CHAPTER 2: DIFFERENTIAL FORMS

2.1 Multilinear forms

Let V be a vector space, dimV = n < oo, over the field K = R or K = C. The
dual space V* consists of all linear functions f : V — K and it is a vector space
under the usual addition and scalar multiplication of functions. If {e1,...,e,} is a
basis of V' then we can define a basis {fi,..., fn} of V* by fi(e;) = d;;. We denote
QX V) =v*.

Next we define Q2(V) = V* A V* as the space of antisymmetric functions f :
V x V. — K which are linear in both arguments. Q2(V) is a vector space of

dimension n(n — 1)/2. A basis is given by the functions f;; defined by
fij(er,er) = 6irdji — b

with 1 < i < j < n. We set fj; = —fi;. A general element of Q*(V) is then a
linear combination f = a;;fi; with a;; = —aj;, that is, elements in Q*(V) are
antisymmetric tensors on V'*.

If f,g € Q(V) then f A g € Q*(V) with (f Ag)(z,y) = f(x)g(y) — f(y)g(z). In
particular, f;; = fi A fj. The wedge product is antisymmetric, f A g = —g A f.

Example When V = R3 the wedge product is simply the cross product of vec-
tors. We can identify Q2(R3) as the space R? by using the standard basis: The ele-
ments in an antisymmetric tensor (a;;) are parametrized by a vector (ass, asi,ai2)
and then z Ay = (T2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — T2Y1).

In general, Q¥(V) denotes the space of alternating multilinear forms f : V x V x

- x V — K (k arguments). Alternating means that the sign of the function is
reversed when a pair of arguments is transposed. In other words, a permutation o
of the arguments can be compensated by a multiplication by €(o) where (o) = £1

is the parity of the permutation,
f(aﬁg(l), ceey xg(n)) = e(a)f(xl, ceey :cn)
A basis in QF(V) is given by the multilinear forms f;,;,.. ;. defined by

fir i @D 2®)) = det (wgfn))
11
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By the symmetry properties of the determinant the right-hand-side indeed defines
an alternating form. The dimension of Q¥(V) is equal to the binomial factor (:) .

In particular, dim Q"(V) =1 and Q*(V) = 0 for k > n. We set Q°(V) = K and
QV)=Q(V)a Q' (V)@ --- o Q™ (V).

The dimension of the direct sum is

dimQ(V) =" (Z) =2,

k

We generalize the wedge product to a product
QI(V) x QF (V) — QITH(V)

by the formula

; 11 . . )
(fAg) (2D, ... a0k = 7 Y (o)D), 2D g (gl GHD) L o),
j‘ ) O'ESj+k
where S, is the group of permutations of integers 1,2, ..., n.

Exercise 1 Show that f A g is alternating.

Exercise 2 Prove that f A g = (—1)%g A f.

Exercise 3 Prove that f A (g Ah) = (f Ag) Ah.

Note that the basis f; ;,. ., defined above is obtained from the f;’s,

fivig..in. = fis N fis N A fiy.

2.2 Differential forms

Let M be a smooth manifold of dimension n. A differential form of degree k on M
is a smooth distribution w, € QF(T, M) of alternating forms in the tangent spaces.
We denote by QF(M) the set of differential forms of degree k. Smoothness of the
distribution z — w, is defined in terms of local coordinates z1,...,x,. Recall that
each coordinate z; defines a local vector field 9° = a%i, interpreted as a derivation of

the algebra C°°(M). A tangent vector at a point z is uniquely written as v = v;0".

For this reason w is given in terms of the coordinate functions

Witk () = we (9, ..., ™),
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Smoothness of w means that the coordinate functions w? % (x) are smooth func-
tions of the coordinates z;.

Locally, a basis for Q(M) is given by the differential 1-forms dz; defined by
d(L‘Z‘ (8J> = 52]
A basis for k-forms is given by
dz;, Ndz;, N--- Ndz;, with1 <1 <ip <--- <1 <n.
In the given coordinate chart we have then
Lo iinin
W= w (x)dziy Ndxiy N - A dx;, .

