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Preface

This document contains short lecture notes for the course Generalized linear
models, University of Helsinki, spring 2009. A more detailed treatment of
the topic can be found from

• P. McCullagh and John A. Nelder, Generalized linear models. Second
edition 1989. Chapman & Hall.

• A. J. Dobson, An introduction to generalized linear models. Second
edition 2002. Third edition 2008. Chapman & Hall/CRC.

• lecture notes 2008. http://www.rni.helsinki.fi/~jmh/glm08/

• lecture notes 2005 (in Finnish). http://www.rni.helsinki.fi/~jmh/
glm05/glm05.pdf.
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1 What is a generalized linear model?

1.1 Model

Mathematical view: A statistical model is a set of probability distribu-
tions on the sample space S. A parameterized statistical model is a
parameter set Θ together with a function P : Θ → P (S), which assigns
to each parameter point θ ∈ Θ a probability distribution Pθ on S. A
Bayesian model requires an additional component in the form of a prior
distribution on Θ. [P. McCullagh (2002). What is a statistical model.
The Annals of Statistics. Vol. 30, No. 5, 1225-1310.]

Applied view: Statistical model is a description of the probability distri-
bution of random variables which can be assumed to represent a real
world phenomenon.

Which of these are statistical models?

a) X ∼ N(µ, σ2)

b) “The height of Finnish men follows a normal distribution.”

c)

L(θ,ψ) ∝

n
∏

i=1

pθ(gi)pψ(xi | gi)pθ(yi | gi, xi),

d) “The risk of smokers to die to cardiovascular diseases is about twice the
risk of non-smokers.”

e) glm(y ~ x, family=binomial(link = "logit"), data=doseresponse)

1.2 Linear model

A simple linear model that describes the relationship of a single covariate x
and a continuous response variable Y can be written as

Yi = α + βxi + ǫi, (1)

where α is the intercept term, β is the regression coefficient for X and ǫi

is an error term. Further assumptions are needed for the error term. For
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instance, we may assume that the error terms are mutually independent and
ǫi ∼ N(0, σ2), i = 1, 2, . . . , n. A less restrictive assumption is to specify only
the first two moments E(ǫi) = 0 and Var(ǫi) = σ2, i.e. the variance does not
depend on x. Note that in model (1), the error term ǫi is written explicitly.
It is also possible to write the same model without explicitly specifying ǫi

E(Yi | xi) = µi = α + βxi. (2)

Model (2) tells on the expected value of Yi on the condition of x. As a such,
model (2) does not specify how the values of Yi vary around the expected
value E(Yi | xi). Defining Var(Yi) = σ2 we obtain a model equivalent to
model (1). If the variation of Yi is normally distributed, it can be also
written Yi ∼ N(α + βxi, σ

2).
The linearity of linear model means linearity respect to the parameters.

In other words, the model µi = α + βx3
i is also a linear model.

1.3 Generalized linear model

The linear model (2) can be transformed to a generalized linear model by
replacing µi by g(µi)

g(µi) = α + βxi = ηi, (3)

where g is a real-valued monotonic and differentiable function called link
function and the term ηi is called linear predictor. In the other words, µi is
the expected value of the response, ηi is a linear combination of the covariates
and g() defines the relationship between µi and ηi. Because g() is monotonic,
the relationship of µi and ηi is also monotonic. With the inverse of g() we
may write

µi = g−1(ηi), (4)

which provides an alternative way to define GLM. Linear model is a special
case of GLM where g(µi) = µi.

With multiple covariates the GLM is defined as

g(µi) =

p
∑

j=1

βjxij . (5)

The assumptions of the GLM are given in Section 3.
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Note that GLM is different from applying a nonlinear transformation to
response variable. In GLM, the nonlinear transformation is applied to the
expected value of the response.

Variance is defined by the variance function V that specifies the variance
of Yi as a function µi

Var(Yi) ∝ V (µi). (6)

1.4 Motivating examples

Generalized linear models are needed because linear models are not appro-
priate for all situations. In linear model it is implicitly assumed that the
response can be have all real values, which is not the case in many practical
situations. Examples:

• The number of hospital visits in a certain year for an individual is a
count response that can have values 0, 1, 2, . . ..

• Monthly alcohol consumption (liters of absolute alcohol) for an indi-
vidual is a nonnegative response that has zeroes for some individuals.

• Gamma-glutamyltransferase (GGT) measured from serum blood is a
positive response.

• Daily rainfall is a nonnegative response.

• Presence or absence of a voltage peak in switching measurements of
superconducting Josephson Junctions is a binary response.

