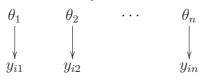
Hierarchical models (chapter 5)

- Introduction to hierarchical models
 - sometimes called multilevel model
- Exchangeability

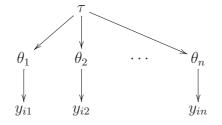
Slide 1

Hierarchical model

- Example: heart surgery in hospitals
 - in hospital j survival probability θ_j
 - observations y_{ij} , i.e. whether patient i survived in hospital j



- natural to assume that θ_j may be different but similar



Hierarchical model: risk of tumor in rats

• Example: risk of tumor in rats

- prior?

- drugs tested on rodents before clinical trial
- estimate the probability of tumor θ in a population of type 'F344' female laboratory rats given a zero dose (control group)
- data: 4/14 rats developed endometrial stromal polyps
- assume binomial and conjugate prior
- Slide 3

Hierarchical model: risk of tumor in rats

• Previous experiments y_1, \ldots, y_{70}									
0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/46	15/47	9/24

- Slide 4
- Current experiment y_{71} : 4/14
- Previously binomial $p(y_j|\theta)$, where θ common to all experiment
- Now $p(y_j|\theta_j),$ ie. every experiment has different θ_j
 - the probability of tumor θ_j vary because of differences in rats and experimental conditions

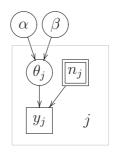
Hierarchical model

- How to take into account, that $heta_1,\ldots, heta_{71}$ likely similar
- → common population prior
- · Solution is a hierarchical model

Slide 5

$$\theta_j | \alpha, \beta \sim \text{Beta}(\theta_j | \alpha, \beta)$$

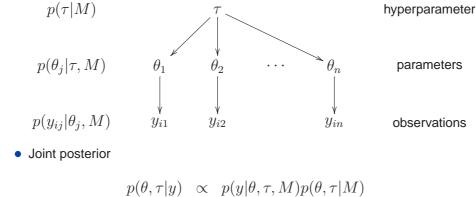
$$y_j | n_j, \theta_j \sim \operatorname{Bin}(y_j | n_j, \theta_j)$$



- Joint posterior $p(\theta_1, \ldots, \theta_J, \alpha, \beta | y)$
 - multiparameter model
 - factored $\prod_{j=1}^J p(\theta_j | \alpha, \beta, y) p(\alpha, \beta | y)$

Hierarchical model

- Hierarchical model:
 - Level 1: observations given parameters $p(y_{ij}|\theta_j, M)$
 - Level 2: parameters given hyperparameters $p(\theta_j | \tau, M)$



$$p(\theta, \tau|y) \propto p(y|\theta, \tau, M)p(\theta, \tau|M)$$
$$\propto p(y|\theta, M)p(\theta|\tau, M)p(\tau|M)$$

Hierarchical model: risk of tumor in rats

- Population prior $\text{Beta}(\theta_j | \alpha, \beta)$
- Hyperprior $p(\alpha, \beta)$?

• Esim6_1.m

- In Beta-distribution α,β both have effect on location and scale
- Gelman et al propose prior $p(\alpha,\beta)\propto (\alpha+\beta)^{-5/2}$
 - · diffuse prior on both location and scale (see p. 128)
- Slide 7
- hierarchical model assumes, that θ_j are similar, but not same

Hierarchical model

- Predictive distribution for a future observation \tilde{y} given θ_j for current j
 - e.g. a new patient in hospital \boldsymbol{j}
- Predictive distribution for a future observation \tilde{y} given new θ_j for new j i.e. $\tilde{\theta}$
 - e.g. a new patient in a new hospital

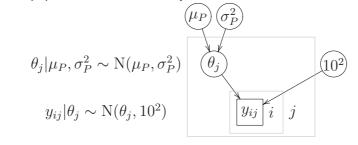
Hierarchical model - computation

- Easy to sample from the factored distribution
 - 1. sample $\tilde{\phi}$ from the marginal $p(\phi|y)$
 - 2. sample $\tilde{\theta}$ from the conditional $p(\theta|\tilde{\phi},y)$
 - 3. if needed sample \tilde{y} from the predictive distribution $p(y|\tilde{\theta})$
 - repeat L times

Slide 9

Hierarchical normal model - IQ-example

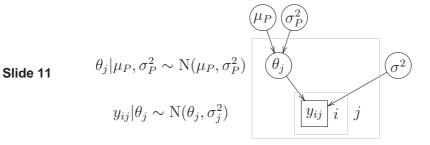
- Previously
 - population $\theta_j \sim N(100, 15^2)$ and observation $y_{ij} | \theta_j \sim N(\theta_j, 10^2)$
- Using hierarchical model
 - population distribution may be unknown