The wedge pruduct of forms w € Q/(M) and 0 € QF(M) is a form in Q+*(M)

defined pointwise as (w A 0), = w; A 0,.. The product is associative and
wAl= (=10 Aw.

The exterior derivative of w € QF(M) is defined in terms of local coordinates as

an element dw of Q¥+ (M),
(1) d (W dr, A Adag,) = P dry Adzg, A A da,
We define Q°(M) = C°°(M) and then

df = & fdx;

for a smooth function f. We must also check that the definition of dw in terms of

local coordinates is compatible with coordinate tranformations. Since 8'% = 82, =
k

—gi/j 0’ by the chain rule, we obtain
k
Oxj,  Oxj,

Wi — w(a’il, o ,(9”"“) — w(aj17.__7ajk)ax;1 SR

In other words,
Witk dpy A Adag, = wTIRdal A A da

for
8a:j1 axjk

R e

11 Tk

Wt — (yI1-Jk
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When the exterior differentiation is applied to the right-hand-side we obtain an
expression similar to (1) but the coordinates x; replaced by z}; But the exterior

derivative of the right-hand-side is equal to

Co Ox; ., (Ox; 0xj, .
OV Nday N - N d, = 5 0 83:'-1 . (9:5’-16 Wit Ik ) dals Ndag, A A da,
J 21 1k
0?z;, Oxj, Oz

=2,
Oxlx; Oxi, — Oz

= 0wt day A dg, - A dig,, + wtIk fk dx’y Nday, - Ndag, 4.

ik
Using the antisymmetry of the wedge products dz; A dx;, and the symmetry of
the second derivatives we observe that all the terms involving second derivatives
are identically zero and therefore only the first term remains, giving the exterior

derivative of w in the x; coordinates.

To remember the transformation rule for differential forms it is sufficient to keep

in mind the transformation for 1-forms,

dz! = Or;
L ﬁa:j

d.’]?j,

since the higher order forms are exterior products of the basic 1-forms and smooth

functions.
Theorem. d? = 0.
Proof.

= 9'dTwh e dry A dx; A ...dx;,.

Again, using the symmetry of second derivatives and antisymmetry of the wedge

product dz; A dz; we see that all terms on the right vanish and thus d*w = 0.

Note that dw = 0 for w € Q°(M) implies that w is a constant function in
each connected component of M. Set Q(M) = Q°(M) & QY (M) & ...Q" (M) with
n = dimM.

Theorem. Letw € QP(M) and 6 € QU(M). Then d(wAf) = dw N0+ (—1)Pw Adf.
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Proof. Set w = w""»dx;, A--- Ndx; and ¢ = ¢/ Jedx; A--- Adxj, . Then

WA G =wrr@itdady, A .. dx;, Ndzrj N--- Ndzxj,
dlw AN @) = P da @k e dgy A dzi, A...dz; Ndxj A--- Ndxj,
+ wil“'ipakwl“'jquk Ndzi, A .. .dxj,
=dw A ¢+ (—1)Pw" P Tady; L dx;) Adzg Adzy, A day,

= dw A ¢+ (—1)Pw A do,

where we have used the alternating property of the wedge product, dz;, A...dx;, A
drp = (—1)pd$k A dxil VANPI dCCZ'p.

There is alternative way to think about differential forms. Let X € D'(M) and
w € QY(M). We can define a smooth function on M by f(x) = w,(X(x)) by the
natural pairing of tangent vectors X (z) and the elements w, € T M in the dual.
Thus a 1-form is a map from D'(M) to C°°(M). This map is linear, moreover
w(gX) = gw(X) for any smooth function g.

