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Hierarchical models (chapter 5)

• Introduction to hierarchical models

- sometimes called multilevel model

• Exchangeability
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Hierarchical model

• Example: heart surgery in hospitals

- in hospital j survival probability θj

- observations yij , i.e. whether patient i survived in hospital j

θ1 θ2 · · · θn

yi1 yi2 yin

- natural to assume that θj may be different but similar

τ

θ1 θ2 · · · θn

yi1 yi2 yin
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Hierarchical model: risk of tumor in rats

• Example: risk of tumor in rats

- drugs tested on rodents before clinical trial

- estimate the probability of tumor θ in a population of type ’F344’ female

laboratory rats given a zero dose (control group)

- data: 4/14 rats developed endometrial stromal polyps

- assume binomial and conjugate prior

- prior?
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Hierarchical model: risk of tumor in rats

• Previous experiments y1, . . . , y70

0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19

0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19 1/19

1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20

2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20

3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20

4/20 10/48 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20

6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/46 15/47 9/24

• Current experiment y71 : 4/14

• Previously binomial p(yj|θ), where θ common to all experiment

• Now p(yj|θj), ie. every experiment has different θj

- the probability of tumor θj vary because of differences in rats and

experimental conditions
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Hierarchical model

• How to take into account, that θ1, . . . , θ71 likely similar

→ common population prior

• Solution is a hierarchical model

yj

θj

α β

nj

jyj|nj , θj ∼ Bin(yj|nj , θj)

θj |α, β ∼ Beta(θj |α, β)

• Joint posterior p(θ1, . . . , θJ , α, β|y)

- multiparameter model

- factored
∏J

j=1
p(θj |α, β, y)p(α, β|y)
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Hierarchical model

• Hierarchical model:

Level 1: observations given parameters p(yij|θj , M)

Level 2: parameters given hyperparameters p(θj|τ, M)

p(τ |M) τ hyperparameter

p(θj |τ, M) θ1 θ2 · · · θn parameters

p(yij|θj, M) yi1 yi2 yin observations

• Joint posterior

p(θ, τ |y) ∝ p(y|θ, τ, M)p(θ, τ |M)

∝ p(y|θ, M)p(θ|τ, M)p(τ |M)
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Hierarchical model: risk of tumor in rats

• Population prior Beta(θj |α, β)

• Hyperprior p(α, β)?

- In Beta-distribution α, β both have effect on location and scale

- Gelman et al propose prior p(α, β) ∝ (α + β)−5/2

· diffuse prior on both location and scale (see p. 128)

• Esim6_1.m

- hierarchical model assumes, that θj are similar, but not same
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Hierarchical model

• Predictive distribution for a future observation ỹ given θj for current j

- e.g. a new patient in hospital j

• Predictive distribution for a future observation ỹ given new θj for new j i.e. θ̃

- e.g. a new patient in a new hospital
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Hierarchical model - computation

• Easy to sample from the factored distribution

1. sample φ̃ from the marginal p(φ|y)

2. sample θ̃ from the conditional p(θ|φ̃, y)

3. if needed sample ỹ from the predictive distribution p(y|θ̃)

- repeat L times
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Hierarchical normal model - IQ-example

• Previously

- population θj ∼ N(100, 152) and observation yij|θj ∼ N(θj , 102)

• Using hierarchical model

- population distribution may be unknown

yij

θj

µP σ2

P

102

i jyij|θj ∼ N(θj , 102)

θj |µP , σ2

P ∼ N(µP , σ2

P )

• Making IQ-test for several persons and using hierarchical model it is possible

learn about population distribution, which then works as a prior for individual θj

• Measurement variance can be assumed unknown, too
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Hierarchical model: example

• Factory has 6 machines which quality is evaluated

• Assume hierarchical model

- each machine has its own latent quality value θj and common variance σ2

yij

θj

µP σ2

P

σ2

i jyij|θj ∼ N(θj , σ
2

j )

