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Large-sample inference (chapter 4)

• Normal approximation

- Taylor series expansion of log-posterior

- aka Laplace approximation

• Counterexamples

• Frequency evaluations
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Normal approximation

• If the posterior distribution is unimodal and roughly symmetric

- it can be approximated by a normal distribution

p(θ|y) ≈ 1√
2πσθ

exp

(

− 1

2σ2
θ

(θ − θ̂)2

)

- i.e. log-posterior log p(θ|y) can be approximated by a quadratic function

log p(θ|y) ≈ α(θ − θ̂)2 + C
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Taylor series

• Taylor series expansion at x = a

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + . . .

• Generalizes to multidimensional

f(x1, . . . , xn) =

∞
∑

j=0







1

j!

[

n
∑

k=1

(xk − ax)
∂

∂x′

k

]j

f(x′

1, . . . , x
′

n)







x′

1
=a1,...,x′

n
=an
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Normal approximation

• Taylor series expansion of log-posterior around at the posterior mode θ̂

log p(θ|y) = log p(θ̂|y) +
1

2
(θ − θ̂)T

[

d2

dθ2
log p(θ|y)

]

θ=θ̂

(θ − θ̂) + . . .

where linear term is zero and higher terms are small when θ close to θ̂ and n

large (see appendix B)

• Multivariate normal ∝ |Σ|−1/2 exp
(

−1
2
(θ − θ̂T )Σ−1(θ − θ̂)

)

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)

where I(θ) is observed information

I(θ) = − d2

dθ2
log p(θ|y)
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Normal approximation

• I(θ) is observed information

I(θ) = − d2

dθ2
log p(θ|y)

- I(θ̂) is the second derivative of the log posterior at the mode

- if the mode is inside the parameter space, I(θ̂) is positive

- if θ is vector, I(θ) is matrix
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Normal approximation - example

• Normal distribution, unknown mean and variance

- uniform prior on (µ, log σ)

- normal approximation of posterior of (µ, log σ)

log p(µ, log σ|y) = constant − n log σ − 1

2σ2
[(n − 1)s2 + n(ȳ − µ)2]

first derivatives

d

dµ
log p(µ, log σ|y) =

n(ȳ − µ)

σ2
,

d

d(log σ)
log p(µ, log σ|y) = − n +

(n − 1)s2 + n(ȳ − µ)2

σ2
,

from which posterior mode is easy calculate

(µ̂, log σ̂) =

(

ȳ,
1

2
log

(

n − 1

n
s2

))
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Normal approximation - example

• Normal distribution, unknown mean and variance

first derivatives

d

dµ
log p(µ, log σ|y) =

n(ȳ − µ)

σ2
,

d

d(log σ)
log p(µ, log σ|y) = −n +

(n − 1)s2 + n(ȳ − µ)2

σ2

second derivatives

d2

dµ2
log p(µ, log σ|y) = − n

σ2
,

d2

dµd(log σ)
log p(µ, log σ|y) = − 2n

ȳ − µ

σ2
,

d2

d(log σ)2
log p(µ, log σ|y) = − 2

σ2
((n − 1)s2 + n(ȳ − µ)2)
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Normal approximation - example

• Normal distribution, unknown mean and variance

second derivatives

d2

dµ2
log p(µ, logσ|y) = − n

σ2
,

d2

dµ(log σ)
log p(µ, logσ|y) = −2n

ȳ − µ

σ2
,

d2

d(log σ)2
log p(µ, logσ|y) = − 2

σ2
((n − 1)s2 + n(ȳ − µ)2)

matrix of second derivatives evaluated at (µ̂, log σ̂)




−n/σ̂2 0

0 −2n
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Normal approximation - example

• Normal distribution, unknown mean and variance

mode of the posterior

(µ̂, log σ̂) =

(

ȳ,
1

2
log

(

n − 1

n
s2

))

matrix of second derivatives evaluated at (µ̂, log σ̂)




−n/σ̂2 0

0 −2n





normal approximation

p(µ, logσ|y) ≈ N









µ

log σ





∣

∣

∣

∣

∣





ȳ

log σ̂



 ,





σ̂2/n 0

0 1/(2n)
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Normal approximation

• Useful if

- the posterior similar to normal

· depends on the model and parametrisation how fast posterior approaches

normality when n increases

- inference not sensitive to the imperfections in the approximation

· e.g. mean is less sensitive than extreme quantiles

• Approximation can be often improved with transformation of variables

- e.g. use log σ instead of σ

- posterior of σ and log σ approaches normality, but with finite n approximation

is better for log σ
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Normal approximation

• Approximation can be made to marginal distribution

- marginals are always closer to normal

- requires that marginal is relatively easy to compute

- Integrated Nested Laplace Approximation (INLA)

- recent method for efficiently evaluating many marginals for latent Gaussian

models (guest lecture 13.11. 16:00 Exactum B120!)

