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4.2 Residuals

Residuals can be used to check the model fit. For GLMs different kind of
residuals can be defined:

Raw residuals (response residuals)

ri = yi − µ̂i (46)

Pearson residuals

rP,i =
yi − µ̂i

√

V (µ̂i)/ai

(47)

whose squared sum
n

∑

i=1

r2
P,i = X2 (48)

is the Pearson chi-squared goodness-of-fit statistic.

Deviance residuals
rD,i = sign(yi − µ̂i)

√

di, (49)

where

di = 2ai (yi (θi(yi) − θi(µ̂i)) − b (θi(yi)) + b (θi(µ̂i))) . (50)
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The deviance is the squared sum of the deviance residuals

n
∑

i=1

r2
D,i = D(y; µ̂) (51)

Anscombe residuals where yi’s and µi’s are transformed so that the resid-
uals become approximately normally distributed.

In R, method residuals for class glm can compute raw, Pearson and de-
viance residuals.

Influential observations can be identified, for instance, by calculating dif-
ferences

∆iβ̂ = β̂ − β̂
(i)

(52)

where β̂
(i)

is estimated from data without observation i.

4.3 Nonlinear terms

GLMs allow inclusion of known transformations of the covariates as far as
the linear predictor ηi can be presented as a sum of transformed covariates.
For instance, the design matrix may be defined as

X =







1 x11 x2
11 x3

11
...

...
...

...
1 xn1 x2

n1 x3
n1






. (53)

to fit a GLM with a third order polynomial for covariate x1.

4.4 Interactions

Interaction terms are nonlinear transformations of two or more covariates.
The type of interaction can synergistic (the joint effect is stronger than the
additive effect) or antagonist (the joint effect is weaker than the additive
effect). It is usually a bad idea to include interaction terms without the
corresponding main effects.
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4.5 Hypothesis testing

4.5.1 Single test

The test of hypothesis

H0 : βj = 0

H1 : βj 6= 0

for a certain regression coefficient βj of a GLM can be based on the likelihood
ratio test

Λ =
sup{L(β1, . . . , βp;y) : βj = 0}

sup{L(β1, . . . , βp;y)}
(54)

Using log-likelihoods the test statistic can be written

−2 log Λ = 2(l(β̂;y) − l(β̂0;y)) (55)

where β̂ = β̂1, . . . , β̂p and β̂0 = β̂1, . . . , βj = 0, . . . , β̂p are the maximum
likelihood estimates under the two models. The statistic −2 log Λ follows
asymptotically χ2

1 distribution The test can written also in terms of deviance

−2 log Λ =
D(y; β̂0) − D(y; β̂)

φ
. (56)

The likelihood ratio test for more than one parameter is similar but the
test statistic follows asymptotically χ2 distribution with degrees of freedom
equal to the difference in dimensionality of β and β0. If the dispersion pa-
rameter is not known, the test statistics

D(y; β̂0) − D(y; β̂)

φ̂(p − q)
(57)

where q is the dimensionality of β follows asymptotically F-distribution
Fp−q,n−p.

4.5.2 Multiple tests

Let p1, p2, . . . , pm be the nominal p-values from m tests. Family-wise error
rate (FWER) is the probability that at least one true null hypothesis is falsely
rejected. Several approaches for controlling FWER exist: a simple approach
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is the Bonferroni correction where the nominal p-values are compared to
the α/m where α is the significance level. If the tests are dependent, the
Bonferroni correction is too conservative and the actual significance level is
smaller than α.

False discovery rate (FDR) is the expected proportion of incorrectly re-
jected null hypothesis in a set of hypotheses. The FDR analysis has been
used e.g. in genome wide association (GWA) studies where the number of
tests can be one million.

4.6 Model selection

Multiple models. Competing models are fitted and the estimated model
parameters are reported for each model. The properties of the models
are discussed. This is actually not a formal model selection method but
a commonly used practical approach to the problem. The approach is
feasible only if the number of the competing models is small.

Likelihood ratio test can be used to compare nested models.

