Notes on time-scaling analysis

1 Introduction

Mass action modeling permits to construct articulated evathtical descriptions of biological systems with direct
interpretation at the level of the individual system comgmis (-level dynamics). The drawback is that when the
number of components (or species) in the system or the nuaibveactions among them grows, mass action leads
to large system of ODE’s which become rapidly very difficaltanalyze. In order to cope with this difficulty, it is
expedient to introduce techniques enabling us to reduceuhber of degrees of freedom in the analysis at the level
of the population dynamicg{level dynamics). An effective way to proceed is to discriminatecgisses according

to the relative speed with which they occur. If the ratios ates of the involved processes are separated by order
of magnitudes, we can decouple the p-level dynamicsfadtoandslow degrees of freedom which can be afterward
analyzed separately. The scope of these notes is to ineahme mathematical techniques adapted to the systematic
inquire offast-dow dynamical systems.

2 Enzymekinetics

Consider the following-level system with states

1. S substrate
2. E enzyme
3. X enzyme-substrate complex

4. P product
Thei-level elementary reactions between the system components amgbaeisby the diagram

«

S+E 5 XL P+E (2.1)
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From the diagram it is straightforward to derive tpxevel dynamics according to the principles of mass-action
modeling:

d

d—j =—ase+ Pz

de

— =—ase+fBr+yx

dt (2.2)
dz =ase—fBr—~z

dt 7

dp _

at ~ "

The system involves four degrees of freedom. In order tordesthe state of the system we do not need to solve four
differential equations. The evolution of the system presgin time two quantities:



1 sp:=s+x+p:

%(s—i—x—l—p):(—ase—i—ﬁx)—i—(ase—ﬁx—’yx)—i—’ymzo (2.3)
2. e,:=e+x.
%(e—i—x):(—ase+ﬂx+7x)+(+ase—ﬂx—7x):0 (2.4)

Thus, we can eliminate andp from the dynamics in favor of, ands, and write

d
d—j =—ase+ [F(e—e)
de (2.5)
o = aset (B+7)(eo—€)
The phase plane analysis of the reduced system proceedsais$ram the knowledge of the isoclines
1. ds/dt = 0:
 Peo de  e,sary
€_ﬁ+as = dt_ﬂ+as>0 (2.6)
2. de/dt =0
(B+7)eo ds €o Sy
_ @5 _ _ _GoSy 2.7
¢ B+v+as = dt ﬁ—|—7+as<0 2.7)
The corresponding phase plane diagram is
(2.8)

2.1 Reduction by decoupling of the degrees of freedom.

A further reduction of the dynamics is possible if we introdisome further hypothesis about the processes involved.
In particular the conserved quantitigsande,, differ in magnitude in typical situation by several orders

=2 <« (2.9)
So

Thus, if the dynamics satisfies the initial conditions

s(0) =35, & e(0)=e, (2.10)



the we expect that at least for a long time interval

e(t)
o <1 (2.11)

holds true. We can use the above considerations to extrscee asymptotic behavior of (2.5). To this scope we
re-write (2.5) as

l@ :—a@+ﬂeo—e
s dt S (2.12)
1de i (ﬁ i ) €o — €
-—— =—us
e dt K
Since we expect
“©"C w1 & “”C o (2.13)
S e
it is expedient to introduce the rescaled variables
ri=" & yi=2 (2.14)
So €o
and the parameter
W= s, (2.15)

so that we can recast (2.5) in to the form

d
—E::—gwyx+gﬁ(1—y)
dt (2.16)

dy
o= eyt B+ (1 -y)

As ¢ tends to zero we get into the limit result

dr_
le; (2.17)
o= Wyt B+ (1 -y)

The rescaled substrate variallés conserved in the limit. We are left with the one dimensiayamamics governing
the evolution of the rescaled enzyme density. Plotting #ator field driving the reduced dynamics we see that there
exists an attracting fixed point
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Such fixed point defines quasi-steady state for the full dynamics. In other words in the limit of vanisigia we
expect the dynamics to tend asymptotics to the phase plageatis
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The dynamics along thg-axis contracts towards the isocline (2.19) which specifieslow-manifold of the dynam-
ics. A different rescaling of the variables allows us to diggcthe behavior of trajectories along the slow manifold.
This is done by introducing th&ow time

u=ct (2.21)

and observe that when derivatives are expressed in terrhge sfaw time we get into

d
d_:c =—cwyz+ef(l—y)
7& (2.22)
€E%=—mww+%ﬁ+vﬂl—w
The limit e tending to zero now gives
dx
@——ewym%—sﬁ(l—y) (2.23)

0=-wyz+(B+7)(1-y)

This means that the first equation holds true only when thebaddgc condition between andy is satisfied. In other
words, along the slow manifold we have

dr v

R 2.24

We can re-write the above result in terms of the originalalalgs. The enzyme density quickly relaxes to the slow
manifold

_ (Bt7)eo
6—)6(8)_ﬁ+fy+a3 (225)

Along the slow manifold the evolution is governed by the omeahsional equation

ds Yeo s
— = 2.26

Two remarks are in order

i The time scale separation, breaks down ondecreases to the order of.e. in the neighborhood of the fixed
point of (0, e,).
i Forlarges, we have
ds
dt
For larges the reaction behaves likezaroth order reaction.