In a similar way, any w € Q¥(M) can be thought of as a multilinear function

w: DY M) x DY(M) x ...DY (M) — C>®°(M) by
w(X1, Xo, .o, Xp)(2) = we (X1 (), ..., Xi(2)).

By the definition of a differential form, this map is alternating.

There is converse result which we state without proof: Any alternating map
DY(M) x -+ x DY(M) — C°°(M) which is C°°(M) linear in each variable, is
uniquely represented by a differential form.

Let f € Q°(M) and X € D*(M). Then
df (X) = (0" fday)(X;07) = X;0" fday(87) = X;07f = X - f.
Next let w € QY(M) and X,Y € D(M). Now

(dw)(X,Y) = (dw'dr; Adx;)(X,Y) = (¢ w")(dr;(X)dwi(Y) — dzj(V)dz: (X))
= (P (XY -V X)) =X -w(Y) - Y - w(X) - o' (X;0°Y; - ;0" X;)

=X -w)-Y wX)-wX,Y).
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Exercise Generalize the formula above to differential forms of degree k,

(@) (X1 Xirr) = DKl Fieons Ki)

+Z H]w Xl,X]Xl,...,Xi,...,Xj,...,Xk+1),
1<J
where the hat over X; means that this variable is deleted from the sequence.

Next we define the interior product of a vector field X and a k form w.
(Ixw)(Xi,..., Xp—1) =w(X, X1, ..., Xp—1).

Note that ixw is a form of degree k — 1. For example, when w € Q*(M), then ixw

is simply the function w(X). If w = w*dz; A dz; then

1 ..
(ixw)(Y) =w(X,Y) = §w” (X3Y; — X;Y5)
=YW X,

by w¥ = —w’®. Thus ixw = 6 with " = X;w/". In general, for w = %wil“'ikdml A

-+ A dz;, we have

(Z'Xw)’il...’ik_l — ij]'bl'bk—l .

For any smooth map f : M — N we define the pull-back operator f* : QF(N) —
QF(M) by
(ffw)e(vr, ... vk) = Wy (T f - v, T f - vg)

for vi,...,vr € T, M. In terms of local coordinates x; on M and y; on N we have

1 Ay;,  9y;
* \i1...0% — ZJ)1 Ik Jl Jk
(Fafnte) = G e iy

In the case when M = N this gives us again the coordinate transformation rule of
differential forms.

Exercise Show that f*(dw) = d(f*w) and f*(w A 0) = (f*w) A (f*0) for all
differential forms w, # and a smooth map f.

The pull-back of a form h € C*°(M) = QY(M) is simply the composed function
f*h="ho f.

Finally we define the Lie derivative of a k— form w in the direction of a vector

field X as the k—form Lxw,

k
(Lxw) (X1, Xi) =X - w(X1,.. ., Xp) = Y w(Xy, .., [X, X, X).
i=1



17

In terms of local coordinates,
k
(LXw)il...ik - X. wil...ik + Z(8ian)wil"'ia_ljia+1"'ik.
a=1

Exercise Prove the relation Lx = doix +ix od.

2.3 Maxwell’s equations and differential forms

We arrange the Cartesian coordinates of the electric field E and the magnetic

field B as an antisymmetric 4 x 4 matrix,

o -r, -E, -E,
E, 0 —cB, +cB,
E, c¢B, 0 —cB,
E., —cB, c¢B, 0

(F) =

We label the rows and columns by p,v = 0,1,2,3 and we set F' = %F“”d:z;ﬂ Adx,.

