
Notes on resource-consumptions (predator-prey) models

1 Introduction

2 Definitions

Let

n = prey density
p = predator density

(2.1)

a predator-prey model takes the general form

ṅ = f(n)− g(n) p

ṗ = γ g(n) p − δ p
(2.2)

How do we modelf andg?

1. If no predators are present, we have

ṅ = f (n) (2.3)

In such a case we can model the prey dynamics independently ofthat of predators.

2. We interpret

g(n) = number of prey captured per predator per unit of time

This quantity will be also referred to asfunctional response of the predator.

γ = conversion constant: prey→ predator &
1

γ
= yield

3 Holling’s functional response theory

3.1 First model of functional response

1. individual statesN , P

2. individual level processes

P + N
β
→ P + γ P

P
δ
→ ∅

(3.1)
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Thep-level equations are

ṅ = f(n)− β n p

ṗ = γ β n p− δ p
(3.2)

The functional response is

g(n) = β n (3.3)

Remark 3.1. The reaction

P + N
β
→ P + γ P (3.4)

is biologically meaningful forγ ∈ N. Alternatively one can adopt aprobabilistic interpretation of the individual
level reaction

P + N

{

(1−γ) β
→ P + N

γ β
→ P

(3.5)

3.2 Second model of functional response

Individual states:

1. N prey.

2. X hunting predator.

3. Y resting predator.

Individual processes

X
δ
→ ∅ death of a hunting predator

Y
δ
→ ∅ death of a resting predator

N + X
β
→ Y prey capture

µ
→ X resume huntingY λ
→ 2X reproduction and resume hunting

(3.6)

Population dynamics equations

ṅ = f(n)− β n x

ẋ = −δ x− β n x + µ y + 2λ y

ẏ = −δ y + β n x− µ y − λ y

(3.7)

The total number of predator states is

p = x + y (3.8)

In terms of the predator states (3.7) becomes

ṅ = f(n)− β n x

ẋ = −δ x− β n x + (µ + 2λ) (p − x)
ṗ = λ (p− x)− δ p

(3.9)
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The above system describes the demographic dynamics, when the rates of each of the involved processes are compa-
rable. The number of degrees of freedom can be systematically reduced if we assume atime scale separation among
the processes. Let us assume that prey capturingN + X → Y and hunting resumingY → X are fast processes. The
hypothesis can be rephrased by setting

β :=
β⋆

ε
& µ :=

µ⋆

ε
(3.10)

with µ⋆ andβ⋆ two constant decay rates andε a pure number determining the relative weight of the interactions. Asε
tends to zero, prey capturing and hunting resuming become faster and faster processes. In such a limit the population
dynamics equations

ṅ = f(n)−
β⋆

ε
n x

ẋ = −δ x−
β⋆

ε
n x +

(µ⋆

ε
+ 2λ

)

(p− x)

ṗ = λ (p − x)− δ p

(3.11)

admit nevertheless a non-trivial solution when we assume that the hunting and the resting predator densities vanish
linearly withO(ε). In order to validate this claim in what follows we will present two methods different methods:

1. the scaling limit method,

2. the multiple scale perturbation theory method.

3.2.1 Scaling limit method

The idea underlying the method is to take the limit of vanishingε whilst simultaneously rescaling population densities
and the time unit. To this scope we define thefast time

s :=
t

ε
(3.12)

and introduce the rescaled predator densities

x⋆ :=
x

ε
& p⋆ :=

p

ε
(3.13)

In terms of these new quantities the system (3.11) become

dn

ds
= ε [f(n)− β⋆ n x⋆]

dx⋆

ds
= −ε δ x⋆ − β⋆ n x⋆ +

(µ⋆

ε
+ 2λ

)

ε (p⋆ − x⋆)

dp⋆

ds
= ε λ (p⋆ − x⋆)− ε δ p⋆

(3.14)

and yields forε ↓ 0:

dn

ds
= 0

dx⋆

ds
= −β⋆ n x⋆ + µ⋆ (p⋆ − x⋆)

dp⋆

ds
= 0

(3.15)

