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7. Application of multivariate cluster analysis (CA) 
7.1. Introduction  

Cluster analysis is used to group observations (experiments) into clusters 
by some measure of similarity. It is also possible to group variables as in 
factor analysis, but in CA this is based on a selected similarity criterion. The 
aim is to find an optimal grouping so that the observations within each cluster 
are similar, but the clusters are dissimilar to each other.  

Usually, in CA (hierarchical CA) the number of groups or the groups are 
unknown and have to be determined by the researcher.  

As a rule, the similarity is considered to be some measure of distance 
between all pairs of cases (observations, experiments or objects). The 
techniques of cluster analysis is widely used to data in many fields, such as 
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medicine, psychiatry, sociology, archaeology, market research, economics, 
and engineering.  

It must be differentiate two common clustering approaches:  hierarchical 
clustering and partitioning (or non-hierarchical clustering). If our data consist 
of n observations in hierarchical clustering one starts with n clusters, one for 
each observation, and end with a single cluster containing all n observations. 
At each step, an observation or a cluster of observations is grouped with 
another cluster. It is also possible to reverse this process, that is, start with a 
single cluster containing all n observations and end with n clusters of a single 
item each. In partitioning (K-means cluster analysis), we simply divide the 
observations into k clusters. This can be obtained by starting with an initial 
partitioning or with cluster centers and then rearranging the observations 
according to some distance measure.  

As a rule hierarchical clustering is used when you have a relatively small 
number of observations and variables (50, 100 or 200). In the case of a huge 
amount of data the partitioning methods are more appropriate. 
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♦  Warning: CA has no mechanism for differentiating between relevant and 
irrelevant variables. If you have chosen an inappropriate number of clusters 
or omitted important variables, your results may be misleading. This 

 31 

 

 
7.2. General assumptions in CA  

♦ The data used in cluster analysis can be interval, ordinal or categorical. 
However, having a mixture of different types of variable you need to have 
some way of measuring the distance between observations and the type of 
measure used will depend on what type of data you have. In K-means CA 
the data can be quantitative (interval or at ratio level).  

♦ Different measures are used to measure ’distance’ for binary and categorical 
data. For interval data, mostly arising in physics and engineering, the most 
common distance measure used is the Euclidean distance.    

♦ If some variables have very large interval of data, they should be scaling, by 
standardized them in z-variables (with mean=0 and standard deviation=1), 
or by some other type of scaling. 
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is very important because the clusters formed can be very dependent in the 
variables included. 

 
7.3. SPSS statistics 
− For hierarchical CA: Agglomeration schedule, proximity (or similarity) 

matrix, and cluster membership for a single solution or a range of solutions. 
Plots: dendrograms.  

− For K-means CA: initial cluster centers, ANOVA table, distance from cluster 
center. 

 
7.4. Measures of similarity and dissimilarity 

There exist many techniques to present the similarity or proximity 
between each pair of observations. In CA a convenient measure of proximity is the 
distance between two observations (objects). Actually, a small distance is 
considered as similarity and large distance is a measure of dissimilarity. 
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We shall consider quantitative variables. 
Let the data matrix is presented in the form: 

( )
1

2
(1) (2) ( ), , , p

n

x
x

x x x

x

′⎛ ⎞
⎜ ⎟′⎜ ⎟= =
⎜ ⎟
⎜ ⎟′⎝ ⎠

X …
, 

where ix′  is a row (observation vector) and ( )jx  is a column (corresponding to a 
j -variable ). We generally wish to group the n ix′  (rows) into k clusters. We 
may also wish to cluster the variables (columns) ( )jx , j = 1, 2, . . . , p. 

 
The usual distance measures for interval data are: 

1) Euclidean distance between two vectors p1 2( , , , )i i i ix x x ′=x …  and  
p1 2( , , , )j j j jx x x x ′= : …
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2) Squared Euclidean distance  
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3) Chebyshev distance  
 
      ( , ) max , , 1,...,i j im jmd x x x x i j n= − =         (3) 
 

4) Minkowski metric  
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For the n observation vectors 1 2, , , nx x x…  we can compute an n × n matrix 
( , )i jD d x x=  of distances (or dissimilarities). The matrix D typically is symmetric with 

diagonal elements equal to zero. 
For example, suppose three items (points, observations) have the following 

bivariate measurements 1 2( , )x x : (2, 5), (4, 2), (7, 9). Here p=2, n=3. Using the 
definition of Euclidean distance we calculate: 2 2