Stepwise regression. In forward selection, the procedure starts with a
null model and covariates are added one by one. The procedure con-
tinues until the newly added covariate does not improve the model.
The improvement of the model defined e.g. by the p-value of the
likelihood ratio test. In backward elimination, the procedure starts
with the full model and covariates are removed one by one. The pro-
cedure continues until the removal of a covariate makes the model
worse. The lasso (least absolute shrinkage and selection operator,
http://www-stat.stanford.edu/~tibs/lasso.html) can be under-
stood as a modernized version of stepwise regression (not based on like-
lihood). Stepwise methods cannot guarantee that the best model will
be selected. Automated methods should not replace careful thinking.

Information criteria: Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), Bayes factor, crossvalidation, etc. AIC and
BIC are straightforward to compute

AIC = −2l(β;y) + 2p,

BIC = −2l(β;y) + p log(n),
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where p is the number of parameters in the model. The model with
smallest value of AIC (or BIC if that is used) will be considered the best.
Both AIC and BIC penalize models for a higher number of parameters.
In BIC, the penalty depends also on the number of observations.

4.7 Experimental and observational studies

Experimental data origin from data generating mechanism where the exper-
imenter selects the values of some variables. In observational data, all values
are recorded as observed. The same GLMs can be used for both types of
data. The analysis follows the same lines but the interpretation of the re-
sults may differ. In general, only experimental data allows causal inference.
With observational data, the possibility of confounders and alternative causal
explanations must be accounted.

4.8 Missing data

Usually there are missing observations in real world data. A statistician has
the following options:

Ignore the missing observations and analyze only the complete cases. This
is applicable if only few observations are missing.

Impute the missing values. Multiple imputation is preferred over single im-
putation. The challenges lie in the definition of the imputation model.

Model the data. The likelihood becomes an integral over the missing values.
The results are sensitive to model misspecification and estimation may
require a lot of computational resources.

4.9 Few words on independence

Term “independence” may have different meanings depending on the context.
In statistics, the term refers to independence of events or to independence of
random variables. Events A and B are independent if

P (A and B) = P (A)P (B). (58)

or equivalently, using conditional probabilities

P (A |B) = P (A) (59)
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or
P (B |A) = P (B). (60)

Random variables X and Y are independent (marked X ⊥⊥ Y ) if

FX,Y (X, Y ) = FX(X)FY (Y ). (61)

The term “linear independence of random variables” is sometimes used to
indicate that the random variables are uncorrelated but this usage is not
recommended. In general, zero correlation does not imply independence.

In linear algebra, linear independence of a family of vectors means that
none of the vectors can be presented as a linear combination of the other
vectors. A matrix whose columns are linearly independent has full rank.

The concept of conditional independence is important when causality is
considered. Random variables X and Y are independent on the condition of

Z (notation X
⊥⊥
Z Y or X ⊥⊥ Y |Z may be used) when

FX,Y |Z(X, Y |Z) = FX |Z(X |Z)FY |Z(Y |Z) (62)

or equivalently
FX, |Y,Z(X | Y, Z) = FX |Z(X |Z). (63)
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5 Binary response

5.1 Representations of binary response data

In binary response data, the response Yi has two possible values, for instance,
0 and 1. Binary response data can be presented in different formats:

Data matrix
x y

250 0
250 1
350 1
300 0
250 0
300 1

...
...

Weighted data matrix
x y frequency

250 0 23
250 1 12
300 1 21
300 0 19
350 0 7
350 1 13

Frequency table (crosstabulation)
Y = 0 Y = 1

x = 250 23 12
x = 300 21 19
x = 350 7 13

The response Yi can be either a Bernoulli random variable (binary re-
sponse) or a sum of Bernoulli random variable (binomial response). In the
latter case, the observational units with the identical covariate values belong
to the same covariate class. For the ith covariate class mi binary responses
are recorded and the number of responses 1 is denoted by Ki. The binomial
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response is defined

Yi =
Ki

mi

. (64)

5.2 Link functions for binary data

If the possible values of Yi are 0 and 1, it holds

P (Yi = 1) = E(Yi) = g−1(ηi), (65)

where the possible values of the inverse link function g−1() belong to the
interval (0, 1). Any cumulative distribution function defines the inverse of a
link function. The commonly used link functions are the logit link

g(µi) = logit(µi) = log

(

µi

1 − µi

)