- Making IQ-test for several persons and using hierarchical model it is possible learn about population distribution, which then works as a prior for individual θ_j
- Measurement variance can be assumed unknown, too

Hierarchical model: example

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own latent quality value θ_j and common variance σ^2



- Possible to predict future quality for each machine and for a new machine
- Gibbs-sampling exercise (next week)

Hierarchical model: example

- · Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own latent quality value $heta_j$ and own variance σ_j^2

$$\begin{array}{c} \mu_P (\sigma_P^2) & \sigma_0^2 (\nu_0) \\ \theta_j | \mu_P, \sigma_P^2 \sim \mathrm{N}(\mu_P, \sigma_P^2) & \theta_j & \sigma_j^2 | \sigma_0^2, \nu_0 \sim \mathrm{Inv} \cdot \chi^2(\sigma_0^2, \nu_0) \\ y_{ij} | \theta_j \sim \mathrm{N}(\theta_j, \sigma_j^2) & y_{ij} & j \end{array}$$

- Possible to predict future quality for each machine and for a new machine
- Gibbs-sampling exercise extra points

Hierarchical normal model - SAT-example

- Example: analyze the effects special coaching programs (ex 5.1*)
 - In USA students tested with SAT (*Scholastic Aptitude Test*), which has been designed so that short term training should not improve score
 - some schools still have short-term coaching programs
 - analyze whether coaching has any effect
- SAT

Slide 13

Slide 14

- standardized multiple choice test
- mean about 500 and deviation about 100
- scores can vary between 200 and 800
- different subjects like V=Verbal, M=Mathematics
- preliminary test= PSAT

Hierarchical normal model - SAT-example

- Analyze the effect of coaching
 - students have taken PSAT-M and PSAT-V
 - part of the students were coached
 - linear regression estimates the coaching effect y_j (can be written also as $\bar{y}_{.j}$) and variances σ_i^2
 - y_j approximately normally distributed with approximately known variances based on results of about 30 students per school
 - note! data is group means and variances (not results of single students)

• Data: School A B C D E F G H y_j 28 8 -3 7 -1 1 18 12 σ_j 15 10 16 11 9 22 20 28

- 8 points corresponds to about one correct answer

SAT example

• J schools, unknown θ_j and known σ^2

$$y_{ij}|\theta_j \sim \mathcal{N}(\theta_j, \sigma^2), \quad i = 1, \dots, n_j; \quad j = 1, \dots, J$$

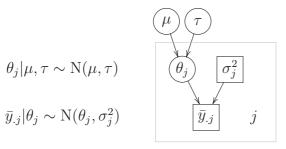
• Summarize group j with mean and variance

$$\bar{y}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$
$$\sigma_j^2 = \frac{\sigma^2}{n_j}$$

• Use model

$$\bar{y}_{.j}|\theta_j \sim \mathcal{N}(\theta_j, \sigma_j^2)$$

Hierarchical normal model fro group means



Slide 16

Slide 15

8

Model for means

Model

$$\bar{y}_{.j}|\theta_j \sim \mathcal{N}(\theta_j, \sigma_j^2)$$

- can be used for other data, where averages $\bar{y}_{.j}$ are assumed to be nearly normally distributed, even data y_{ij} are not

Slide 17

SAT example - prior

• Semiconjugate prior

$$p(\theta_1, \dots, \theta_J | \mu, \tau) = \prod_{j=1}^J N(\theta_j | \mu, \tau^2)$$

- if $au
ightarrow \infty$ then (separate model)

- if
$$au o 0$$
, then (pooled model), i.e. $heta_j = \mu$ and $ar y_{.j} | \mu \sim {
m N}(\mu, \sigma_j^2)$

SAT example - hyperprior

Model

$$\bar{y}_{.j}|\theta_j \sim \mathcal{N}(\theta_j, \sigma_j^2)$$

• Semi-conjugate prior

$$p(\theta_1, \dots, \theta_J | \mu, \tau) = \prod_{j=1}^J N(\theta_j | \mu, \tau^2)$$

Slide 19

• Hyperpior

$$p(\mu, \tau) = p(\mu | \tau) p(\tau) \propto p(\tau)$$

- uniform prior for μ ok
- prior for au has to selected more carefully
- $p(\tau) \propto 1/\tau$ would produce improper prior
- if $J>4,\,p(\tau)\propto 1$ reasonable uninformative prior
- if $J \leq 4$ half-Cauchy useful (Gelman, 2005)

Hierarchical normal model – factored computation

• Factorize joint posterior

$$p(\theta, \mu, \tau | y) \propto p(\theta | \mu, \tau, y) p(\mu, \tau | y)$$

• Conditional posterior for θ_j

$$\theta_j | \mu, \tau, y \sim \mathcal{N}(\theta_j, V_j)$$

Slide 20

where $\hat{\theta}_j$ and V_j are sane as for J independent normal distribution given informative conjugate prior