12 (2 4) (5 2) 13 3,6d = − + − = ≈ , 
2 2

13 (2 7) (5 9) 41 6,4d = − + − = ≈  and 2 2
23 (4 7) (2 9) 58 7,6d = − + − = ≈ . This way the 

distance matrix D is 
 

1 1 2

0 3,6 6,4
( , ) 3,6 0 7,6

6,4 7,6 0
D d x x

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 
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However, if we multiply the first variable 1x  by 100 as, for example, in 
changing from meters to centimeters, the matrix becomes 

 

2 1 2

0 200 500
( , ) 200 0 300

500 300 0
D d x x

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
 

and the largest distance is now   instead of . The distance rankings depends 
on scaling measures.  

13d 23d

 This problem can be solved by a previous z-standardization, or other 
appropriate scaling of the variables.  
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7.5. Methods for combing clusters in an hierarchical CA 
In an agglomerative hierarchical procedure the two closest clusters are 

combined at each step on the basis of some measure of similarity or dissimilarity, 
usually some kind of distance. At each step the number of clusters is therefore 
reduced by 1. After two clusters are merged, the procedure is repeated for the next step: 
the distances between all pairs of clusters are calculated again, and the pair with 
minimum distance is merged into a single cluster. 

The results of a hierarchical clustering procedure can be displayed graphically 
using a tree diagram, also known as a dendrogram, which shows all the steps in the 
hierarchical procedure, including the distances at which clusters are merged. 

 
Different approaches to measure distance between clusters exist in hierarchical 

methods.  We will consider the most popular of them: 
  

1) Between-groups linkage (average linkage) 
  In this method the distance between two clusters A and B is defined as the average of 
the nA.nB distances between the nA  points in A and the nB  points in B: 
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where the sum is over all ix  in A and all jx  in B. Here  is the Euclidean 
distance or some other distance between the vectors 

( , )i jd x x

ix  and jx . At each step, we join the 
two clusters with the smallest distance. 
 
2) Within-groups linkage  
  This method is a variant of the average linkage, but all possible distances between all 
points of the two clusters A and B are calculated, including the distances between the 
points in the same cluster: 

 

,

1( , ) ( , )
( ).( 1) i j

A B A B i j
D A B d x x

n n n n
=

+ + − ∑       (6)        
         

where the sum is over all ix  in A and all jx  in B. Here  is the Euclidean ( , )i jd x x
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distance or some other distance between the vectors ix  and jx . At each step, we join the 
two clusters with the smallest distance. 
 

3) Nearest Neighbor (single linkage) 
In this method, the distance between two clusters A and B is defined as the minimum 

distance between a point in A and a point in B: 
 

{ }( , ) min ( , ), ,i j i jD A B d x x x A x B= ∈ ∈  
 

where  is the Euclidean distance or some other distance between the vectors ( , )i jd x x ix  
and jx . At each step, we merge the two clusters with the smallest distance.  
 
7.6. Defining the number of clusters in hierarchical CA 
It is not a well formalized procedure. Usually one uses the dendrogram by cutting across 
the branches at a given level of the distance measure. We wish to determine the number 
k of clusters that provides the best fit to the data. One approach is to look for large 
changes in distances at which clusters are formed and to compare the change in distance 
between the two solutions. See further examples. 
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7.7. How to carry out CA in SPSS? ---  See the files:  
 

SPSS_CA_3_EN.pdf – Cluster analysis with SPSS:  Hierarchical Cluster 
Analysis 

 
SPSS_CA_2_EN.pdf – Cluster analysis with SPSS: K-Means Cluster 

Analysis 
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Example. BloodPressure example – Cluster analysis 
Data two with saved solutions – clustered by 2 and by 3 clusters. 
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Proximity Matrix

,000 4,148 3,025 7,180 7,061 1,164 9,099 16,415 1,257
4,148 ,000 2,425 7,752 ,480 6,638 9,126 7,114 4,325
3,025 2,425 ,000 1,705 3,334 2,379 4,606 6,875 2,537
7,180 7,752 1,705 ,000 8,641 4,149 6,135 9,497 6,591
7,061 ,480 3,334 8,641 ,000 9,334 8,837 4,465 6,197
1,164 6,638 2,379 4,149 9,334 ,000 5,892 15,247 1,206
9,099 9,126 4,606 6,135 8,837 5,892 ,000 5,642 4,042

16,415 7,114 6,875 9,497 4,465 15,247 5,642 ,000 11,481
1,257 4,325 2,537 6,591 6,197 1,206 4,042 11,481 ,000