• Fatality (fatal/non-fatal) of myocardial infarction (heart attack) is a
binary response.

• Level of education (primary school, secondary school, B.Sc., M.Sc.,
PhD) is an ordinal response.

• The date of an event of coronary heart disease measured for a cohort
of people is a time-to-event (or survival) response.

There are also situations where a linear model may be suitable although
strictly speaking the response has an inappropriate distribution.

• Height of an adult is positive but can be modeled by linear model
because all values are far from zero.

7



Generalized linear models University of Helsinki, spring 2009

• The daily number of customers in a big supermarket is actually a count
response but could be modeled by linear model because all values are
far from zero and the number of possible values of the response is high.

1.5 Link functions

The choice of the link function g() depends on the data, especially on the
type of the response variable. If the response is a count, i.e. an integer,
log-link g(µi) = log(µi) may be used. Log-link leads multiplicative model

µi = exp(ηi) = eβ1xi1eβ2xi2 · · · eβpxip (7)

If the response Yi is a binary variable with possible values 0 and 1, it holds

µi = E(Yi) = 1 · P (Yi = 1) + 0 · P (Yi = 0) = P (Yi = 1). (8)

The logit-link

g(µi) = logit(µi) = log

(

µi

1 − µi

)

(9)

is maybe the most typical choice for binary response data. For positive
continuous responses typical link functions are inverse link

µ−1
i = ηi (10)

and inverse-squared link
µ−2

i = ηi. (11)

1.6 Confusing terminology

1.6.1 Generalized linear model (GLM) and general linear model
(GLM)

Unfortunately, the acronym GLM is sometimes used for general linear model.
General linear model is a linear model. The word ‘general’ is used to indicate
that the response Y may be multivariate and the covariates may include both
continuous and categorical variables. In SAS, PROC GLM fits a general
linear model, not a generalized linear model.
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1.6.2 Names of X and Y

In different applications X and Y have various names that sometimes might
be confusing. Examples are given below. Some of the names are synonyms
and some have special emphasis in certain applications. Particularly, the
terms ‘independent variable’ and ‘dependent variable’ may cause a confusion.

Names of X

• covariate

• explanatory variable

• factor

• risk factor

• exposure (variable)

• design variable

• controlled variable

• carrier variable

• regressor

• predictor

• input

• determinant

• ∗independent variable

Names of Y

• response

• explained variable

• outcome

• responding variable

• regressand

• experimental variable

• measured variable

• output

• ∗dependent variable
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2 Generalized linear models in statistical soft-

ware

2.1 Generalized linear models in R

In R (www.r-project.org) generalized linear models can be fitted using
function glm. The syntax is
glm(formula, family = gaussian, data, weights, subset, na.action,

start = NULL, etastart, mustart, offset, control = glm.control(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts

= NULL, ...)

Arguments
Some important arguments are

formula an object of class ”formula” (or one that can be coerced to that
class): a symbolic description of the model to be fitted.

family a description of the error distribution and link function to be used
in the model. This can be a character string naming a family function,
a family function or the result of a call to a family function.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
weights] an optional vector of weights to be used in the fitting process.

subset an optional vector specifying a subset of observations to be used in
the fitting process.

offset can be used to specify an a priori known component to be included in
the linear predictor during fitting. This should be NULL or a numeric
vector of length either one or equal to the number of cases. One or
more offset terms can be included in the formula instead or as well,
and if both are specified their sum is used. See model.offset.

control a list of parameters for controlling the fitting process.

Output
As an output an object of class “glm” is returned. A glm object is a list that
contains the following components among the others:
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coefficients a named vector of coefficients

fitted.values the fitted mean values, obtained by transforming the linear
predictors by the inverse of the link function.

deviance up to a constant, minus twice the maximized log-likelihood. Where
sensible, the constant is chosen so that a saturated model has deviance
zero.

aic Akaike’s An Information Criterion, minus twice the maximized log-
likelihood plus twice the number of coefficients (so assuming that the
dispersion is known).

null.deviance The deviance for the null model, comparable with deviance.

iter the number of iterations of IWLS used.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

converged logical. Was the IWLS algorithm judged to have converged?