, (66)

the probit link
g(µi) = probit(µi) = Φ−1(µi), (67)

where Φ−1 is the inverse of cumulative distribution function (cdf) of the
standard normal distribution and the complementary log-log link

g(µi) = cloglog(µi) = log(− log(1 − µi)). (68)

5.3 Odds and log-odds

It is often interesting to compare the estimated responses for different values
of covariates. Denote

pA = P (Yi = 1 | ηA) (69)

pB = P (Yi = 1 | ηB) (70)

where ηA and ηB are the linear predictors for certain values of covariates.
Now the odds ratio is defined as

pA/(1 − pA)

pB/(1 − pB

(71)

and the logarithm of the odds ratio becomes

log

(

pA/(1 − pA)

pB/(1 − pB

)

= log

(

pA

1 − pA

)

− log

(

pB

1 − pB

)

= logit(pA)− logit(pB),

(72)
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which in the case of logit link simplifies

logit(pA) − logit(pB) = ηA − ηB. (73)

5.4 Latent variables

Consider an example where the effectiveness of an insecticide to mosquitos is
studied. Mosquitos have different resistance to the insecticide. A mosquito
dies (Y = 1) if the amount of insecticide x is higher than a threshold value
T , which varies in the population. Because T cannot be directly measured,
it is called latent variable. If T follows the normal distribution with mean
−α/β and variance 1/β2 we obtain for a mosquito randomly chosen from the
population

P (Y = 1) = P (T ≤ x) = Φ

(

x − (−α/β)

1/β

)

= Φ(α + βx). (74)

In other words, the use of normal distributed latent variable led to the probit
model. If T follows logistic distribution, we will end up with the logistic
model. If T follows Gumbel distribution, we will end up with the GLM with
cloglog link.

5.5 Overdispersion

Overdispersion means that the variance in the data is greater than the vari-
ance assumed in the model. The sum of independent Bernoulli random vari-
ables

K = Y1 + Y2 + . . . + Ym (75)

follows binomial distribution K ∼ Bin(m, µ) where E(Yi) = µ. It follows
that Var(K) = mµ(1 − µ). In real world datasets, however, the assumption
of independence is often unrealistic and Var(K) > mµ(1− µ). This is called
overdispersion.

5.6 Non-existence of maximum likelihood estimates

Maximum likelihood estimates do not exist if the data can be perfectly sep-
arated on the basis of covariate values, for example, response 1 is always
obtained if x > 100 and response 0 is always obtained if x < 100.
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5.7 Example: Switching measurements

The Josephson junction (JJ) circuits are important non-linear components
of superconducting electronics. The strong dependence of the physical pa-
rameters of JJ circuits as function of changes in environmental variables, for
instance, temperature, electric noise, and magnetic field makes the JJ circuits
to have several applications as ultra-sensitive sensors. Moreover, certain JJ
circuits are promising candidates for realization of quantum computation.
An experiment called switching measurement is a common way to probe
the properties of a JJ circuit sample. In the experiment, sequences of cur-
rent pulses are applied to the sample, while the voltage over the structure
is monitored. Switching measurements are ideal applications for design of
experiments in sense that the underlying parametric model for the switching
dynamics of a single JJ can be derived directly from the laws of physics.
With quantum mechanical arguments, it can be shown that the probability
of the voltage response can be approximated by

P (Y = 1) = 1 − e− exp(ax+b)

P (Y = 0) = e− exp(ax+b), (76)

where a and b are unknown parameters to be estimated and x is the height
of the current pulse. It follows that the measurement data can be modeled
by a GLM with cloglog link function.

In an experiment carried out in Low Temperature Laboratory, Helsinki
University of Technology in August 2005, a sample consisting of aluminium–
aluminium oxide–aluminium Josephson junction circuit in a dilution refrig-
erator at 20 millikelvin temperature was connected to computer controlled
measurement electronics in order to apply the current pulses and record the
resulting voltage pulses. The resistance of the sample at room temperature
suggested that a pulse of 300 nA always causes a switching (response 1),
which gave the upper limit for the initial estimation. The lower limit for the
initial estimation, 200 nA was roughly estimated from the dimensions of the
Josephson junction by an experienced physicist. The experiment was carried
out sequentially so that the height of pulse for stage was determined using
the measurement data recorded on the earlier stages.