Let ¢ be an electric scalar potential and A a magnetic vector potential. Then
E=-V¢—0"A and B=V x A,

where 9° = %% but we shall work in units with speed of light ¢ = 1. Define the

1-form A = A*dz,, with A = ¢ and A* = cA’. Thus we may write
Fv = grAY — 9 AP,

that is, F' = dA.
Since d? = 0 we have automatically dF' = 0. Written in electric and magnetic

field components this gives the second set of Maxwell’s equations,

V-B=0

0B
E=_—"",
V x T

In order to obtain a differential form expression for the first set of Maxwell’s equa-
tions,
V-E= p/ €0

OE
B = — +]
V X Ho (60 ot +.]>7
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with poeg = 1/c?, we must first fix a metric tensor (g,,) in space-time; this could
be just the Minkowski metric diag(1l,—1,—1,—1) but we may take any (pseudo)
Riemannian metric. Note that the second set of Maxwell’s equations is intrinsic to
any smooth manifold, it does not depend on the choice of metric.

We shall denote g% = g(9%,87) for a (pseudo) Riemannian metric g, : T, M X
T.M — R. Recall from the relativity course that by definition the matrix (g%)
is symmetric and nondegenerate. The matrix elements of the inverse matrix are
denoted by (gi;), s0 gij9°* = " gjr = dik.-

We define an orientation on a manifold M of dimension n. The manifold is
oriented if we have a complete system of local coordinates such that all coordinate

transformations z; = z(z1,...,x,) satisfy the condition det(g;c?) > 0.
J

Not every manifold can be oriented. The standard spheres S™ inherit an orien-
tation from R™*!. The orientation on R" is given by the ordered set of Cartesian
coordinates (z1,xs,...,Z,). A coordinate system (y1, ..., y,) on the embedded unit
sphere in R"*! is then oriented if the vectors (8;, c 0y, v) are compatible with the
orientation of R™*!. Here v is the outward unit normal vector field on the sphere
and compatibility means that the matrix relating the given tangent vectors to the
standard basis has positive determinant. On the other hand, the real projective
plane PR? = S? /7, = (R3 — {0})/R, consisting of lines through the origin in R3,
has no orientation.

A metric defines a preferred n-form on an oriented manifold, called the volume

form. In terms of local oriented coordinates it is defined as
volys = |det(g)|Y2dxy Adxg A ... day,.

Let x} be another set of oriented coordinates. Then

/

dx) ANdxh -+ Adxl, = det (gxl) dri Ndzg - Ndz,.
Ly

On the other hand, ¢’ = %%gkl, and this gives
i J

2

- - O

11\ __ 1) 1
det(¢g'™) = det(g") (det (89@3)) :

det(g') |} 2da, Adaly--- Ada!, = |det(g7)|Y2day A dxy - A dy,

This implies that
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and thus the definition of vol; is compatible with change of oriented coordinates.
Note that the orientation is really important: If the determinant of the coordinate
transformation is negative then the volume would change the sign.
A metric defines also a duality operation x : Q¥(M) — Q"% (M) on differential

forms. In local coordinates,

ww = 02 In—kdy, Adxg,...dr;,_, with
1ol k ) —1/2 11+ tn—k
J2La! B — ]det(g J)| / Ee jlmjkwjl Jk’

where €;, . ; is the totally antisymmetric tensor with €;5. , = +1 and the raising

of indices is done with the help of the metric tensor as in general relativity.
Example Let M = R* and g% the Minkowski metric. Then voly; = dxg Adxy A

dxo N dxs. The dual of the Maxwell 2-form F = %F“”dwu A dz, is given by
v 1 v «
(*F)H = 56” aﬁF 67

so (xF)'? = F% and cyclic permutations of 123, and (*F)%! = —F?3  and cyclic
permutations of 123. That is, the magnetic components of the dual are equal to
(—1)x the electric components of the original and the electric components of the
dual are equal to the magnetic components of the original field.

The complete set of Maxwell’s equations can now be written as

dxF =J

dF =0,

where the 3-form J is defined as %e“O‘BVJdea A dxg A dxy with Jy = p/eg and

J* = cpuoj*. Here p is the charge density and j is the electric current density.

