
Notes on numerical integration of ODE’s

1 Introduction

These notes draw heavily from chapter 3 of [1], chapter 16 of [2] and chapter 7 of [3]. A nice quick overview is also
provided by http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations.

2 Integration by Taylor series

Problems involving ordinary differential equations (ODE’s) can always be reduced to the study of sets of first-order
differential equations. For example the second-order equation

d2x

dt2
= f(t)

dx

dt
+ g(t) (2.1)

can be turned into the first order system

dx

dt
= y

dy

dt
= f(t) y + g(t) (2.2)

Thus it is sufficient to discuss numerical schemes for the first order system of equations

dx

dt
= f (x, t) (2.3)

in a time interval for t > to and with initial condition

x(to) ≡ xto = xo (2.4)

We will suppose in what follows the vector field f(x, t) smooth (i.e. analytic) in Rd × R. The equation (2.3) can be
couched into the integral form m

xt = xo +
∫ t

to

ds f (xs, s) (2.5)

It is expedient to introduce the change of integration variable

s = t− u & ds = −du (2.6)

so that

xt = xo +
∫ t−to

0
du f (xt−u, t− u)

= xo + (t− to) f (xo, to)−
∫ t−to

0
duu

df

du
(xt−u, t− u)

= xo + (t− to) f (xo, to) +
(t− to)2

2
df

dt
(xo, to) +

∫ t−to

0
du

u2

2
d2f

du2
(xt−u, t− u) (2.7)
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where

df

dt
(xo, to) = f (xo, to) · (∂xf) (xo, to) + (∂tf) (xo, to) (2.8)

Iterating a further step we get into

xt = xo + (t− to) f (xo, to)

+
(t− to)2

2
df

dt
(xo, to) +

(t− to)3

6
d2f

dt2
(xo, to)−

∫ t−to

0
du

u3

6
d3f

du3
(xt−u, t− u) (2.9)

In other words the hypothesis of analyticity guarantees that integrating (2.3) is equivalent to generate the coefficients
of the Taylor expansion of f around the point (xo , to). This result can be used to construct numerical integration
schemes of ODE’s.

3 Euler scheme

The simplest integration scheme is the Euler method. First we partition the finite time interval T := t − to into n
sub-interval of equal size

δt :=
t− to
n

(3.1)

so that

tk = to + k δ t & t = tn = to + n δ t (3.2)

The quantity δt is often referred to as the mesh size of the discretization. If δt is “sufficiently” small i.e. n is large
enough we can approximate

xtk+1
' xtk + f (xtk , tk) δ t (3.3)

The symbol ' here means that the left hand side equals the right hand side if we neglect terms of order O
(
δt2
)
. In

such a case, we can estimate the flow generated by the ordinary differential equation with the one of the discrete map

yk+1 = yk + f(yk , tk) δt (3.4)

In one dimension or for each vector component of x ∈ Rd, the Euler scheme is the following recursion algorithm:

Algorithm 1 Euler
xvar = xo
tvar = to
tfin =t
npartinions = n
mesh = (tfin-tinit)/n
for k = 1, n do

xvar = xvar + f(xvar,tvar) * mesh
tvar= tvar+mesh
print tvar xvar

end for
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The statement print means that the outcome of the calculation is sent to some output (e.g. stored into a data file).
The local discretization error

lk = xtk − yk (3.5)

and the global discretization error

en = xtn − yn (3.6)

are standard measures of the accuracy of the approximation. A reliable numerical integration should provide an
estimate for this errors. This is usually done by checking the convergence of the results to a given value versus the
mesh size. In order to examine the dependence of the global discretization error upon the mesh it is convenient to
consider exponential changes of the mesh size

δti =
t− to
ni

i = 1, 2, . . . (3.7)

and define

y
(i)
k+1 = y

(i)
k + f

(
y

(i)
k , tk

)
(3.8)

