
Notes on time-scaling analysis

1 Introduction

Mass action modeling permits to construct articulated mathematical descriptions of biological systems with direct
interpretation at the level of the individual system components (i-level dynamics). The drawback is that when the
number of components (or species) in the system or the numberof reactions among them grows, mass action leads
to large system of ODE’s which become rapidly very difficult to analyze. In order to cope with this difficulty, it is
expedient to introduce techniques enabling us to reduce thenumber of degrees of freedom in the analysis at the level
of the population dynamics (p-level dynamics). An effective way to proceed is to discriminate processes according
to the relative speed with which they occur. If the ratios of rates of the involved processes are separated by order
of magnitudes, we can decouple the p-level dynamics intofast andslow degrees of freedom which can be afterward
analyzed separately. The scope of these notes is to introduce some mathematical techniques adapted to the systematic
inquire offast-slow dynamical systems.

2 Enzyme kinetics

Consider the followingi-level system with states

1. S substrate

2. E enzyme

3. X enzyme-substrate complex

4. P product

Thei-level elementary reactions between the system components are described by the diagram

S + E
α
→
β
←

X
γ
→ P + E (2.1)

From the diagram it is straightforward to derive thep-level dynamics according to the principles of mass-action
modeling:

ds

dt
= −α s e + β x

de

dt
= −αs e + β x + γ x

dx

dt
= αs e− β x− γ x

dp

dt
= γ x

(2.2)

The system involves four degrees of freedom. In order to describe the state of the system we do not need to solve four
differential equations. The evolution of the system preserves in time two quantities:
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1. so := s + x + p:

d

dt
(s + x + p) = (−α s e + β x) + (αs e− β x− γ x) + γ x = 0 (2.3)

2. eo := e + x:

d

dt
(e + x) = (−α s e + β x + γ x) + (+α s e− β x− γ x) = 0 (2.4)

Thus, we can eliminatex andp from the dynamics in favor ofeo andso and write

ds

dt
= −αs e + β (e0 − e)

de

dt
= −αs e + (β + γ)(eo − e)

(2.5)

The phase plane analysis of the reduced system proceeds as usual from the knowledge of the isoclines

1. ds/dt = 0:

e =
β eo

β + α s
⇒

de

dt
=

eo s α γ

β + αs
> 0 (2.6)

2. de/dt = 0

e =
(β + γ) eo

β + γ + αs
⇒

ds

dt
= −

eo s α γ

β + γ + α s
< 0 (2.7)

The corresponding phase plane diagram is

s

e

(2.8)

All the orbits converge to the fixed point for(s , e) = (0 , eo).

2.1 Reduction by decoupling of the degrees of freedom.

A further reduction of the dynamics is possible if we introduce some further hypothesis about the processes involved.
In particular the conserved quantitiesso andeo differ in magnitude in typical situation by several orders

ε :=
eo

so

≪ 1 (2.9)

Thus, if the dynamics satisfies the initial conditions

s(0) = so & e(0) = eo (2.10)
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the we expect that at least for a long time interval

e(t)

s(t)
≪ 1 (2.11)

holds true. We can use the above considerations to extricatesome asymptotic behavior of (2.5). To this scope we
re-write (2.5) as

1

s

ds

dt
= −α e + β

eo − e

s
1

e

de

dt
= −α s + (β + γ)

eo − e

e

(2.12)

Since we expect

eo − e

s
≪ 1 &

eo − e

e
∼ O(1) (2.13)

it is expedient to introduce the rescaled variables

x :=
s

so
& y :=

e

eo
(2.14)

and the parameter

ω := α so (2.15)

so that we can recast (2.5) in to the form

dx

dt
= −εω y x + ε β (1− y)

dy

dt
= −ω y x + (β + γ) (1− y)

(2.16)

As ε tends to zero we get into the limit result

dx

dt
= 0

dy

dt
= −ω y x + (β + γ) (1− y)

(2.17)

The rescaled substrate variabley is conserved in the limit. We are left with the one dimensional dynamics governing
the evolution of the rescaled enzyme density. Plotting the vector field driving the reduced dynamics we see that there
exists an attracting fixed point

y

dy

dt

(2.18)

for

y⋆ =
β + γ

β + γ + ω x
(2.19)
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Such fixed point defines aquasi-steady state for the full dynamics. In other words in the limit of vanishing ε we
expect the dynamics to tend asymptotics to the phase plane diagrams

x

y

(2.20)

The dynamics along they-axis contracts towards the isocline (2.19) which specifiestheslow-manifold of the dynam-
ics. A different rescaling of the variables allows us to describe the behavior of trajectories along the slow manifold.
This is done by introducing theslow time

u = ε t (2.21)

and observe that when derivatives are expressed in terms of the slow time we get into

dx

du
= −εω y x + ε β (1− y)

ε
dy

du
= −ω y x + (β + γ) (1− y)

(2.22)

The limit ε tending to zero now gives

dx

du
= −εω y x + ε β (1− y)

0 = −ω y x + (β + γ) (1 − y)
(2.23)

