Exercises 3

1. Show that

$$f(y; \mu, \phi) = \frac{\phi}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{\phi^2}\right) \tag{1}$$

does NOT belong to the exponential family.

2. Let $y_1, \ldots y_n$ be a random sample from $Poisson(\mu)$ where mean value $\mu > 0$ is unknown. Show that $\hat{\mu} = \bar{y}$ maximizes the likelihood function

$$L(\mu) = \prod_{i=1}^{n} \left[\frac{\mu^{y_i}}{y_i!} e^{-\mu} \right]$$

3. Let $y_1, \ldots y_n$ be a random sample from $Gamma(\beta, \alpha)$ distribution with density function

$$f(y; \beta, \alpha) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} y^{\alpha - 1} e^{-\beta y}.$$

Derive the formulas for score function, expected information matrix and observed information matrix.

4. Suppose that Y_1, \ldots, Y_n are independent and satisfy the linear model

$$\mu_i = E(Y_i) = \sum_{j=1}^p x_{ij} \beta_j$$

for given covariates x_{ij} and unknown parameters β .

a) Show that if Y_i has the Laplace distribution

$$f_{Y_i}(y_i; \mu_i, \sigma) = \frac{1}{2\sigma} \exp\left(-|y_i - \mu_i|/\sigma\right)$$

then the maximum likelihood estimate of β is obtained by minimizing the L_1

$$S_1(y, \hat{y}) = \sum |y_i - \hat{y}_i|$$

over values of \hat{y} satisfying the linear model.

b) Show that if Y_i is uniformly distributed over the range $(\mu_i - \sigma, \mu_i + \sigma)$, maximum-likelihood estimates are obtained by minimizing the L_{∞} -norm

$$S_{\infty}(y, \hat{y}) = \max_{i} |y_i - \hat{y}_i|.$$

5. Show that when the canonical link is used in a generalized linear model, the expected information and observed information are equal.