Then one can study

∆i = ln ||y(i+1)

ni+1 − y
(i)

ni || (3.9)

versus ln δti. The reason for introducing logarithms is that variations of order of magnitude in the ∆i are reflected in
change of slope in logarithmic scale. An alternative way to proceed to estimate errors, is to compare at fixed mesh the
results of the Euler scheme and of an higher order scheme. The order of a scheme is defined as follows. A method is
said to converge with order γ ∈ N if there exists a constant K < ∞ such that the global discretization error satisfies
the bound

||en+1|| < K (δt)γ ∀ δt ∈ [0, δ?t] (3.10)

The Euler scheme can be proved to have order 1. Intuitively the order of the scheme can be thought as specified by the
highest order term of the Taylor series matching the increment of the discrete map defining the approximation scheme
in the limit of vanishing mesh size.

3.1 Limitations of the Euler scheme: stiffness

There are several reasons that Eulers method is not recommended for practical use, among them,

1. the method is not very accurate when compared to other at equivalent mesh size.

2. the method is not very stable.

The second pathology arises in the treatment of “stiff” systems of differential equations. Dictionary definitions of the
word “stiff” refer to concept like “being not easily bent”, “rigid” and “stubborn”. In the context of ODE’s a problem
is said to be stiff if [3]

A problem is stiff if the solution being sought varies slowly, but there are nearby solutions that vary
rapidly, so the numerical method must take small steps to obtain satisfactory results.
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[2] provides the following example.

dx1

dt
= a x1 + b x2

dx2

dt
= −(a+ c)x1 − (b+ c)x2 (3.11)

with

c = O(1) > 0 & b− a = O(103) > 0 (3.12)

Independently of the value of the parameters the system is explicitly integrable. The orthonormal change of variables

X :=
x1 + x2√

2
& x =

x1 − x2√
2

(3.13)

partially diagonalizes the system

d

dt
(x1 + x2) = −c (x1 + x2)

d

dt
(x1 − x2) = (2 a+ c)x1 + (2 b+ c)x2

⇒

d

dt
X = −cX

d

dt
x = (a+ b+ c)X + (a− b)x

(3.14)

Remark: a systematic theory for the analytic integration of linear ODE’s with constant coefficients

dx

dt
= Ax (3.15)

proceeds from similarity transformations

x = O y det O 6= 0 (3.16)

such that

dy

dt
= O−1 A Oy | O−1 A O = diag A (3.17)

where diag means the full diagonalization of A or at least its reduction to Jordan form. The variables (3.13) reduce
the equivalent of the matrix A for the system (3.11) to triangular form so that the system can be readily integrated

Xt = Xo e
−c t

xt = xo e
(a−b) t + (a+ b+ c)Xo

∫ t

0
ds e(a−b) (t−s)e−c s (3.18)

Performing the integral gives

xt = xo e
(a−b) t +

a+ b+ c

b− a− c
Xo

{
e−c t − e(a−b) t

}
(3.19)

Going back to the original variables the solution of (3.11) versus initial conditions (x1;o , x2;o) reads

x1 =
Xt + xt√

2
=
b(x1;o + x2;o) e−c t − [(a+ c)x1;o + b x2;o]e(a−b) t

b− a− c

x2 =
Xt + xt√

2
=
− (a+ c) (x1;o + x2;o) e−c t + [(a+ c)x1;o + b x2;o]e(a−b) t

b− a− c
(3.20)
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Using now the hypotheses (3.12) with

c =
1
τ

& b− a =
1000
τ

(3.21)

we see that in order to observe the decay of the exponential e(a−b) t we need a mesh size

δt � τ

1000
(3.22)

Failing to satisfy (3.22) may compromise the stability of the numerical integration scheme. The reason is that for any
matrix A the components of the map

yk+1 = A yk (3.23)

with solution

yn = An yo (3.24)

tends to zero as n tends to infinity if the largest eigenvalue of A has magnitude less than unity. The Euler scheme for

dx

dt
= −Cx (3.25)

with C a positive definite matrix corresponds to the map

yk+1 = (1− C δt) yk (3.26)

Denoting by c? the largest eigenvalue of C

c? := max spC (3.27)

the condition for ||yk|| to be bounded is therefore that

max sp {1− C δt} < 1 ⇒ δt <
2
c?