• Approximation can be made for conditional distribution

- approximative Rao-Blackwellisation
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Normal approximation

• Easy to compute

- HPD

- mean, median, mode, intervals

• Can be used as a starting guess for MCMC-methods

• Can be used as a proposal distribution in importance sampling
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Normal approximation

• Can be computed numerically

- derivatives can be computed using finite-difference (with small number of

parameters)

- minimize the negative log-poster: minimum is the mode and Hessian at the

minimum is the observed information

- e.g. with Matlab

[w,fval,exitflag,output,g,H]=fminunc(@nlogp,w0,opt,x,y,n);
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Bioassay

Dose, xi Number of Number of

(log g/ml) animals, ni deaths, yi

-0.86 5 0

-0.30 5 1

-0.05 5 3

0.73 5 5

• yi|θi ∼ Bin(ni, θi)

• Logistic regression logit(θi) = α + βxi

• Likelihood

p(yi|α, β, ni, xi) ∝ [logit−1(α + βxi)]
yi[1 − logit−1(α + βxi)]

ni−yi

• Posterior

p(α, β|y, n, x) ∝ p(α, β)

n
∏

i=1

p(yi|α, β, ni, xi)

• esim5 1.m, ex 4.2
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Bioassay

• Hint for ex 4.2

• Likelihood

p(yi|α, β, ni, xi) ∝ [logit−1(α + βxi)]
yi[1 − logit−1(α + βxi)]

ni−yi

∝ θyi[1 − θ]ni−yi

• Write log-poster in neat form

• denote θ = logit−1(φ) and φ = α + βxi, and use chain rule in derivation

• See logit and logit−1 at page 24

• Recognize familiar forms, rearrange terms and keep it simple

• Compare to numerical result (esim5 1.m) (Hessian)
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Large sample theory

• In this course only superficially

- see appendix B for some more

• Assume ”true” data distribution f(y)

- observations y1, . . . , yn independent samples from f(y)

- ”true” distribution f(y) is not clear concept

- Bayesians can say, that we proceed as if there were ”true” distribution f(y)

- for large sample theory the exact form of f(y) is not important, as long as

some regularity conditions hold
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Large sample theory

• Asymptotic normality

• Consistency

- if f(y) = p(y|θ0) for some θ0, then posterior converges to single point θ0, as

n → ∞

• if f(y) 6= p(y|θ0)

- posterior converges to θ0 for which p(y|θ0) is closest to f(y) measured with

Kullback-Leibler information

H(θ0) =

∫

f(yi) log

(

f(yi)

p(yi|θ0)

)

dyi
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Kullback-Leibler information

H(θ0) =

∫

f(yi) log

(

f(yi)

p(yi|θ0)

)

dyi

• Divergence measure

- not distance, since non-symmetric

- if log2, divergence measured in bits

- if loge, divergence measured in nats
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Asymptotic normality and consistency

• If certain regularity conditions hold for the likelihood

- e.g. continuous function of θ and θ0 not on the boundary of the parameter

space

then posterior of θ approaches normality

N(θ0, (nJ(θ0))
−1),

where J(θ) is Fisher’s information

• Compare

observed information I(θ) = −d2 log p(θ|y)

dθ2

Fisher’s information J(θ) = −E

[

d2 log p(y|θ)
dθ2

∣

∣

∣
θ

]
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Asymptotic normality and consistency

• Observed information

I(θ) = −d2 log p(θ|y)

dθ2

if for posterior p(θ|y) given specific observation y

• Fisher’s information

J(θ) = −E

[

d2 log p(y|θ)
dθ2

∣

∣

∣
θ

]

if for likelihood p(y|θ) expectation over distribution of y given θ

(not for specific y)

• When n → ∞ these approaches same value

• Can be interpreted using Taylor series expansion
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Asymptotic normality and consistency

• Taylor series expansion at the mode of the posterior θ̂

log p(θ|y) = log p(θ̂|y) +
1

2
(θ − θ̂)T

[

d2

dθ2
log p(θ|y)

]

θ=θ̂

(θ − θ̂) + . . .

• When n → ∞, mass of the posterior concentrates in smaller and smaller

neighborhoods of θ0:n and |θ̂ − θ0| → 0, (consistency)

• Write quadratic term as
[

d2

dθ2
log p(θ|y)

]

θ=θ̂

=

[

d2

dθ2
log p(θ)

]

θ=θ̂

+
n

∑

i=1

[

d2

dθ2
log p(yi|θ)

]

θ=θ̂

as function of θ this is a constant plus the sum of n terms, each of whose

expected value under the true sampling distribution p(y|θ0) is approximately

−J(θ0), as long as θ̂ is close to θ0

• For large n, the curvature of the log posterior density can be approximated by

Fisher information evaluated at either θ̂ or θ0 (only θ̂ available in practice)
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Normal approximation

• In practice useful only for some models

- often n not large enough

- also several counter examples even if n → ∞
- approximation can be evaluated, e.g., using importance sampling

- other methods

· use for conditionals or marginals

· use for some marginals with Integrated Nested Laplace Approximation

(INLA)