2.4 de Rham cohomology

Recall that d : QF (M) — QFFL(M) is a linear map with d? = 0. We set B¥(M) =
d(QFY(M)) c Q¥ (M) and Z¥(M) = kerd = {w € QF|dw = 0} C QF(M). These
are linear subspaces with the property B¥(M) C Z¥(M), because of d*> = 0. EI-
ements of ZF are called closed forms and elements of B* are exact forms. We

set

H*(M) = Z8(M)/B*(M), with k =0,1,2,...
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where HO(M) = Z°(M). Note that H*(M) = 0 for k > n since QF(M) = 0 for

k > n. The vector spaces H¥(M) are called the de Rham cohomology groups of M.

In case when M is compact, one can prove that dimH*(M) < oo for all k.
Example M = R3. Since df = 0 for f € C®°(M) = Q°(M) means that f is

a constant function, we get H°(R?) = R. If w = w'dx; satisfies dw = 0 then the

vector field (w!,w?,w?) has zero curl, and we know vector analysis that there is

a scalar potential f such that Vf = w, in other words, df = w. Thus B! = Z!
and so H'(R) = 0. If w = Jw¥dz; A dz; is a 2-form with dw = 0 then divw = 0
with w = (w23, w31, w12). This implies that there is a vector potential A such that
VXA = w, or in other words, dA = w, A = Aldx;. Again, Z? = B? and H?(R3) = 0.

In the same vein one can show that H3(R3) = 0.

Poincare’s lemma. Let M C R" be a star shaped open set. This means that there
is a point z € M such that the line tx + (1 —t)z,0 < t < 1, belongs to M for any
x € M. Let w be a closed k—form on M, k > 0. Then there exists a (k — 1)-form 6
such that df = w.

Proof. Define
1
eil...ik_l(x) — k?/ tk_l(ZCj o Zj)wjiliQ"'ik_l(t.’lf + (1 _ t)z)dt
0

We claim that df = w. Now

do = k/ol th=tydit=r (tp 4 (1 — t)2)daj Adwg, A .. .dwg,_,dt
(1) + k/tk(wj — 2;)0' W= (b 4 (1 — t)2)day Adwg, A ... drg,_ dL.
The equation dw = 0 gives
dlwihik—1 + cyelic permutations of 1jiy ...i5_1 = 0,

where the signs are given by the parity of the cyclic permutation. From this equation

one can reduce, by setting the contraction ¢y5;dw equal to zero,
k@lwﬂl”'i’“*ld:pl Ndxy N---Ndxzg, | = ijlil'”i’“*ldxl A Ndxg, .
Note that in local coordinates

igidw® + digiw* = Loiw* = P w*.
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Inserting this to the second term Iy on the right-hand-side of (1) we obtain
1 . . .
I, = / (zj — 2y tF Tl (tr + (1 — t)2)day A day, - A day,_ dt
0

1
d i
= /0 tkawl Lottty + (1 — t)2)dxy Ndxy, ... dx;,_ dt

1
= —k/ th=ttivtean (b 4 (1 — t)2)day Adag, A ... dag,  dt
0

+ w”l"'i’“—ld:z:l ANdxi, - Ndzy, .

Insertion to (1) completes the proof of df = w.

The above result extends (by a use of coordinates) to the case when M is a
contractible subset of a smooth manifold: contractibility means that the identity
map on M can be smoothly deformed to a constant map x — Xy on M. Let
ft + M — M be such a contraction, fo(x) = z¢ and fi(z) = x, 0 <t < 1. Then
one can repeat the proof but with the straight lines ¢ — ¢tz + (1 — t)z replaced by
t — fi(z),z = xg, see Nakahara, section 6.3, for details.

Example 1 Let M = S'. The 1-form d¢ is closed but d¢ # df for any smooth
function f on S'. Note that the polar angle ¢ is not a function on S' since it is
nonperiodic. Any 1-form on S is given as f(¢)d¢ for some periodic function f of
¢. The integral of f over the interval [0,27] gives a real number A¢. If Ay = A,
for any two functions f, g then we can write f — g = h’ for a periodic function h,
that is, fd¢ — gd¢ = dh. It follows that the cohomology classes [f] € H(S!) are
parametrized by the integral Ay and so H'(S1) = R.