(3.28)

The example shows the source of the instability of the Euler scheme: the mesh size must be carefully chosen in
order to achieve convergence. Other integration schemes maybe, however, less sensitive to the mesh size even in the
presence of “stiff” problems. A nice article on stiff systems can be found at
http://www.scholarpedia.org/article/Stiff_systems

4 Second order schemes

The improved Euler or Heun scheme is an example of second order scheme:

ȳk+1 = yk + f (yk, tk) δt

yk+1 = yk +
1
2
{
f (yk, tk) + f

(
ȳk+1, tk+1

)}
δt (4.1)

Comparison with the solution of (2.3) by Taylor series is achieved by observing

yk+1 = yk + f (yk, tk) δt+
(δt)2

2
{
f (yk, tk) ∂yk

f (yk, tk) + (∂tkf) (yk, tk)
}

+ . . . (4.2)
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Another second order scheme is the two-step Adams-Bashforth scheme

yk+2 = yk+1 +
3 δt
2

f
(
yk+1, tk+1

)
− δt

2
f (yk, tk) (4.3)

since

yk+2 − yk+1 = δtf
(
yk+1, tk+1

)
+
δt

2
{
f
(
yk+1, tk+1

)
− f (yk, tk)

}
= δtf

(
yk+1, tk+1

)
+

(δt)2

2
{
f
(
yk+1, tk+1

)
∂yk+1

f
(
yk+1, tk+1

)
+ (∂tk+1

f)
(
yk+1, tk+1

)}
+ . . . (4.4)

5 Runge-Kutta scheme

An integration scheme often used in applications is the Runge-Kutta. Its simplest implementation is the its second
order or mid-point version

ȳk+1 = yk +
1
2
f (yk, tk) δt

yk+1 = yk +
{

f (yk, tk) + f

(
ȳk+1, tk +

δt

2

)}
δt (5.1)

The most used version is, however, the fourth order Runge-Kutta scheme which reads

ȳ
(1)
k = f (yk, tk)

ȳ
(2)
k = f

(
yk +

ȳ
(1)
k δt

2
, tk +

δt

2

)

ȳ
(3)
k = f

(
yk +

ȳ
(2)
k δt

2
, tk +

δt

2

)
ȳ

(4)
k = f

(
yk + ȳ

(3)
k δt, tk+1

)
yk+1 = yk +

k̄
(1)
n + 2 ȳ

(2)
n + 2 ȳ

(3)
k + ȳ

(4)
k

6
δt (5.2)

6 Roundoff error

Beside the errors connatural to discretization there is another important source of discrepancies between numerical
approximations and exact solutions. This source is due round-off errors. A round-off error is the difference between
the calculated approximation of a number and its exact mathematical value. Numbers are represented on a computer
with a finite number of digits. Increasing the number of digits allowed in a representation reduces the magnitude of
possible round-off errors, but any representation limited to finitely many digits will still cause some degree of round-
off error for uncountably many real numbers. Realistic estimates of accumulated round-off errors can be obtained by
statistical analysis by assuming that local round-off errors are identically distributed random variables. In particular
if

s = # (significant digits used to represent numbers) (6.1)

then the local round-off error maybe described as random variable ρ with uniform distribution in

[−5× 10−(s+1) , 5× 10−(s+1)] (6.2)
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In order to obtain a rough estimate of the accumulated round-off error affecting the n-th step of a numerical integration
we can compute the typical size of the fluctuations of the sum

R =
n∑
i=1

ρi (6.3)

around the average

≺ Rn �= 0 (6.4)

This is given by the variance

≺ (Rn− ≺ Rn �)2 �=≺

(
n∑
i=1

ρi

)2

�=
n∑
i=1

≺ ρ2
i �= n ≺ ρ2

1 � (6.5)

Note that in the above chain of equalities, the second follows from the first by the vanishing of the average (6.4), the
third from the indipendence of each of the random variables in the sum, and the fourth by the assumption of identical
distribution. The conclusion is that the estimated size of the round-off error grows after n steps as

√
n.
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