L ≫ 1/p
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How many simulation draws are needed?

• Quantiles

- for q-quantile, choose a for which

p(θ < a) = q

ie

1

L

∑

l

I(θ(l) < a) ≈ q

- for good estimate, need many samples for which θ(l) < a or θ(l) > a , and

thus L ≫ 1/q or L ≫ 1/(1 − q)

- cf. previous slide
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How many simulation draws are needed?

• Monte Carlo error can be estimated using simulation too

- use approximative distribution for samples and use Bayesian inference

• e.g. non-parametric approach using Dirichlet-model (Rubin, 1981)

- works for non-normal distributions, too
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How many simulation draws are needed?

• Less samples are needed if marginalisation is used

- density can be often factored and lowest level marginalized

E(θ) ≈
1

L

∑

l

E(θ|φ(l))

where φ(l) are samples from the marginal of hyper parameters

- almost always can be used for predictive densities

• SAT-example

- probability that effect of school A is larger than 50

- with plain simulation 3 samples of 10000 larger than 50

- computing analytically Pr(θ1 > 50|µ, τ, y), good accuracy achieved with

200 samples
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Direct simulation

• Direct simulation produces independent samples

• Requirement is (pseudo) random number from uniform distribution

- in Bayesian analysis good pseudo random number generators when used

appropriately are good enough

· eg. Matlab’s default generator is excellent (Mersenne Twister algorithm) and

for special cases latest version includes alternatives
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Direct simulation

• Uniform random numbers can be used to get samples from some basic

distributions using transformations and factoring (see e.g. appendix A)

• 1–3 dimensionals can be handled also with inverse-cdf/grid-approach

7



Slide 15

Example of transformation*

• Box-Muller -methods:

If U1 and U2 are independent samples from distribution U(0, 1), and

X1 =
√

−2 log(U1) cos(2πU2)

X2 =
√

−2 log(U1) sin(2πU2)

then X1 and X2 are independent from the distribution N(0, 1)

- not the fastest choice due to trigonometric computations

- for normal distribution more than ten different methods

- Matlab uses fast Ziggurat method

• For basic distributions usually functions available
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Grid sampling

• Generalizes inverse-cdf

• Suffers from curse of dimensionality
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Grid sampling

• E.g.: SAT

- 10 parameters

- if location of essential posterior mass is unknown

· lower and upper limits for discretization need to be loose

· need to have enough grid points, so that some of them falls to high density

area

- e.g. 1000 grid points per dimension

→ 100010 = total of 1e30 grid points

- Matlab computes normal density function about 4 million times per second

→ evaluation in all grid points would take about 1e18 years
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Curse of dimensionality

• Example

- reasonable guess having posterior mass in 1/3 of the guessed limits

· 1 parameter → 1/3 evaluations in interesting area

· 2 parameters → 1/9 evaluations in interesting area . . .

· 3 parameters → 1/27 evaluations in interesting area . . .

· d parameters → 1/3d evaluations in interesting area . . .

9



Slide 19

Markov chain Monte Carlo (MCMC) (chapter 11)

• Markov chain

- a sequence of variables θ1, θ2, . . ., for which with all t, distribution of θt

depends only on θt−1

- starting point θ0

- transition distribution Tt(θ
t|θt−1)

- suitably constructed Markov chain converges to unique stationary distribution

p(θ|y)

• Pros/cons

+ general use

+ chain tends to find where the mass is

- dependent samples

- construction of efficient transition distribution may be difficult
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Metropolis-algorithm

• Metropolis-algorithm and its generalizations are base of all MCMC-algorithms

• Algorithm

1. starting point θ0

2. t = 1, 2, . . .

(a) pick proposal θ∗ from proposal distribution Jt(θ
∗|θt−1)

proposal distribution has to be symmetric, ie.

Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) compute ratio

r =
p(θ∗|y)

p(θt−1|y)
(c) set

θt =







θ∗ with probability min(r, 1)

θt−1 otherwise

- transition distribution is mixture of point a point mass at θt = θt−1 and a

weighted version of the proposal distribution Jt(θ
∗|θt−1)10
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Metropolis-algorithm

• Algorithm

1. starting point θ0

2. t = 1, 2, . . .

(a) pick proposal θ∗ from proposal distribution Jt(θ
∗|θt−1)

proposal distribution has to be symmetric, ie.

Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) compute ratio

r =
p(θ∗|y)

p(θt−1|y)
(c) set

θt =







θ∗ with probability min(r, 1)

θt−1 otherwise

- instead of p(θ|y), unnormalized q(θ|y) can be used

- step c is done by using uniform random number U(0, 1)

- rejection of proposal is also one iteration (ie t increases by one)
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Metropolis algorithm

• Example: one observation (y1, y2)

- normal model with unknown mean and known variance
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- proposal distribution Jt(θ
∗|θt−1) = N(θ∗|θt−1, 0.82)

• Esim7_1.m
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Burn-in and convergence diagnostics

• How long it does to chain converge?