- ie. precision weighted average of data and prior

Hierarchical normal model – factored computation

• Marginal posterior for hyperparameters

$$p(\mu, \tau | y) \propto p(\mu, \tau) \prod_{j=1}^{J} \mathcal{N}(\bar{y}_{.j} | \mu, \sigma_j^2 + \tau^2)$$

• Could be used directly (eg. with 2-dimensional grid sampling), but can be factorized

$$p(\mu, \tau | y) = p(\mu | \tau, y) p(\tau | y)$$

where

Slide 21

$$p(\mu|\tau, y) = N(\hat{\mu}, V_{\mu})$$

where $\hat{\mu}$ is precision weighted mean of $\bar{y}_{.j}$ and V_{μ} is overall precision

• Marginal

$$p(\tau|y) = \frac{p(\mu, \tau|y)}{p(\mu|\tau, y)}$$

is not in closed form, but since unidimensional, easy to sample eg. with inverse-cdf

SAT example - computation

• Factored sampling

$$p(\theta, \mu, \tau | y) \propto p(\tau | y) p(\mu | \tau, y) p(\theta | \mu, \tau, y)$$

- Ex 5.1*
 - see "Computation" s. 137
- Esim6_2.m

Meta-analysis

- Meta-analysis combines and analyzes several experiments on same subjects
 - eg. in medical science several smaller experiments made in different countries
 - meta-analysis combines published results to combine information and reduce uncertainty
 - meta-analysis handled with hierarchical model
- p. 145 in book

Slide 23

Exchangeability

- Justifies why we can use
 - common model for data
 - common prior for parameters
- · Less strict assumption than independency
- "Ignorance implies exchangeability"

- Set of experiments $j = 1, \ldots, J$
- Experiment *j* with observations y_j , parameter θ_j and model $p(y_j|\theta_j)$
- Some of the parameters can be common to all experiments
 - eg. in hierarchical normal model may be $\theta_j = (\mu_j, \sigma^2)$, assuming same variance in different experiments

Slide 25

Slide 26

Exchangeability

- Two ways to define
 - 1. If no other information other than the data y is available to distinguish any of the θ_j from any of the others, and no ordering or grouping of the parameters can be made, one must assume symmetry among the parameters in their prior distribution
 - this symmetry is represented probabilistically by exchangeability

2. Parameters $\theta_1, \ldots, \theta_J$ are exchangeable in their joint distribution if $p(\theta_1, \ldots, \theta_J)$ is invariant to permutations of the indexes $(1, \ldots, J)$

- Exchangeability does not imply that results can not be different
 - eg. if we know that experiments have been made in two different labs with different conditions, but we don't know which experiments were made in which lab
 - a priori experiments still exchangeable
- model might have unknown parameter telling in which lab experiment was made, and then conditionally common prior for experiments made in one lab (clustering model)

Exchangeability

• Simplest form of exchangeability (but not the only one) for the parameters heta is iid

$$p(\theta|\phi) = \prod_{j=1}^{J} p(\theta_j|\phi)$$

• Often ϕ unknown and we want to compute θ 's marginal distribution

$$p(\theta) = \int \left[\prod_{j=1}^{J} p(\theta_j | \phi)\right] p(\phi) d\phi$$

- This form is a mixture of iid distributions
- de Finetti's theorem states that in the limit $J \to \infty$, any suitable well-behaved exchangeable distribution on $(\theta_1, \ldots, \theta_J)$ can be written in this form
 - formally does not hold for finite ${\boldsymbol{J}}$

Slide 28

Slide 27

14

Exchangeability vs. independence

- Example: Six sided die with probabilities $heta_1,\ldots, heta_6$
 - without any other knowledge $\theta_1, \ldots, \theta_6$ exchangeable
 - due to restriction $\sum_{j=1}^6 \theta_j$ not independent and cannot be modeled as a mixture of iid distributions

Slide 29

Exchangeability

- 1) box has 1 black and 1 white ball, first pick one y_1 , put it back , mix and pick second ball y_2
 - are observations y_1 and y_2 exchangeable?
 - are observations y_1 and y_2 independent?
- 2) box has 1 black and 1 white ball, first pick one ball y_1 , do not put it back, and pick a second ball y_2

- are observations y_1 and y_2 exchangeable?
- are observations y_1 and y_2 independent?
- 3) box has 10000 black and 10000 white balls, first pick one ball y_1 , do not put it back, and pick a second ball y_2
 - are observations y_1 and y_2 exchangeable?
 - are observations y_1 and y_2 independent?
 - can we proceed as if observations were independent?