Case
1:Case 1
2:Case 2
3:Case 3
4:Case 4
5:Case 5
6:Case 6
7:Case 7
8:Case 8
9:Case 9

1:Case 1 2:Case 2 3:Case 3 4:Case 4 5:Case 5 6:Case 6 7:Case 7 8:Case 8 9:Case 9
 Squared Euclidean Distance

This is a dissimilarity matrix
 

 

Agglomeration Schedule

2 5 ,480 0 0 7
1 6 1,164 0 0 3
1 9 1,231 2 0 5
3 4 1,705 0 0 5
1 3 4,310 3 4 7
7 8 5,642 0 0 8
1 2 5,985 5 1 8
1 7 8,488 7 6 0

Stage
1
2
3
4
5
6
7
8

Cluster 1 Cluster 2
Cluster Combined

Coefficients Cluster 1 Cluster 2

Stage Cluster First
Appears

Next Stage
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Dendrogram 
C 
 
 

 
* * * * * * H I E R A R C H I C A L  C L U S T E R   A N A L Y S I S * * * * * * 
 
 
 Dendrogram using Average Linkage (Between Groups) 
 
                         Rescaled Distance Cluster Combine 
 
    C A S E      0         5        10        15        20        25 
  Label     Num  +---------+---------+---------+---------+---------+ 
 
  Case 2      2   òûòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòø 
  Case 5      5   ò÷                                 ó 
  Case 1      1   òòòòòø                             ùòòòòòòòòòòòòòø 
  Case 6      6   òòòòòôòòòòòòòòòòòòòòòòòø           ó             ó 
  Case 9      9   òòòòò÷                 ùòòòòòòòòòòò÷             ó 
  Case 3      3   òòòòòòòûòòòòòòòòòòòòòòò÷                         ó 
  Case 4      4   òòòòòòò÷                                         ó 
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  Case 7      7   òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòûòòòòòòòòòòòòòòò÷ 
  Case 8      8   òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷ 
 
 

 
 
Conclusion: 
Clustering by 3 clusters gives 3 groups of respondents that can be named: 
 
1 cluster – healthy people (respondents 1, 3, 4, 6, 9) 
2 cluster – medium stage (respondents 2, 5 ) 
3 cluster – critical stage (respondents 7, 8 ) 
 
 
 

 
Clustering by 2 clusters gives 2 groups of respondents that can be named: 
 
1 cluster – good stage (respondents 1, 2, 3, 4, 5, 6, 9) 
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2 cluster – bad stage (respondents 7, 8 ) 
 
The clustering in 3 groups is more appropriate.
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8. Application of cluster analysis for exploring copper bromide 
laser variables 

 
DESCRIPTION OF DATA  
11 basic physical parameters of the CuBr laser:  

D– the inside diameter of the laser tube,  
dr– the inside diameter of the internal rings in the tube,  
L – the length of the active area (electrode separation),  
Pin – the input electric power,  
PL – the input electric power per unit length (25% losses), 
Prf – the pulse repetition frequency,  
Pne – the neon gas pressure,  
PH2 – the hydrogen gas pressure,  
C – the equivalent capacity of the capacitor bank,  
Tr – the temperature of the CuBr reservoirs,  
Pout – the output laser power. 
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  All the results are based on a 25% sample of all 300 experiments for the above 
mentioned eleven variables. 

We performed hierarchical CA of variables. 
 
Cluster analysis results 

 Initially we will conduct a partial cluster analysis for the first six variables (D, dr, L, 
Pin, PL and PH2), participating in the previous consideration. Our task is to compare the 
results with the calculations from factor analysis. 

 The first stage is to construct a matrix containing the results from the comparison of 
the objects (table 3). In our case the squared Euclidean distance is used as the indicator 
for similarity (or difference). It has to be noted that in table 3 are given only the 
comparative results for stage one when each object is considered as a cluster. Using the 
between group linkage method, independent variables are grouped into three clusters as 
seen in table 4. The first cluster includes variables D, dr, L and Pin, the second - PL, and 
the third – PH2. There is complete correspondence with the results from factor analysis 
(see the previous presentation 2).  
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 TABLE 3. Proximity matrix of the first six variables. 
Variable D dr L Pin PL PH2
D 0 23.9 36.7 44.7 227.5 103.0 
dr 23.9 0 12.2 20.1 223.8 86.0 
L 36.7 12.2 0 21.2 247.8 67.3 
Pin 44.7 20.1 21.2 0 189.3 91.7 
PL 227.5 223.8 247.8 189.3 0 217.9 
PH2 103.0 86.0 67.3 91.7 217.9 0 