Example: binomial family with logit-link (logistic regression)

set.seed(3000)

b<-3;

n<-500;

x<-rnorm(n);

y<-runif(n)<exp(b*x)/(1+exp(b*x))

m1<-glm(y~x,binomial(link = "logit"))

print(summary(m1))

Summary:

Call:

glm(formula = y ~ x, family = binomial(link = "logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.66224 -0.53516 0.01267 0.45869 2.62460
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.01346 0.13572 -0.099 0.921

x 3.27787 0.29793 11.002 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 693.12 on 499 degrees of freedom

Residual deviance: 342.09 on 498 degrees of freedom

AIC: 346.09

Number of Fisher Scoring iterations: 6

2.2 Generalized linear models in SAS, Matlab and SPSS

There are several procedures in SAS for generalized linear models. PROC
GLM (where G stands for ‘general’ not for ‘generalized’) can be used to fit
and test linear models. Binary and categorical response data can be han-
dled with PROC LOGISTIC, PROC PROBIT, PROC CATMOD and PROC
GENMOD. PROC GENMOD is based on the philosophy of generalized linear
models and allows user-defined link functions in addition to the commonly
used link functions.

In Matlab, Statistics toolbox has function glmfit and glmval. SPSS
Advanced Statistics contains the module GENLIN.
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3 Theory of generalized linear models

3.1 Notation

The observed data set (y,X) contains n observations of 1 + p variables

y =
(

y1 y2 . . . yn

)T
(12)

X =











x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
xn1 xn2 . . . xnp











. (13)

Variable y is the response variable and variables x1, x2, . . . xp are explanatory
variables or covariates. The observed value yi is treated as a realization of
a random variable Yi. In experimental setup, the explanatory variables have
fixed values set by the experimenter. In observational setup, the value xij

can be understood to be a realization of a random variable Xij but when
distribution of Yi is considered xij is taken as fixed.

The parameters include the regression coefficients

β =
(

β1 β2 . . . βp

)T
, (14)

the linear predictors

η =
(

η1 η2 . . . ηn

)T
, (15)

the expected responses

µ =
(

µ1 µ2 . . . µn

)T
, (16)

and the canonical parameters

θ =
(

θ1 θ2 . . . θn

)T
. (17)

3.2 Model assumptions

1. The distribution of Yi belongs to the exponential family. For the expo-
nential family, the density function can be presented in the form

fYi
(yi; θi, φ) = exp

(

ai(yiθi − b(θi))

φ
+ c(yi, φ/ai)

)

, (18)

where
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• θi, i = 1, . . . , n are unknown parameters (canonical parameters),

• φ is the dispersion parameter (scale parameter) that can be known
or unknown,

• ai, i = 1, . . . , n are known prior weights of each observation and

• b() and c() are known functions. The first derivative b′() is mono-
tonic and differentiable.

2. Random variables Y1, Y2, . . . , Yn are mutually independent.

3. The expected value µi = E(Yi) depends on linear predictor ηi =
∑p

j=1 xijβj

through monotonic and differentiable link function g

g(µi) = ηi. (19)

For instance, normal, binomial, Poisson and gamma distributions belong
to the exponential family. For exponential family (18) it holds

E(Yi) = b′(θi) = µi (20)

and

Var(Yi) =
b′′(θi)φ

ai

=
V (µi)φ

ai

. (21)

As shown in section 3.8, the assumption on the exponential family can be
relaxed.

3.3 Likelihood

The log-likelihood of y1, . . . , yn from an exponential family with known dis-
persion parameter φ can be written

l(θ1, . . . , θn; φ, a,y) =
n
∑

i=1

(

ai(yiθi − b(θi))

φ
+ c(yi, φ/ai)

)

(22)

If there are no restrictions for parameters θ1, . . . , θn, the model is saturated,
i.e. it has as many parameters as there are observations. In a GLM, the
parameters θ1, . . . , θn depend on X and the parameters β1, . . . , βp through
functions b() and g()

p
∑

j=1

βjxij = ηi = g(µi) = g(b′(θi)). (23)
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Therefore, the log-likelihood can be written also a function of the parameters
µ1, . . . , µn or as a function of the parameters β1, . . . , βp

l(µ1, . . . , µn; φ, a,y) =
n
∑

i=1

(

ai(yi(b
′)−1(µi) − b((b′)−1(µi)))

φ
+ c(yi, φ/ai)

)

, (24)

l(β1, . . . , βp; φ, a,y) =
n
∑

i=1

(

ai(yi(b
′)−1(g−1(

∑p
j=1 βjxij)) − b((b′)−1(g−1(

∑p
j=1 βjxij))))

φ
+ c(yi, φ/ai)

)

.

(25)

3.4 Canonical link

The link function for which it holds ηi = g(µi) = θi is called canonical link.
Because µi = b′(θ), it follows g = (b′)−1. The use of canonical link function
simplifies calculations but this alone does not justify the use of canonical
link. The link function should be selected on the basis of the data and prior
knowledge on the problem.