θj |µP , σ2

P ∼ N(µP , σ2

P )

• Possible to predict future quality for each machine and for a new machine

• Gibbs-sampling exercise (next week)
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Hierarchical model: example

• Factory has 6 machines which quality is evaluated

• Assume hierarchical model

- each machine has its own latent quality value θj and own variance σ2

j

yij

θj

µP σ2

P

σ2

j

σ2

0
ν0

i jyij|θj ∼ N(θj , σ
2

j )

θj |µP , σ2

P ∼ N(µP , σ2

P ) σ2

j |σ
2

0
, ν0 ∼ Inv-χ2(σ2

0
, ν0)

• Possible to predict future quality for each machine and for a new machine

• Gibbs-sampling exercise extra points

6



Slide 13

Hierarchical normal model - SAT-example

• Example: analyze the effects special coaching programs (ex 5.1*)

- In USA students tested with SAT (Scholastic Aptitude Test), which has been

designed so that short term training should not improve score

- some schools still have short-term coaching programs

- analyze whether coaching has any effect

• SAT

- standardized multiple choice test

- mean about 500 and deviation about 100

- scores can vary between 200 and 800

- different subjects like V=Verbal, M=Mathematics

- preliminary test= PSAT
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Hierarchical normal model - SAT-example

• Analyze the effect of coaching

- students have taken PSAT-M and PSAT-V

- part of the students were coached

- linear regression estimates the coaching effect yj (can be written also as ȳ.j)

and variances σ2

j

- yj approximately normally distributed with approximately known variances

based on results of about 30 students per school

- note! data is group means and variances (not results of single students)

• Data: School A B C D E F G H

yj 28 8 -3 7 -1 1 18 12

σj 15 10 16 11 9 22 20 28

- 8 points corresponds to about one correct answer

7



Slide 15

SAT example

• J schools, unknown θj and known σ2

yij|θj ∼ N(θj , σ
2), i = 1, . . . , nj; j = 1, . . . , J

• Summarize group j with mean and variance

ȳ.j =
1

nj

nj
∑

i=1

yij

σ2

j =
σ2

nj

• Use model

ȳ.j|θj ∼ N(θj , σ
2

j )
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Hierarchical normal model fro group means

ȳ.j

θj

µ τ

σ2

j

jȳ.j|θj ∼ N(θj , σ
2

j )

θj |µ, τ ∼ N(µ, τ)
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Model for means

• Model

ȳ.j|θj ∼ N(θj , σ
2

j )

- can be used for other data, where averages ȳ.j are assumed to be nearly

normally distributed, even data yij are not
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SAT example - prior

• Semiconjugate prior

p(θ1, . . . , θJ |µ, τ) =
J

∏

j=1

N(θj |µ, τ 2)

- if τ → ∞ then (separate model)

- if τ → 0, then (pooled model), i.e. θj = µ and ȳ.j|µ ∼ N(µ, σ2

j )
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SAT example - hyperprior

• Model

ȳ.j|θj ∼ N(θj , σ
2

j )

• Semi-conjugate prior

p(θ1, . . . , θJ |µ, τ) =

J
∏

j=1

N(θj |µ, τ 2)

• Hyperpior

p(µ, τ) = p(µ|τ)p(τ) ∝ p(τ)

- uniform prior for µ ok

- prior for τhas to selected more carefully

- p(τ) ∝ 1/τ would produce improper prior

- if J > 4, p(τ) ∝ 1 reasonable uninformative prior

- if J ≤ 4 half-Cauchy useful (Gelman, 2005)
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Hierarchical normal model – factored computation

• Factorize joint posterior

p(θ, µ, τ |y) ∝ p(θ|µ, τ, y)p(µ, τ |y)

• Conditional posterior for θj

θj |µ, τ, y ∼ N(θ̂j , Vj)

where θ̂j and Vj are sane as for J independent normal distribution given

informative conjugate prior

- ie. precision weighted average of data and prior
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Hierarchical normal model – factored computation

