EVOLUTION AND THE THEORY OF GAMES (Spring 2009) EXERCISES 5 - 10

- 5. Show that in a zero-sum game every Nash equilibrium is a minimax solution.
- 6. Suppose that (x^*, y^*) is a Nash equilirium. Show that $k_x(x, y^*) = k_x(x^*, y^*)$ for every pure strategy x in the support of x^* .
- 7. Consider each of the following games with payoff matrices

(3,2)	(2,1)
(0,3)	(4,4)

and

(3,8)	(4,4)
(2,0)	(0,6)

respectively, and use the Swastika method to find all Nash equilibria.

- 9. Consider the "noisy duel" and the "silent duel" of exercise 4 with N = 2, and calculate all Nash equilibria.
- 10. Suppose that $x_0 \in \mathbb{X}$ is a *strictly* dominated pure strategy. Show that if $(x^*, y^*) \in \mathbb{X} \times \mathbb{Y}$ is a Nash equilibrium, then x_0 cannot be in the support of x^* . Use the following payoff matrix

(3,2)	(3,0)	(2,2)
(1,0)	(3,3)	(0,3)
(0,2)	(0,0)	(3,2)

to show that this does not generally hold if x_0 is merely dominated rather than *strictly* dominated.