3.5 Score function, observed information and expected
information (Fisher information)

The partial derivative of log-likelihood with respect to some parameter is
called score or score function. In the case of the exponential family (22) we
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obtain

∂l

∂θi

=
ai(yi − b′(θi))

φ
, (26)

∂l

∂µi

=
∂l

∂θi

∂θi

∂µi

=
ai(yi − b′(θi))

φ

1

V (µi)
, (27)

∂l

∂ηi

=
∂l

∂θi

∂θi

∂µi

∂µi

∂ηi

=
ai(yi − b′(θi))

φ

1

V (µi)
(g−1)′(ηi), (28)

∂l

∂βj

=
n
∑

i=1

∂l

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

=
n
∑

i=1

ai(yi − b′(θi))

φ

1

V (µi)
(g−1)′(ηi)xij =

1

φ

n
∑

i=1

ai(yi − µi(β))xij

V (µi(β))g′(µi(β))
(29)

where the notation µi(β) emphasizes the fact that µi depends on β.
The observed information is the negative of the matrix of second order

partial derivatives of log-likelihood

J(β,y) = −
∂2l(β,y)

∂β2 =









−
∑n

i=1
∂2l(β,yi)

∂β2

1

. . . −
∑n

i=1
∂2l(β,yi)
∂β1∂βp

...
. . .

...

−
∑n

i=1
∂2l(β,yi)
∂βp∂β1

. . . −
∑n

i=1
∂2l(β,yi)
∂βp∂βp









(30)

and the Fisher information or expected information is the expected value of
observed information

I(β) = EY(J(β,Y)) =

n
∑

i=1

EYi
(J(β, Yi)) = −

n
∑

i=1

E

(

∂2l(β, Yi)

∂β2

)

. (31)

3.6 Estimation

The maximum likelihood estimate for β is obtained by solving score equations

∂l(β,y)

∂β
= 0. (32)

Usually the estimation requires numerical methods. Traditionally, the maxi-
mum likelihood estimation is carried out with Fisher scoring (also called iter-
ative weighted least squares) which is a modification of the Newton-Raphson
algorithm.
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In Newton-Raphson update rule

β̂
(t+1)

= β̂
(t)

+ J−1∂l(β,y)

∂β
(33)

the observed information J is replaced by the expected information I. After
some algebra, this leads to the update formula

β̂
(t+1)

= (XTW(t)X)−1XTW(t)z(t), (34)

where

W(t) =







w
(t)
1

. . .

w
(t)
1






, (35)

w
(t)
i =

ai
[

g′

(

µi(β̂
(t)

)
)]2

V
(

µi(β̂
(t)

)
)

, (36)

z(t) = (z
(t)
1 . . . z(t)

n )T (37)

z
(t)
i = ηi(β̂

(t)
) + (yi − µi(β̂

(t)
))g′

(

µi(β̂
(t)

)
)

. (38)

It can be seen that the updating rule depends on the distribution of Yi only
through the variance function V .

When the maximum likelihood estimator β̂ exists, it is consistent and
asymptotically normal with expected value β and covariance matrix φ(XTWX)−1.

The dispersion parameter φ can estimated by the deviance (see Sec-
tion 3.7) estimator

φ̂ =
D

n − p
(39)

or the moment estimator

φ̂ =
1

n − p

n
∑

i=1

ai(yi − µi(β̂))2

V (µi(β̂))
. (40)

3.7 Deviance

Deviance is defined as

D(y; µ̂) = 2φ(l(y;y) − l(µ̂;y)) (41)
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where l(y;y) is the log-likelihood of the saturated model (full model). In the
saturated model, the number of parameters equals the number of observations
and likelihood obtains its maximum for the model class. Scaled deviance is
defined as

D∗(y; µ̂) =
D(y; µ̂)

φ
(42)

As seen in Section 4.5, deviance is closely related to the likelihood ratio test.

3.8 Quasi-likelihood

GLMs allow defining the variance function independently from the link func-
tion. The assumption that the distribution of Yi belongs to the exponential
family can be replaced by an assumption that concerns only the variance of
Yi

Var(Yi) =
φV (µi)

ai

. (43)

Parameters can be estimated maximizing quasilikelihood

Q(β;y) =
1

φ

n
∑

i=1

∫ µi

yi

a(yi − t)

V (t)
dt. (44)

The form of quasilikelihood function is chosen so that partial derivatives

∂Q(β;y)

∂βj

=
1

φ

n
∑

i=1

ai(yi − µi(β))xij

V (µi(β))g′(µi(β))
. (45)

are similar to the partial derivatives of likelihood function and consequently
the parameters can be estimated by Fisher scoring.
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