• Marginal posterior for hyperparameters

p(µ, τ |y) ∝ p(µ, τ)

J
∏

j=1

N(ȳ.j|µ, σ2

j + τ 2)

• Could be used directly (eg. with 2-dimensional grid sampling), but can be

factorized

p(µ, τ |y) = p(µ|τ, y)p(τ |y)

where

p(µ|τ, y) = N(µ̂, Vµ)

where µ̂ is precision weighted mean of ȳ.j and Vµ is overall precision

• Marginal

p(τ |y) =
p(µ, τ |y)

p(µ|τ, y)

is not in closed form, but since unidimensional, easy to sample eg. with

inverse-cdf
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SAT example - computation

• Factored sampling

p(θ, µ, τ |y) ∝ p(τ |y)p(µ|τ, y)p(θ|µ, τ, y)

• Ex 5.1*

- see "Computation" s. 137

• Esim6_2.m
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Meta-analysis

• Meta-analysis combines and analyzes several experiments on same subjects

- eg. in medical science several smaller experiments made in different countries

- meta-analysis combines published results to combine information and reduce

uncertainty

- meta-analysis handled with hierarchical model

• p. 145 in book
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Exchangeability

• Justifies why we can use

- common model for data

- common prior for parameters

• Less strict assumption than independency

• "Ignorance implies exchangeability"
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Exchangeability

• Set of experiments j = 1, . . . , J

• Experiment j with observations yj , parameter θj and model p(yj|θj)

• Some of the parameters can be common to all experiments

- eg. in hierarchical normal model may be θj = (µj, σ
2), assuming same

variance in different experiments
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Exchangeability

• Two ways to define

1. If no other information – other than the data y – is available to distinguish any

of the θj from any of the others, and no ordering or grouping of the

parameters can be made, one must assume symmetry among the parameters

in their prior distribution

- this symmetry is represented probabilistically by exchangeability

2. Parameters θ1, . . . , θJ are exchangeable in their joint distribution if

p(θ1, . . . , θJ) is invariant to permutations of the indexes (1, . . . , J)
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Exchangeability

• Exchangeability does not imply that results can not be different

- eg. if we know that experiments have been made in two different labs with

different conditions, but we don’t know which experiments were made in which

lab

- a priori experiments still exchangeable

- model might have unknown parameter telling in which lab experiment was

made, and then conditionally common prior for experiments made in one lab

(clustering model)
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Exchangeability

• Simplest form of exchangeability (but not the only one) for the parameters θ is iid

p(θ|φ) =
J

∏

j=1

p(θj |φ)

• Often φ unknown and we want to compute θ’s marginal distribution

p(θ) =

∫

[

J
∏

j=1

p(θj |φ)

]

p(φ)dφ

• This form is a mixture of iid distributions

• de Finetti’s theorem states that in the limit J → ∞, any suitable well-behaved

exchangeable distribution on (θ1, . . . , θJ) can be written in this form

- formally does not hold for finite J
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Exchangeability vs. independence

• Example: Six sided die with probabilities θ1, . . . , θ6

- without any other knowledge θ1, . . . , θ6 exchangeable

- due to restriction
∑

6

j=1
θj not independent and cannot be modeled as a

mixture of iid distributions
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Exchangeability

1) box has 1 black and 1 white ball, first pick one y1, put it back , mix and pick

second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

2) box has 1 black and 1 white ball, first pick one ball y1, do not put it back, and pick

a second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

3) box has 10000 black and 10000 white balls, first pick one ball y1, do not put it

back, and pick a second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

- can we proceed as if observations were independent?
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Exchangeability

4) box has a few (n known) black and white balls (proportion unknown), first pick

one ball y1, put it back, mix and pick a second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

- can we proceed as if observations were independent?