 

TABLE 4.  Cluster membership in 3 clusters. 
Variable 3 clusters 
D 1 
dr 1 
L 1 
Pin 1 
PL 2 
PH2 3 
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FIGURE 1.  Dendrogram of variables from Tables 3 and 4. 
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The next stage is classifying all ten variables. Table 5 shows their initial 
similarity matrix. Basic table 6 shows the simultaneous clustering in two, three, 
four and five clusters. In every column opposite each independent variable is 
given its corresponding cluster number.  

The optimal number of clusters has to be established. This problem can be 
solved by means of the dendrogram in Figure 2. It is the result of the same method 
which was used in Figure 1. 
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TABLE 5.  Proximity matrix of ten input variables. 
Variable D dr L Pin PL PH2 Prf Pne C Tr 
D 0 19.5 33.0 39.4 202.4 95.9 145.0 158.4 101.5 115.9 
dr 19.5 0 9.5 16.9 201.1 79.7 155.3 161.0 105.8 101.6 
L 33.0 9.5 0 19.4 223.3 58.9 159.0 149.5 120.2 115.0 
Pin 39.4 16.9 19.4 0 169.3 83.1 155.1 145.0 107.6 116.3 
PL 202.4 201.1 223.3 169.3 0 196.0 113.4 88.3 141.2 132.6 
PH2 95.9 79.7 58.8 83.1 196.0 0 164.8 140.7 158.2 174.3 
Prf 144.7 155.3 159.0 155.1 113.4 164.9 0 97.4 139.8 120.5 
Pne 158.4 161.0 149.5 145.0 88.3 140.7 97.4 0 172.6 126.5 
C 101.5 105.8 120.2 107.6 141.2 158.2 139.8 172.6 0 93.4 
Tr 115.9 101.6 115.0 116.3 132.6 174.3 120.5 126.5 93.4 0 
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A careful review of the sequence of the clustering procedure reveals that all 
ten independent variables form three clusters. The first cluster includes D, dr, L, 
Pin and PH2. The second includes variables PL, Pne and Prf, and the third - C and 
Tr. This grouping corresponds to the column of three clusters in table 6. In the end 
we get three clusters for clustering all ten independent variables. 
 The next stage is to determine the position of the dependent variable (Pout) 

among the independent variables. The proximity with them is visible in Figure 3. 
As expected Pout is nearer to variables D, dr, L, Pin and PH2 forming together 
with them the first cluster. The latter serves to confirm the influence of these 
variables on Pout. 
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TABLE 6.  Cluster membership in 2 to 5 clusters of all input variables. 

Variable 5 clusters 4 clusters 3 clusters  2 clusters 
D 1 1 1 1 
dr 1 1 1 1 
L 1 1 1 1 
Pin 1 1 1 1 
PL 2 2 2 2 
PH2 1 1 1 1 
Prf 3 3 2 2 
Pne 2 2 2 2 
C 4 4 3 1 
Tr 5 4 3 1 
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FIGURE 2.  Dendrogram of ten input variables. 
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FIGURE 3.  The dendrogram of all input variables and the laser power 
Pout. 
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Discussion on the Cluster Analysis results 
 The results from the clustering procedure can be used when planning a filtering 

experiment in which out of the totality of independent quantities the main group of 
quantities has to be separated, so as to be used later on for a more detailed 
examination. Also under the conditions of an extremal experiment with the goal of 
optimizing the object being studied, it is necessary to begin varying essential 
variables in accordance with their homogeneity (similarity), i.e. dr, L, Pin, D and 
PH2. 
 
Conclusion 
 This example is an application of cluster analysis of variables in the field of 

metal vapor lasers. Ten independent variables are examined, nine of them being 
actual physical quantities and one dependent variable – laser power Pout. In the 
previous application of Factor analysis, conducted for the same sample of data a 
general totality of all available experiments, following the correlation principle, 
two groups of variables are differentiated - significant and insignificant. The 
significant ones are classified into three groups (factors). In this example 
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they are classified using cluster analysis following the principle of homogeneity. 
The result is a hierarchical linking of variables. Three clusters and the order of 
similarities are established. 
 The obtained results could be used as a basis of multiple regression analysis 

and prognosis of further experiment in order to enhance the laser power 
generation. 
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