- 4) box has a few (n known) black and white balls (proportion unknown), first pick one ball y_1 , put it back, mix and pick a second ball y_2
 - are observations y_1 and y_2 exchangeable?
 - are observations y_1 and y_2 independent?
 - can we proceed as if observations were independent?
- Slide 31 5) box has a few (*n* known) black and white balls (proportion unknown), first pick one ball y_1 , do not put it back, and pick a second ball y_2
 - are observations y_1 and y_2 exchangeable?
 - are observations y_1 and y_2 independent?
 - can we proceed as if observations were independent?

Exchangeability

- 6) box has many (n known or unknown) black and white balls (proportion unknown), first pick one ball y_1 , do not put it back, and pick a second ball y_2
 - are observations y_1 and y_2 exchangeable?
 - are observations y_1 and y_2 independent?
 - can we proceed as if observations were independent?

- Example: divorce rates per 1000 residents in 8 USA states in 1981
 - without other knowledge y_1, \ldots, y_8 are exchangeable
- Divorce rates of seven first states are 5.6, 6.6, 7.8, 5.6, 7.0, 7.2, 5.4
 - y_1, \ldots, y_8 are exchangeable
- Alternatively known, that 8 states are Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, but order is unknown
- Slide 33
- before seeing the data y_1, \ldots, y_8 still exchangeable, but prior might take into account that, there are lot of Mormons in Utah and it is easy to get divorce in Nevada; prior could be multimodal
- Alternatively known, that y₈ is Nevada
 - even before seeing the data, y_1, \ldots, y_8 not anymore exchangeable, because there is information which makes y_8 different from others
 - prior might be that $p(y_8 > \max(y_1, \ldots, y_7))$ is large
 - Nevada had actually 13.9 divorces per 1000 residents

Exchangeability and additional information

- Example: if divorce rate in previous year x_i in each state j were known
 - y_j are not exchangeable
 - (x_i, y_i) are exchangeable
 - generally exchangeability can achieved by conditioning on additional information

$$p(\theta_1, \dots, \theta_J | x_1, \dots, x_J) = \int \left[\prod_{j=1}^J p(\theta_j | \phi, x_j)\right] p(\phi | x_1, \dots, x_J) d\phi$$

- x_j is called *covariate*, which implies that its value variates with y_j
- This way exchangeability is general-purpose approach, because additional information can be included in *x* and *y*

Exchangeability and additional information

- Example: bioassay
 - x_i dose
 - y_i number of animals died
 - (x_i, y_i) pair is exchangeable and conditional model was used

$$p(\alpha, \beta | y, n, x) \propto \prod_{i=1}^{n} p(y_i | \alpha, \beta, n_i, x_i) p(\alpha, \beta)$$

Slide 35

Exchangeability and conditional modeling (s. 354)

• Joint model (x_i, y_i)

$$p(x, y|\varphi, \theta) = p(x|\varphi)p(y|x, \theta)$$

• Assume φ and θ a priori independent i.e. $p(\varphi, \theta) = p(\varphi)p(\theta)$, and thus

$$p(\varphi, \theta | x, y) = p(\varphi | x) p(\theta | x, y)$$

Slide 36

• We can examine just the term $p(\theta|x,y)$

$$p(\theta|x,y) \propto p(y|x,\theta)p(\theta)$$

• if x chosen e.g. in design of experiments, p(x) does not exist or is known and does not have parameters

Hierarchical exchangeability

- Example: heart surgery
 - all patients are not exchangeable with each other
 - in single hospital patients are exchangeable (given no other information)
 - hospitals are exchangeable (given no other information)
 - \rightarrow hierarchical model

Slide 37

Partial or conditional exchangeability

- Often observations not fully exchangeable
- Partial exchangeability
 - if observations can be grouped \rightarrow hierarchical model, in which groups are exchangeable and observations inside groups are exchangeable
- Conditional exchangeability

Slide 38

- if y_i has related information x_i , which makes y_i not exchangeable, but (y_i, x_i) is exchangeable possible to make a joint or conditional model $(y_i|x_i)$.

- Observations y_1, \ldots, y_n are exchangeable in their joint distribution if $p(y_1, \ldots, y_n)$ is invariant to permutation of indexes $(1, \ldots, n)$
- Parameters $\theta_1, \ldots, \theta_J$ are exchangeable in their joint distribution if $p(\theta_1, \ldots, \theta_J)$ is invariant to permutation of indexes $(1, \ldots, J)$
- Simplest form of the exchangeability (not only form) is independent samples

$$p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta_j)$$
 or $p(\theta|\phi) = \prod_{j=1}^{J} p(\theta_j|\phi)$