Department of Mathematics and Statistics
 Stokastiset prosessit

Exercises 3

03.06.2008

1. Let (X_{n}) be a MC (Markov Chain) with state space $S \subseteq \mathbb{N}$ and let $n, m \geq 1$. Let $M \subset S^{n}$ and $T \subset S^{m}$. Let $A:=\left\{\left(X_{0}, \ldots, X_{n-1}\right) \in M\right\}, B:=\left\{\left(X_{n+1}, \ldots, X_{n+m}\right) \in\right.$ $T\}$ and $C:=\left\{\left(X_{1}, \ldots, X_{m}\right) \in T\right\}$ be events. Show that

$$
\mathbf{P}\left(B \mid X_{n}=i \text { and } A\right)=\mathbf{P}\left(C \mid X_{0}=i\right) .
$$

2. Consider a Markov chain with state space $S=\{1,2,3,4,5,6\}$ and transition probability matrix

$$
P=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & & & & \\
& & & & 1 & \\
& & 1 & & & \\
\frac{1}{4} & & & & & \frac{3}{4} \\
& \frac{2}{3} & & & \frac{1}{3} & \\
& & \frac{1}{2} & \frac{1}{2} & &
\end{array}\right)
$$

a) Find non-trivial absorption sets.
b) Denote $i \leftrightarrow j$ if $i=j$ or there are paths from state i to state j and from state j to state i. Show that \leftrightarrow is an equivalence relation on the state space S and determine its equivalence classes.
3. Continuation to the Exercise 5 in the previous Exercises sheet. Consider a symmetric random walk on \mathbb{N} (that is $p_{00}=1, p_{i, i+1}=p_{i, i-1}=\frac{1}{2}$, when $i \geq 1$ and $p_{i j}=0$ otherwise).
a) Determine the generating function $G_{i}(t)$ of the absorption time T_{0} from every starting state i.
b) Solve the distribution of T_{0} when $X_{0}=1$.
4. Consider such a branching process model in which we assume the probability for the event "an individual has no children" is p and the probability that an individual has exactly three children is $1-p$. Determine the extinction probability (with the assumption that $X_{0}=1$).
5. Let $S=\{0,1, \ldots, d\}$ ja $P=\left(p_{i j}\right)_{i, j \in S}$ be a matrix with row sums all equal to 1. Suppose $(Y(i, n) ; i=0,1, \ldots, d, n \in \mathbb{N})$ are independent random variables and assume that

$$
\mathbf{P}(Y(i, n)=j)=p_{i j}
$$

Let $X_{0} \in S$ be a random variable that is independent of all r.v's $(Y(i, n))$. Define

$$
X_{n+1}:=Y\left(X_{n}, n\right), \quad n \geq 0
$$

a) Show that the events

$$
\begin{aligned}
& A:=\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right\} \text { and } \\
& B:=\left\{X_{0}=i_{0}, Y\left(i_{0}, 0\right)=i_{1}, \ldots, Y\left(i_{n-1}, n-1\right)=i_{n}\right\}
\end{aligned}
$$

are same.
b) Show that the chain $\left(X_{n}\right)$ is a Markov chain [Hint. Apply $\left.a\right)$].