3



The conclusion is thatn (prey density) andp (the total predator density) areindependent of the fast times. On
the contrary, the fraction of hunting predators varies on faster time scales. The dynamics of this latter quantity is
one-dimensional, and relaxes with aneffective rate β⋆ n + µ∗ to aquasi-steady state

x⋆ =
µ⋆ p⋆

µ⋆ + β⋆ n
(3.16)

Once the faster time scale has driven thex into the quasi-steady state the evolution of the remaining degrees of
freedom in system occurs with slower time scalet. In order to identify the slow dynamics it is sufficient to insert the
quasi-steady state equation into (3.14) and look at the variation witht

dn

dt
= f(n)−

β⋆ µ⋆ n p⋆

µ⋆ + β⋆ n
(3.17)

and

dp⋆

dt
=

(

λ− δ −
µ⋆ λ

µ⋆ + β⋆ n

)

p⋆ =

(

λβ⋆ n

µ⋆ + β⋆ n
− δ

)

p⋆ (3.18)

We identify Holling Type II functional response:

g(n) =
λµ⋆ β⋆ n

µ⋆ + β⋆ n
& γ =

λ

µ⋆
(3.19)

The scaling limit method provides a fast and intuitive way toderive the fast dynamics from the slow. The shortcoming
is, however, is that it is not immediately evident how to derive systematic corrections to the limit slow-fast dynamics
for small but finiteε. This goal can be instead achieved by usingmultiple scale perturbation theory as it will be shown
below.

3.2.2 Multiple scale method

The idea is to expand the solution of (3.11) in a power series in ε:




n⋆

x⋆

p⋆



 :=
∞
∑

k=0

εk





nk

xk

pk



 (3.20)

In analogy with what done in the previous section, we will suppose that the functional dependence of the dynamics
on the time variable occurs with a hierarchy of time scales which is treated as independent:

t

ε
, t , ε t , ε2 t , · · · = s , t , s1 , s2 . . . (3.21)

The value of the corresponding partial derivatives can be then determined, order by order in the expansion, by requiring
the perturbative expansion to remain well defined ast grows to infinity (see e.g. chapter6 of [1] for further details).
In practice, for (3.11) we write





n

x

p



 =





n0

(

t
ε
, t

)

x0

(

t
ε
, t

)

p0

(

t
ε
, t

)



 + ε





n1

(

t
ε
, t

)

x1

(

t
ε
, t

)

p1

(

t
ε
, t

)



 + ε2





n2

(

t
ε
, t

)

x2

(

t
ε
, t

)

p2

(

t
ε
, t

)



 + O(ε3 ε t) (3.22)

Correspondingly, the total time derivative acts of the densities as

d

dt
=

1

ε

∂

∂s
+

∂

∂t
+ O(ε) (3.23)

Inserting (3.22) and (3.23) into (3.11) the system foliatesin a hierarchy of equations weighted by different powers of
ε.
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1. O
(

ε−1
)

equations:

∂sn0 = −β⋆ n0 x0

∂sx0 = −β⋆ n0 x0 + µ⋆ (p0 − x0)

∂sp0 = 0

(3.24)

The system admits the solution

x⋆
0 = p⋆

0 = ∂sn
⋆
0 = 0 (3.25)

which is the only compatible with the assumption that of a slow prey dynamics.

2. O(ε0) equations:

∂tn0 = f(n0)− β⋆ (n0 x1 + n1 x0)
∂sx1 + ∂tx0 = −δ x0 − β⋆ (n0 x1 + n1 x0) + µ⋆ (p1 − x1) + 2λ (p0 − x0)
∂sp1 + ∂tp0 = λ (p0 − x0)− δ p0

(3.26)

Upon inserting (3.25) reduce to

∂tn0 = f(n0)− β⋆ n0 x1

∂sx1 = −β⋆ n0 x1 + µ⋆ (p1 − x1)
∂sp1 = 0

(3.27)

The fraction of hunting predators has a fixed pointwith respect to the fast time scale for

x⋆
1 =

µ⋆ p⋆
1

µ⋆ + β⋆ n⋆
0

& ∂sx
⋆
1 = ∂sp

⋆
1 = 0 (3.28)

The fixed point brings about a non-trivial dynamics in the slow time scale for the prey density:

∂tn
⋆
0 = f (n⋆

0)−
β⋆ µ⋆ p⋆

1 n⋆
0

µ⋆ + β⋆ n⋆
0

(3.29)

The dynamics is, however, not yet fully specified as we cannotrule out a dependence upon the slow time-scale
of p1 , n1. In order to address this issue we need to inquire one order more in our perturbative expansion.