5) box has a few (n known) black and white balls (proportion unknown), first pick

one ball y1, do not put it back, and pick a second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

- can we proceed as if observations were independent?
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Exchangeability

6) box has many (n known or unknown) black and white balls (proportion unknown),

first pick one ball y1, do not put it back, and pick a second ball y2

- are observations y1 and y2 exchangeable?

- are observations y1 and y2 independent?

- can we proceed as if observations were independent?
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Exchangeability

• Example: divorce rates per 1000 residents in 8 USA states in 1981

- without other knowledge y1, . . . , y8 are exchangeable

• Divorce rates of seven first states are 5.6, 6.6, 7.8, 5.6, 7.0, 7.2, 5.4

- y1, . . . , y8 are exchangeable

• Alternatively known, that 8 states are Arizona, Colorado, Idaho, Montana,

Nevada, New Mexico, Utah, Wyoming, but order is unknown

- before seeing the data y1, . . . , y8 still exchangeable, but prior might take into

account that, there are lot of Mormons in Utah and it is easy to get divorce in

Nevada; prior could be multimodal

• Alternatively known, that y8 is Nevada

- even before seeing the data, y1, . . . , y8 not anymore exchangeable, because

there is information which makes y8 different from others

- prior might be that p(y8 > max(y1, . . . , y7)) is large

- Nevada had actually 13.9 divorces per 1000 residents
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Exchangeability and additional information

• Example: if divorce rate in previous year xj in each state j were known

- yj are not exchangeable

- (xj , yj) are exchangeable

- generally exchangeability can achieved by conditioning on additional

information

p(θ1, . . . , θJ |x1, . . . , xJ) =

∫

[

J
∏

j=1

p(θj |φ, xj)

]

p(φ|x1, . . . , xJ)dφ

- xj is called covariate, which implies that its value variates with yj

• This way exchangeability is general-purpose approach, because additional

information can be included in x and y
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Exchangeability and additional information

• Example: bioassay

- xi dose

- yi number of animals died

- (xi, yi) pair is exchangeable and conditional model was used

p(α, β|y, n, x) ∝

n
∏

i=1

p(yi|α, β, ni, xi)p(α, β)
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Exchangeability and conditional modeling (s. 354)

• Joint model (xi, yi)

p(x, y|ϕ, θ) = p(x|ϕ)p(y|x, θ)

• Assume ϕ and θ a priori independent i.e. p(ϕ, θ) = p(ϕ)p(θ), and thus

p(ϕ, θ|x, y) = p(ϕ|x)p(θ|x, y)

• We can examine just the term p(θ|x, y)

p(θ|x, y) ∝ p(y|x, θ)p(θ)

• if x chosen e.g. in design of experiments, p(x) does not exist or is known and

does not have parameters
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Hierarchical exchangeability

• Example: heart surgery

- all patients are not exchangeable with each other

- in single hospital patients are exchangeable (given no other information)

- hospitals are exchangeable (given no other information)

→ hierarchical model
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Partial or conditional exchangeability

• Often observations not fully exchangeable

• Partial exchangeability

- if observations can be grouped → hierarchical model, in which groups are

exchangeable and observations inside groups are exchangeable

• Conditional exchangeability

- if yi has related information xi, which makes yi not exchangeable, but

(yi, xi) is exchangeable possible to make a joint or conditional model (yi|xi).
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Exchangeability

• Observations y1, . . . , yn are exchangeable in their joint distribution if

p(y1, . . . , yn) is invariant to permutation of indexes (1, . . . , n)

• Parameters θ1, . . . , θJ are exchangeable in their joint distribution if

p(θ1, . . . , θJ ) is invariant to permutation of indexes (1, . . . , J)

• Simplest form of the exchangeability (not only form) is independent samples

p(y|θ) =

n
∏

i=1

p(yi|θj) or p(θ|φ) =

J
∏

j=1

p(θj |φ)
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