→ burn-in = remove samples from the beginning of the chain
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Dependent samples and auto-correlation

• Autocorrelation describes how much samples correlate on average with samples

with certain lag

- how quickly chain forgets previous states

- how efficient algorithm is

• Autocorrelation can be used to estimate the effective number of samples
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Why Metropolis-algorithm works

• Intuitively more samples are accepted from higher density areas

1. Prove, that simulated series is Markov-chain, which has unique stationary

distribution

2. Prove, that stationary distribution is desired target distribution
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Why Metropolis-algorithm works

1. Prove, that simulated series is Markov-chain, which has unique stationary

distribution; show that chain chain is

a) irreducible

· positive probability to reach any state from any other state

b) aperiodic

· return time i can be any number

· holds for random walk and any proper distribution except for trivial

exceptions

c) recurrent / not transient

· probability to return to state i is 1

· holds for random walk and any proper distribution except for trivial

exceptions
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Why Metropolis-algorithm works

v

2. Prove, that stationary distribution is desired target distribution

- start at time t − 1 by picking θt−1 from the target distribution p(θ|y)

- choose two points θa and θb, which have been picked from p(θ|y) and

named so that p(θb|y) ≥ p(θa|y)

- density for transition from θa to θb

p(θt−1 = θa, θ
t = θb) = p(θa|y)Jt(θb|θa),

where acceptance probability is 1 due to selected naming

- density for transition from θb to θb

p(θt = θa, θ
t−1 = θb) = p(θb|y)Jt(θa|θb)

(

p(θa|y)

p(θb|y)

)

= p(θa|y)Jt(θa|θb),

which is same as for transition from θa to θb since Jt(·|·) is symmetric
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- since joint distribution is symmetric, marginal of θt and θt−1 are same and

thus p(θ|y) is stationary distribution of the Markov-chain
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Metropolis-Hastings algorithm

• Generalization of Metropolis algorithm to asymmetric proposal distributions

• sometimes Hastings dropped

• asymmetry is taken into account in computation of acceptance probability

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗)
=

p(θ∗|y)Jt(θ
t−1|θ∗)

p(θt−1|y)Jt(θ∗|θt−1)

- possible to use more efficient proposal distributions

- proof as previously, but name θa and θb so that

p(θb|y)Jt(θa|θb) ≥ p(θa|y)Jt(θb|θa)
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Metropolis-Hastings -algorithm

• Generalization of Metropolis algorithm to asymmetric target distribution

• More efficient algorithms

- proposal distribution can resemble more target distribution

· more efficient acceptance

- eg. proposal distribution which leans on direction of gradient

(Langevin-Hastings-algorithm)

· chain has tendency to travel towards higher mass

15



Slide 31

Metropolis-Hastings-Green algorithm (s. 338-339)

• Reversible jump Markov chain Monte Carlo (RJMCMC)

• Metropolis-Hastings generalised to jumps between different parameter spaces

- trans-dimensional method

Slide 32

Metropolis-Hastings

• Ideal proposal distribution is the target distribution

- J(θ∗|θ) ≡ p(θ∗|y) for all θ

- acceptance 1

- independent samples

• Good proposal resembles the target distribution

• Good scale can be selected by using rejection rate of 60–90%
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Metropolis-Hastings

• Updates

- jointly

- blocked

- single-component
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Gibbs sampling

• Called Gibbs sampling by Geman & Geman (1984)

in physics also known as heat bath method

• Gibbs sampling is special case of Metropolis-Hastings

- single component (usually)

- proposal distribution is the full conditional distribution of given parameter

→ proposal and target distributions are same

→ acceptance probability is 1
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Gibbs sampling

• Sample from each full conditional full conditional distribution

p(θj |θ
t−1
−j , y)

where θt−1
−j is

θt−1
−j = (θt

1, . . . , θ
t
j−1, θ

t−1
j+1, . . . , θ

t−1
d )

- in one time step t update all parameters θj (although not necessary)
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Gibbs sampling

• Example: one observation (y1, y2)

- normal model with unknown mean and known variance
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- conditional distributions (book s. 86 and 288)

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1 − ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1 − ρ2)

• Esim7_2.m
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Gibbs sampling

• Use of semi-conjugate priors in hierarchical models, produces often nice

conditional distributions

- WinBUGS/OpenBUGS

• No tunable algorithm parameters

• If some of the conditionals not in nice form may use e.g.. grid sampling,

Metropolis-Hastings or slice sampling

• Sometimes blocking used (cf. Metropolis-Hastings)
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Burn-in and convergence diagnostics

• Start with visual inspection

- Esim7_3.m
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Use of several chains

• Initialization of chains

- start from different points

- overdispersed starting points

- different random number generator seeds

• Compare interesting scalars, eg:

- parameters

- future predictions

- log-posterior density

- log-predictive density
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MCMC samples not independent

• Monte Carlo estimates still valid

• Monte Carlo error estimates slightly more difficult

- time series analysis

- thinning

- batching

• Estimation of the effective number of samples

- comparison of independent chains

- time series analysis
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