3. O(ε) equations:

∂tn1 = n1(∂nf)(n0)− β⋆(n0 x2 + 2n1 x1 + n2 x0)
∂sx2 + ∂tx1 = −δ x1 − β⋆(n0 x2 + 2n1 x1 + n2 x0) + µ⋆ (p2 − x2) + 2λ (p1 − x1)
∂sp2 + ∂tp1 = λ (p1 − x1)− δ p1

(3.30)

Using (3.25) and (3.29) we obtain

∂tn
⋆
1 = n1(∂nf)(n⋆

0)− β⋆(n
⋆
0 x2 + 2n⋆

1 x⋆
1)

∂sx2 + ∂t

(

µ⋆ p⋆
1

µ⋆ + β⋆ n⋆
0

)

= −
δ µ⋆ p⋆

1

µ⋆ + β⋆n
⋆
0

− β⋆

(

n⋆
0 x2 +

2µ⋆ n⋆
1 p⋆

1

µ⋆ + β⋆n
⋆
0

)

+ µ⋆ (p2 − x2) + 2
λβ⋆ n⋆

0 p⋆
1

µ⋆ + β⋆ n⋆
0

∂sp2 + ∂tp
⋆
1 =

λβ⋆ n⋆
0 p⋆

1

µ⋆ + β⋆ n⋆
0

− δ p⋆
1

(3.31)
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By (3.28) the resting predator densityp⋆
1 is independent from the fast time scales. This means that the third of

the above equations has the general solution

p⋆
2 = p̄⋆

2 +

(

λβ⋆ n⋆
0 p⋆

1

µ⋆ + β⋆ n⋆
0

− δ p⋆
1 − ∂tp

⋆
1

)

s (3.32)

wherep⋆
2 is an arbitrary initial condition. The solution implies amarginal instability (linear in time) of the

perturbative expansion. Ass grows the quantityε2 s = ε t becomes of the order of the unity and the perturbative
expansion inε meaningless. The circumstance can be prevented by requiring

∂tp
⋆
1 =

(

λβ⋆ n⋆
0

µ⋆ + β⋆ n⋆
0

− δ

)

p⋆
1 (3.33)

This latter condition fully specifies the solution of (3.11)at leading order in each of the densities.

To summarize, the reduced dynamical system associated to (3.11) is

∂tn
⋆
0 = f (n⋆

0)−
β⋆ µ⋆ p⋆

1 n⋆
0

µ⋆ + β⋆ n⋆
0

∂tp
⋆
1 =

(

λβ⋆ n⋆
0

µ⋆ + β⋆ n⋆
0

− δ

)

p⋆
1

x⋆
1 =

µ⋆ p⋆
1

µ⋆ + β⋆ n⋆
0

x⋆
0 = p⋆

0 = ∂sx
⋆
1 = ∂sp

⋆
1 = ∂sp

⋆
2 = 0

(3.34)

We can use this result for a individual process interpretation of the functional responses in the predator prey model
(2.2). Dropping for simplicity sake sub and superscripts wefind that the functional response is

g(n) =
β n

1 + β
µ

n
& γ =

λ

µ
(3.35)

where all parameters have a individual level interpretation

β = attack rate
1

µ
= average handling time

(3.36)

Holling’s first model of functional response is recovered from the second model by taking the limit ofvanishing
handling time:

lim
µ↑∞

β

1 + β
µ

n
= β (3.37)

3.3 Holling’s empirical interpretation

Based on an experiment that he did with the help of his secretary, Holling proposed the following interpretation for
the terms appearing in the functional response. He defined:

1. dt time unit.

2. nc number of preys captured by a predator during the time unit.

