Generalized linear models

Summary

- 1. Study design
- 2. Data collection
- 3. Selection of model class
- 4. Estimation
- 5. Model checking
- 6. Conclusions
- 7. Reporting

Type of response

- continuous $(-\infty,\infty)$
- continuous $(0,\infty)$
- continuous (0, c), censored
- discrete 0, 1, 2, ...
- discrete 0, 1, 2, ..., m
- discrete 0, 1
- categorical A, B, C, ordered
- categorical B, V, F, not ordered

• Systematic part

$$g(\mathbf{E}(Y_i)) = \sum_{j=1}^p \beta_j x_{ij}$$

• Random part

- Distribution of $Y_i \mu_i$
 - $\operatorname{Var}(Y_i) = \frac{\phi V(\mu_i)}{a_i}$

1. The distribution of Y_i belongs to the exponential family. For the exponential family, the density function can be presented in the form

$$f_{Y_i}(y_i;\theta_i,\phi) = \exp\left(\frac{a_i(y_i\theta_i - b(\theta_i))}{\phi} + c(y_i,\phi/a_i)\right),$$

where

- θ_i , i = 1, ..., n are unknown parameters (canonical parameters),
- ϕ is the dispersion parameter (scale parameter) that can be known or unknown,
- a_i , i = 1, ..., n are known prior weights of each observation and
- b() and c() are known functions. The first derivative b'() is monotonic and differentiable.
- 2. Random variables Y_1, Y_2, \ldots, Y_n are mutually independent.
- 3. The expected value $\mu_i = E(Y_i)$ depends on linear predictor $\eta_i = \sum_{j=1}^p x_{ij}\beta_j$ through monotonic and differentiable link function g

$$g(\mu_i) = \eta_i.$$

Standard distributions

	Normal	Poisson	Binomial	Gamma	Inv. Gaussian
Notation	$N(\mu,\sigma^2)$	$Poisson(\mu)$	$\operatorname{Bin}(m,\pi)/m$	$\operatorname{Gamma}(\lambda,\nu)$	$IG(\mu,\sigma^2)$
Range of y	$(-\infty,\infty)$	$0, 1, 2, \dots$	$0, \frac{1}{m}, \frac{2}{m}, \dots, 1$	$(0,\infty)$	$(0,\infty)$
ϕ	σ^2	1	1/m	1/ u	σ^2
b(heta)	$\theta^2/2$	$\exp(heta)$	$\log(1+e^{\theta})$	$\log(- heta)$	$-(2\theta)^{1/2}$
μ	heta	$\exp(heta)$	$e^{\theta}/(1+e^{\theta})$	$ u\lambda$	$(-2\theta)^{-1/2}$
Can. link	identity	log	logit	$1/\mu$	$1/\mu^2$
$V(\mu)$	1	μ	$\mu(1-\mu)$	μ^2	μ^3

Parameters and functions

Likelihood is your friend

- Writing the log-likelihood for a model is a fundamental skill for a statistician.
- GLMs offer a common framework for models for different response types
 - Properties of exponential family can be applied
 - Estimation of parameters via Fisher scoring
 - Common concepts: link function, residuals, deviance, ...

Deviance

• Deviance

$$D(\mathbf{y}; \hat{\boldsymbol{\mu}}) = 2\phi(l(\mathbf{y}; \mathbf{y}) - l(\hat{\boldsymbol{\mu}}; \mathbf{y}))$$

where $l(\mathbf{y}; \mathbf{y})$ is the log-likelihood of the saturated model (full model).

• Scaled deviance

$$D^*(\mathbf{y}; \hat{\boldsymbol{\mu}}) = \frac{D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{\phi}$$

Residuals

Raw residuals (response residuals)

$$r_i = y_i - \hat{\mu}_i$$

Pearson residuals

$$r_{P,i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)/a_i}}$$

Deviance residuals

$$r_{D,i} = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{d_i},$$

where

$$d_i = 2a_i \left(y_i \left(\theta_i(y_i) - \theta_i(\hat{\mu}_i) \right) - b \left(\theta_i(y_i) \right) + b \left(\theta_i(\hat{\mu}_i) \right) \right).$$

Anscombe residuals where y_i 's and μ_i 's are transformed so that the residuals become approximately normally distributed.

• Hypothesis

 $H_0: \quad \beta_j = 0$ $H_1: \quad \beta_j \neq 0$

Test statistics

$$-2\log\Lambda = 2(l(\hat{\boldsymbol{\beta}}; \mathbf{y}) - l(\hat{\boldsymbol{\beta}}_0; \mathbf{y}))$$

where $\hat{\beta} = \hat{\beta}_1, \dots, \hat{\beta}_p$ and $\hat{\beta}_0 = \hat{\beta}_1, \dots, \beta_j = 0, \dots, \hat{\beta}_p$ are the maximum likelihood estimates under the two models.

• The statistic $-2\log\Lambda$ follows asymptotically χ_1^2 distribution.

Binary response

- Binary and binomial response
- Link functions: logit, probit, cloglog
- Overdispersion?
- Odds and log-odds
- Non-existence of MLE
- Latent variable interpretation
- Example: switching measurements

- Log-link
- Offset term
- Overdispersion?
- Example: follow-up for cardiovascular diseases

Nominal and ordinal response

- Multinomial distribution
- Logit-link
- Proportional odds model
- Latent variable interpretation for ordinal response

Positive response

- Zeros or 'near-zeros' in the data?
- Gamma distribution
- Inverse Gaussian distribution
- Link functions: identity, inverse, inverse squared and log
- Compound Poisson model

Time-to-event response

- Censoring and truncation
- Prospective and retrospective studies
- Survival function and hazard function
- Proportional hazards model

- Quasi-likelihood
- Generalized linear mixed models (GLMM)
- Generalized additive models (GAM)
- Neural networks