· t-distribution, skewed-t-distribution

· variational methods, expectation propagation

· Monte Carlo methods

• Despite of limitations essential part of Bayesian toolkit
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Normal approximation - counter examples

• Under- and non-identifibiality

• Number of parameters increasing with sample size

• Aliasing

• Unbounded likelihood

• Improper posterior

• Prior distribution excludes the point of convergence

• Convergence to the edge of parameter space

• Tails of the distribution
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Under- ja nonidentified

- model is under-identified, if data can not update uncertainty related to some

parameters or parameter combinations

- no single convergence point θ0

- eg. if only one of u or v is observed from each pair (u, v) and model is





u

v



 ∼ N









0

0



 ,





1 ρ

ρ 1









the ρ is nonidentified

- eg. u is height of a student v is weight of a student

- problematic for MC-methods, too

12



Slide 25

Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Number of parameters increasing with sample size

- in many models the number of parameters depends on the number of

observations

- eg. spatial models yi ∼ N(θi, σ
2) and θi is has spatial prior

- posterior of θi does converge to a point, if new data do not bring enough

information about θi
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Aliasing

- Special case of underidentified parameters in which the same likelihood

function repeats at a discrete set of points

- eg. normal mixture model

p(yi|µ1, µ2, σ
2
1, σ

2
2, λ) = λ N(µ1, σ

2
1) + (1 − λ) N(µ2, σ

2
2)

if we interchange each of (µ1, µ2) and (σ2
1, σ

2
2), and replace λ with (1 − λ),

the likelihood of the data remains same

the posterior generally has at least two modes that are mirror images of each

other; it does not converge to a single point

- in general not a problem for MC-methods , but makes convergence

diagnostics more difficult

- can be eliminated by restricting parameter space; eg. in previous example by

restricting µ1 ≤ µ2
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Unbounded likelihood

- if likelihood function is unbounded, then there might be no posterior mode

within parameter space

- eg. the previous normal mixture model; assume known λ (not 0 or 1); if

µ1 = yi for any yi and σ2
1 → 0, then likelihood→ ∞

- as n → ∞, the number of modes of the likelihood increases

- if the prior is uniform on σ2
1 and σ2

1 near zero → the number of modes the

likelihood increases

- problematic also for, e.g. MC-methods

- the problem can be solved by restricting the model to plausible set of

distributions

- note, that vague priors and finite n may have almost unbounded posterior
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Improper posterior distribution

- asymptotic results require probabilities to sum to one

- eg. Binomial with prior Beta(0, 0) and data y = n

· posterior p(θ|n, 0) = θn−1(1 − θ)−1

· if θ → 1, then p(θ|n, 0) → ∞
- problematic also for, eg.. MC methods

- the problem can be solved by using proper prior

- note, that vague priors may produce almost improper posterior
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Prior distribution excludes the point of convergence

- if in discrete case p(θ0) = 0 or in continuous case p(θ) = 0 in a

neighborhood about θ0 , then the convergence results do not hold

- not a problem for MC methods

- the solution is to give positive prior density to all values that are even remotely

possible
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Large sample theory - counterexamples

• Theory does not always hold even if n → ∞

• Convergence to the edge of parameter space

- if θ0 is on the boundary of the parameter space, then the Taylor series

expansion must be truncated and approximation will not necessarily be

appropriate

- eg. yi ∼ N(θ, 1) with the restriction θ ≥ 0 and assume that θ = 0 is true

value

- θ’s posterior is normal with µ = ȳ and truncated to be positive

- in the limit as n → ∞ posterior is half of normal distribution

- not a problem for MC methods
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Large sample theory - counterexamples

• Tails of the distribution

- normal approximation can hold for essential all the of the posterior distribution

but still not be accurate in the tails

- eg. parameter that is restricted to be positive, with finite n normal

approximation gives positive density to negative values

• MC has also problems with tails, although different type
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Frequency evaluation

• Frequentist methods are based on repeated sampling ie frequencies

• Frequency evaluation of Bayesian inference is also based on frequencies, but

Bayesian interpretation is preserved although terms and analysis tools are

borrowed from frequentists

• Although often in description of Bayesian theory it is emphasised the possibility

of examining probability of a single event, there is not obstacle to examine

repeated event

• Normal approximation and consistency are based also on repeated sampling

• Frequency evaluation examines the properties of the methods, by considering

what would happen if experiment were repeated
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Frequency evaluation

• Asymptotic calibration of posterior intervals

• Consistency

• Asymptotic unbiasedness [E(θ̂|θ0) − θ0]/ sd(θ̂|θ0) → 0

• Asymptotic efficiency
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Frequency evaluation

• Asymptotic results nice, but usually behavior with finite n more interesting

• Usually Bayesian estimates are biased

- estimate is biased due to prior information

- since truth is not usually known, prior is probably somewhat wrong, which

causes bias

- bias is not problem if variance is reduced (better efficiency)

- slightly wrong prior causes small bias, but may reduce variance greatly

• Bias-variance dilemma

- by increasing bias, variance may be reduced

- increasing prior-information may increase bias, but benefit is in reduced

variance
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