= —7ve, = constant (2.27)



3 Digression: theorder of areaction

For anyk € N, the reaction

Ay + -+ + A — products (3.2)
is called ant"-order reaction if
A A
e R e B ERE e (3:2)

for somestrictly positive constant (i.e. ¢ > 0), and provided the condition

Z m; =n (3.3)
Thus, the overall reactiof — P in the reaction chain
o
S+E 5 XLP (3.4)
—
with s > e behaves like a zeroth-order reaction because

d
d—‘z — constant (3.5)

ass T oo.

4 Enzymekinetics: different asymptotics by different time-scaling

If the substrateS and the enzyméd’ densities are of comparable magnitude, we need a diffeggrbach. Let us
introduce the quantity

g—s—e (4.1)

then (2.5) becomes

d
D= —as(s—g)+Bleo—s+9)
dt
(4.2)
d _ _ (€ —s+9)
dt Y €o g
As in section 2 we denote hyan arbitrary dimensionless scaling parameter and assume
a.f~01) & v=0() (4.3)
ase | 0. In other words, ify, ~ O(1) we set
T =€% (4'4)
and write
ds
—=—as(s—g)+h(eo—s5+9)
dt
g (4.5)
Y= eqoleo—s+9)
dt To\Go



Again, the limite reduces the system evolution law to a one equation

d

d—sz—aS(S—g)Jrﬂ(eo—erg)

df (4.6)
— (eo —s+9)

p Yo (€0

asg becomes asymptotically a conserved quantity. The efieetdctor field governing the fast substrate evolution

ds
dt

(4.7)

exhibits now an attracting fixed point for

ag—0F++/(ag+PB)?+4e,ap

s(g) = 5 >
(6%

which specifies ajuasi-equilibrium (or quasi steady-state) for the substrate. After a faskadilan to the quasi-

equilibrium, the evolution of the system is determined by sfkow change of the differengebetween the substrate

and the enzyme densities. We can set the focus on the slownilymby evaluating time derivatives in units of the

sow-time

0 (4.8)

u=ct (4.9)
as we did in section 2.1. We get into the equation
d
e = —as(s—g)+B(co—s+9)
du (4.10)
dg )
% = —'70(60—5+g)
Lettinge | 0, we getinto
0=-as(s—g)+pB(eo—s5+9)
d (4.11)
ﬁ = _fYo(eo_S"i_g)
The asymptotic evolution occurs again the slow manifold specified by (4.8). We summarize the result as
s — s(g) fast kinetics
dg o (4.12)
- =7 (eo — s+ g) fastkinetics

On the(s, g)-plane we have the phase-plane plot

E— (4.13)




Observation: whenever the substrate density relaxes to the slow maritieltime derivative vanishes

ds

— =0 4.14
7 (4.14)
this condition isequivalent to writing
Beo
= 4.15
°= Gras (4.15)

In the original variables the fast evolution keeps- s — e constant. Finally a straightforward calculation yields

ds(g)  avys(g)eo[s(g) + /]

= 4.16
&t = afeot[s(9) + O (410
so that the overall reactiofi — P at quasi-equilibrium has no well-defined order.
5 Yet another possible time scaling
Suppose now that the reaction (2.1) occurs with rates
a,8,~0() & 7~O0(1) (5.1)
i.e. we suppose
a=ca, & [B=¢ef @,0, ~ O0Q) (5.2)
Proceeding as in the previous section we find in such a case
a5 _
gf (5.3)
S (e —s5+9)
dt Yo \€o
Again the quasi-equilibrium point is attracting and is ieed for
g(s)=s—e, (5.4)
Introducing a slow-time, = ¢ ¢ we find for the asymptotic evolution on the slow-manifold drpiations
ds
o =—a,5(s—g) + Boleo — s+ 9) (5.5)
0= _'70(60_54'9)
which reduce to
ds = —q, 56, (5.6)
du

We thus see that the slow dynamics describes in this case/éhellgprocesss — P as a first order reaction.



