Department of Mathematics and Statistics
 Stokastiset prosessit

Exercise 2

30.05.2008

1. Represent an event $\left\{T_{A}=n\right\}$ by using the history of the chain given the chain starts from $X_{0}=i$. Represent the probability of the event $\left\{T_{A}=n\right\}$ by using the transition probabilities $p_{i j}^{(m)}$. [Have a look at the formula (2.11) in lecture notes.]
2. Let $\left(X_{n}\right)$ be a Markov chain with state space $S=\{1,2,3,4,5\}$ and transition probability matrix

$$
P=\left(\begin{array}{ccccc}
& & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
& \frac{2}{3} & & \frac{1}{3} & \\
& & 1 & & \\
& \frac{7}{8} & & \frac{1}{8} & \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{2} & &
\end{array}\right)
$$

a) Draw the corresponding state transition diagram
b) Find all the absorption sets
c) Determine the absorption probabilities to from every starting state $i=1, \ldots, 5$ to every absorption set A.
3. Consider the money game example 2.1 in lecture notes. Suppose the player A starts with i euros and player B starts with $d-i$ euros. Calculate the probability for the event "player A loses the game". Draw the losing probability as a function of starting money i when $p=q=\frac{1}{2}$ and when $p=\frac{3}{4}$ ja $q=\frac{1}{4}$. [Hint. Apply suitable example in the lecture notes and use the knowledge $h_{d}=0$.]
4. Show that for every time instance n, \widehat{n} and m

$$
\begin{aligned}
& \mathbf{P}\left(X_{n+m}=i_{n+m}, \ldots, X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right) \\
& =\mathbf{P}\left(X_{\widehat{n}+m}=i_{n+m}, \ldots, X_{\widehat{n}+1}=i_{n+1} \mid X_{\widehat{n}}=i_{n}\right) .
\end{aligned}
$$

[Hint. Use the path probability formula]
5. Consider a birth-death chain (SK-ketju in notes) $\left(X_{n}\right)$ on \mathbb{N}. Let $T_{i}=\min \{n \in$ $\left.\mathbb{N}: X_{n}=i\right\}$ (Note. if $i \neq 0$, then T_{i} is the first hitting time, but not an absorption time). Show that

$$
\mathbf{P}_{2}\left(T_{0}=n\right)=\sum_{0<m<n} \mathbf{P}_{2}\left(T_{1}=m\right) \mathbf{P}_{1}\left(T_{0}=n-m\right) .
$$

Let $G_{i}(t):=\mathbf{E}_{i} t^{T_{0}}$ and $H_{i j}(t):=\mathbf{E}_{i} t^{T_{j}}$. Use the previous identity to show that

$$
G_{2}(t)=H_{21}(t) G_{1}(t) .
$$

