Department of Mathematics and Statistics Stokastiset prosessit Exercises 3 03.06.2008

1. Let (X_n) be a MC (Markov Chain) with state space $S \subseteq \mathbb{N}$ and let $n, m \ge 1$. Let $M \subset S^n$ and $T \subset S^m$. Let $A := \{(X_0, \ldots, X_{n-1}) \in M\}, B := \{(X_{n+1}, \ldots, X_{n+m}) \in T\}$ and $C := \{(X_1, \ldots, X_m) \in T\}$ be events. Show that

$$\mathbf{P}(B | X_n = i \text{ and } A) = \mathbf{P}(C | X_0 = i).$$

2. Consider a Markov chain with state space $S = \{1, 2, 3, 4, 5, 6\}$ and transition probability matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & & & \\ & & & 1 & \\ & 1 & & \\ \frac{1}{4} & & & \frac{3}{4} \\ & \frac{2}{3} & & \frac{1}{3} & \\ & & \frac{1}{2} & \frac{1}{2} & & \end{pmatrix}$$

- a) Find non-trivial absorption sets.
- b) Denote $i \leftrightarrow j$ if i = j or there are paths from state i to state j and from state j to state i. Show that \leftrightarrow is an equivalence relation on the state space S and determine its equivalence classes.

3. Continuation to the Exercise 5 in the previous Exercises sheet. Consider a symmetric random walk on \mathbb{N} (that is $p_{00} = 1$, $p_{i,i+1} = p_{i,i-1} = \frac{1}{2}$, when $i \ge 1$ and $p_{ij} = 0$ otherwise).

- a) Determine the generating function $G_i(t)$ of the absorption time T_0 from every starting state *i*.
- b) Solve the distribution of T_0 when $X_0 = 1$.

4. Consider such a branching process model in which we assume the probability for the event "an individual has no children" is p and the probability that an individual has exactly three children is 1 - p. Determine the extinction probability (with the assumption that $X_0 = 1$).

5. Let $S = \{0, 1, ..., d\}$ ja $P = (p_{ij})_{i,j \in S}$ be a matrix with row sums all equal to 1. Suppose $(Y(i, n); i = 0, 1, ..., d, n \in \mathbb{N})$ are independent random variables and assume that

$$\mathbf{P}\left(Y(i,n)=j\right)=p_{ij}.$$

Let $X_0 \in S$ be a random variable that is independent of all r.v's (Y(i, n)). Define

$$X_{n+1} := Y(X_n, n), \quad n \ge 0.$$

a) Show that the events

$$A := \{X_0 = i_0, X_1 = i_1, \dots, X_n = i_n\} \text{ and }$$
$$B := \{X_0 = i_0, Y(i_0, 0) = i_1, \dots, Y(i_{n-1}, n-1) = i_n\}$$

are same.

b) Show that the chain (X_n) is a Markov chain [Hint. Apply a)].