3. hnc prey handling time by the predator.
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4. dt− hnc hunting time during the time unit

and supposed that the total number of prey captured is proportional to the total prey density and the time spent hunting
by the predator:

nc = β n (dt− hnc) ⇒ nc =
β n dt

1 + β n h
(3.38)

According to the above reasoning, the capture rate per predator is

nc

dt
=

β n

1 + β hn
= g(n) (3.39)

4 Prey escape model

A prey may escape its predator. This event can be taken into account by introducing a stateC corresponding to the
pair of a prey and a predator stalking it. The individual processes are described by the diagram

N + X
β
→
α
←

C
ν
→ Y

µ
→ X
λ
→ 2X

X
δ
→ ∅

Y
δ
→ ∅

C
δ
→ ∅

(4.1)

The corresponding population dynamics equation are

ṅ = f(n)− β n x + α c

ẋ = −β n x + α c + µ y + 2λ y − δ x

ẏ = ν c− µ y − λ y − δ y

ċ = β n x− α c− ν c− δ c

(4.2)

The total predator density is now

p = x + y + c (4.3)

Eliminatingc in favor ofp the equations become

ṅ = f(n)− β n x + α (p − x− y)
ẋ = −β n x + α (p− x− y) + (µ + 2λ) y − δ x

ẏ = ν (p− x− y)− (µ + λ + δ) y

ṗ = λ y − δ p

(4.4)

As in the previous section we introduce a separation of time scales by assuming

λ , δ ∼ O(1)
α , β , µ , ν ∼ O(ε−1)
x , y , p ∼ O(ε)

(4.5)

Proceeding as in the previous section, we write

ṅ = f(n)−
β⋆

ε
n x +

α⋆

ε
(p− x− y)

ẋ = −
β⋆

ε
n x +

α⋆

ε
(p− x− y) +

(µ⋆

ε
+ 2λ

)

y − δ x

ẏ =
ν⋆

ε
(p − x− y)−

(µ⋆

ε
+ λ + δ

)

y

ṗ = λ y − δ p

(4.6)
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We can use the scaling limit method to decouple fast and slow degrees of freedom. We define as before

x⋆ =
x

ε
& y⋆ =

y

ε
& p⋆ =

p

ε
(4.7)

and write (4.6) in terms of the fast time

1

ε

dn

ds
= f(n)− β⋆ n x⋆ + α⋆ (p⋆ − x⋆ − y⋆)

dx⋆

ds
= −β⋆ n x⋆ + α⋆ (p⋆ − x⋆ − y⋆) +

(µ⋆

ε
+ 2λ

)

ε y⋆ − ε δ x⋆

dy⋆

ds
= ν⋆ (p⋆ − x⋆ − y⋆)−

(µ⋆

ε
+ λ + δ

)

ε y⋆

dp⋆

ds
= ε (λ y⋆ − δ p⋆)

(4.8)

The limit ε tending to zero then yields

dn

ds
= 0

dx⋆

ds
= −β⋆ n x⋆ + α⋆(p⋆ − x⋆ − y⋆) + µ⋆ y⋆

dy⋆

ds
= ν⋆ (p⋆ − x⋆ − y⋆)− µ⋆ y⋆

dp⋆

ds
= 0

(4.9)

Again, the prey and the total predator densities appear under our working hypotheses as slow quantities. The fraction
of predators hunting or resting vary instead on a faster timescale. The fast dynamics is now governed by the two-
dimensional system

dx⋆

ds
= −β⋆ n x⋆ + α⋆(p⋆ − x⋆ − y⋆) + µ⋆ y⋆

dy⋆

ds
= ν⋆ (p⋆ − x⋆ − y⋆)− µ⋆ y⋆

(4.10)

The phase plane diagram of the fast dynamics is obtained fromthe study of theisoclines

1. ∂sx⋆ = 0

y =
α⋆ p⋆

α⋆ − µ⋆
−

α⋆ + β⋆ n

α⋆ − µ⋆
x (4.11)

2. ∂sy⋆ = 0

y =
ν⋆ p⋆

µ⋆ + ν⋆
−

ν⋆

µ⋆ + ν⋆
x (4.12)

x

y

(4.13)
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The quasi-steady state is the intercept between the isoclines

x⋆ =
µ⋆ (α⋆ + ν⋆) p⋆

µ⋆ (α⋆ + ν⋆) + β⋆ (µ⋆ + ν⋆)

y⋆ =
βν ν⋆ p⋆ n

µ⋆ (α⋆ + ν⋆) + β⋆ (µ⋆ + ν⋆)

(4.14)
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