This means that the first equation holds true only when the algebraic condition betweenx andy is satisfied. In other
words, along the slow manifold we have

dx

du
= −

γ x
β+γ

ω
+ x

(2.24)

We can re-write the above result in terms of the original variables. The enzyme density quickly relaxes to the slow
manifold

e→ e(s) =
(β + γ) eo

β + γ + αs
(2.25)

Along the slow manifold the evolution is governed by the one dimensional equation

ds

du
= −

γ eo s
β+γ

α
+ s

(2.26)

Two remarks are in order

i The time scale separation, breaks down onces decreases to the order ofe i.e. in the neighborhood of the fixed
point of (0, eo).

ii For larges, we have

ds

dt
= −γ eo = constant (2.27)

For larges the reaction behaves like azeroth order reaction.
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3 Digression: the order of a reaction

For anyk ∈ N, the reaction

A1 + · · · + Ak → products (3.1)

is called anth-order reaction if
∣

∣

∣

∣

dA1

dt

∣

∣

∣

∣

= · · · =

∣

∣

∣

∣

dAk

dt

∣

∣

∣

∣

= cAm1

1
× · · · ×Amk

k (3.2)

for somestrictly positive constantc (i.e. c > 0), and provided the condition

k
∑

i=1

mi = n (3.3)

Thus, the overall reactionS → P in the reaction chain

S + E
α
→
β
←

X
γ
→ P (3.4)

with s ≫ e behaves like a zeroth-order reaction because

ds

dt
→ constant (3.5)

ass ↑ ∞.

4 Enzyme kinetics: different asymptotics by different time-scaling

If the substrateS and the enzymeE densities are of comparable magnitude, we need a different approach. Let us
introduce the quantity

g = s− e (4.1)

then (2.5) becomes

ds

dt
= −αs (s− g) + β (eo − s + g)

dg

dt
= −γ (eo − s + g)

(4.2)

As in section 2 we denote byε an arbitrary dimensionless scaling parameter and assume

α , β ∼ O(1) & γ = O(ε) (4.3)

asε ↓ 0. In other words, ifγo ∼ O(1) we set

γ = ε γo (4.4)

and write

ds

dt
= −αs (s− g) + β (eo − s + g)

dg

dt
= −ε γo (eo − s + g)

(4.5)
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Again, the limitε reduces the system evolution law to a one equation

ds

dt
= −αs (s− g) + β (eo − s + g)

dg

dt
= −ε γo (eo − s + g)

(4.6)

asg becomes asymptotically a conserved quantity. The effective vector field governing the fast substrate evolution

s

ds

dt

(4.7)

exhibits now an attracting fixed point for

s(g) =
α g − β +

√

(α g + β)2 + 4 eo α β

2α
> 0 (4.8)

which specifies aquasi-equilibrium (or quasi steady-state) for the substrate. After a fast relaxation to the quasi-
equilibrium, the evolution of the system is determined by the slow change of the differenceg between the substrate
and the enzyme densities. We can set the focus on the slow dynamics by evaluating time derivatives in units of the
slow-time

u = ε t (4.9)

as we did in section 2.1. We get into the equation

ε
ds

du
= −α s (s− g) + β (eo − s + g)

dg

du
= −γo (eo − s + g)

(4.10)

Letting ε ↓ 0, we get into

0 = −α s (s− g) + β (eo − s + g)

dg

du
= −γo (eo − s + g)

(4.11)

The asymptotic evolution occurs again the slow manifold nowspecified by (4.8). We summarize the result as

s→ s(g) fast kinetics

dg

dt
= −γ (eo − s + g) fast kinetics

(4.12)

On the(s, g)-plane we have the phase-plane plot

s

g

(4.13)
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Observation: whenever the substrate density relaxes to the slow manifoldthe time derivative vanishes

ds

dt
= 0 (4.14)

this condition isequivalent to writing

e =
β eo

β + αs
(4.15)

In the original variables the fast evolution keepsg = s− e constant. Finally a straightforward calculation yields

ds(g)

dt
= −

α γ s(g) eo [s(g) + β]

α β eo + [s(g) + β]2
(4.16)

so that the overall reactionS → P at quasi-equilibrium has no well-defined order.

5 Yet another possible time scaling

Suppose now that the reaction (2.1) occurs with rates

α , β ,∼ O(ε) & γ ∼ O(1) (5.1)

i.e. we suppose

α = εαo & β = ε βo αo , βo ∼ O(1) (5.2)

Proceeding as in the previous section we find in such a case

ds

dt
= 0

dg

dt
= −γo (eo − s + g)

(5.3)

Again the quasi-equilibrium point is attracting and is reached for

g(s) = s− eo (5.4)

Introducing a slow-timeu = ε t we find for the asymptotic evolution on the slow-manifold theequations

ds

du
= −αo s (s− g) + βo(eo − s + g)

0 = −γo (eo − s + g)
(5.5)

which reduce to

ds

du
= −αo s eo (5.6)

We thus see that the slow dynamics describes in this case the overall processS → P as a first order reaction.
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