Department of Mathematics and Statistics

Stokastiset prosessit

Exercises 5

10.06.2008

1. Consider a reflecting random walk on the interval $\{0, 1, ..., d\}$. In other words, suppose p + q = 1 and the transition probabilities satisfy

$$p_{ij} = \begin{cases} p & \text{when } j = i+1 \text{ and } 0 < i < d \\ q & \text{when } j = i-1 \text{ ja } 0 < i < d \\ 1 & \text{when } i = 0, j = 1 \text{ tai } i = d, j = d-1 \\ 0 & \text{otherwise.} \end{cases}$$

- a) Is the chain reversible?
- b) Determine the stationary distribution.
- 2. Suppose $T \sim \text{Exp}\left(\lambda\right)$ and $S \sim \text{Exp}\left(\mu\right)$ are independent. Show by calculating that

$$P(T + S \le t + s | T + S > t, T < t) = P(S \le s).$$

- 3. Let N(t) be Poisson process. Suppose 0 < t < u < v < s are given. What is the distribution of the random variable N(v) N(u) given we know that N(s) N(t) = n?
- 4. The uniqueness of the stationary distribution. Suppose that (X_n) is finite and irreducible MC and $\alpha \in S$. Suppose $\widetilde{\pi}$ is some stationary distribution of (X_n) . Denote

$$A_j^{(n)}(k) := \mathbf{P}_j (X_m \neq \alpha \text{ for } 1 \leq m < n \text{ and } X_n = k).$$

a) Represent the probability $A_j^{(n)}(k)$ with the help of hitting time τ_{α} and random variable X_n and deduce the estimate

$$A_j^{(n)}(k) \le \mathbf{P}_j (\tau_{\alpha} > n)$$

for $k \neq \alpha$.

b) Show that

$$\sum_{k \neq \alpha} A_j^{(n)}(k) p_{ki} = A_j^{(n+1)}(i)$$

when $i \neq \alpha$ and $n \geq 1$.

c) Show that

$$\widetilde{\pi}_j = \widetilde{\pi}_\alpha \sum_{m=1}^n A_\alpha^{(m)}(j) + \sum_{l \neq \alpha} \widetilde{\pi}_l A_l^{(n)}(j),$$

when $j \neq \alpha$ and $n \geq 1$ [Hint: induction, definition of the stationary distribution and part b)]

d) Suppose $p_{\alpha j}^{(m)}>0$ and suppose m is the smallest number with this property. Show that

$$\mathbf{P}_{j}\left(\tau_{\alpha} > n\right) \leq \frac{\mathbf{P}_{\alpha}\left(\tau_{\alpha} > n + m\right)}{p_{\alpha j}^{(m)}} \to 0,$$

when $n \to \infty$.