Example 2 On the unit sphere S? the area form is given as w = sin df A d¢ in
spherical coordinates. Locally, w = d(— cos 8d¢) = d(—¢ sin 8df). Note that the first
expression becomes singular at the poles § = 0, 7 whereas the second is nonperiodic
in the coordinate ¢. One can prove that H?(S?) = R and that the cohomology
classes are parametrized by the integral of the 2-form over S2. In general, it is
known that H*(S™) =0 for 1 < k <n — 1 and that H°(S") = R = H"(S").

Example 3 H!(S! x S1) = R? (basis of 1-forms d¢1, d¢s) and H?(S' x St) = R,
basis d¢1 A doo.
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2.5 Integration of differential forms

Let M be a smooth oriented manifold of dimension n. We fix an atlas of coordi-
nate neighborhoods compatible with the given orientation. Let x1,...,z, be local
coordinates on an open set U C M. Asssume that f € C>°(M) is such that f(z) =0
when z is outside of a compact subset K of U. Then w = f(x)dzq Adxy--- Adzy,

is a n— form on M. We define the integral

/w:/f(x)dazldarg...d:cn,

as the ordinary Riemann integral in R”.

Let us assume that we have a locally finite atlas (Uy, o). This means that for
any x € M there is an open neighborhood V' of x such that V' intersects only a
finite number of the sets U,. A space which has a locally finite cover is said to be
paracompact. In fact, any finite-dimensional manifold is paracompact. A locally
finite atlas has a subordinate partition of unity. That is, there is a family of smooth

nonnegative functions p, : M — R such that

(1) supppa C Uq
(2) >, palz) =1 for all z € M.

The support suppf of a function f is defined as a closure of the set of points x for
which f(x) # 0.
Let w € Q"(M). we define

[

and we apply the previous definition to each term on the right-hand-side. The
integral converges always when M is compact.

Exercise Show that the above definition does not depend on the choice of the
partition of unity or of the locally finite atlas.

Next we want to define the integral of a form w € QF(M) over a parametrized
k— surface for arbitrary 0 < k < n.

A standard k-simplex in RF is the subset
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So oy is just a point, o7 is the unit interval, o5 is a triangle, etc.

A singular k-simplex is any smooth map sg : o — M. A k-chain is a formal

linear combination ) an Sk q, With a, € R and each s 4 is a singular k— simplex.

We define an affine map F,f: : 0p_1 — o where ¢ = 0,1,...,k. Note that the
subset of points in o with the coordinate x; = 0 can be naturally identified as a
k — 1 simplex o7 for 1 < i < k. This defines the map (as an identity map) for
i =1,2...,k. The remaining map FY sends the (k — 1)-simplex o4_1 to the face
of the k-simplex which is not parallel to any of the coordinate axes. The map is
completely fixed by requiring it to be affine and compatible with the orientations,
and such that the origin of ox_; is mapped to the vertex of o; lying on the first
coordinate axes, and the vertex of o1 lying on the ¢ :th coordinate axes is mapped
to the vertex of o) on the (i 4+ 1):th coordinate axes, for i = 1,2,...,k — 1. See the

picture below.

The boundary of a singular k-simplex si : 0 — M is the singular k-chain defined
as

k

Os = Z(—l)isk o F}.

1=0

we extend the definition, by linearity, to the space C}, of singular k-chains, 0 : Cy —

Cr_1.
Theorem. 92 = 0.

Proof. We first observe that

FioF] | =FFi~t forj<i.
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Let s = Za aaSk,a € Ck. Then
S o azaaz Ska
.k—l . ' |
= Zaa Z(_I)Z ZSk’a o F]z o F’g_l(_l)J
& 1=0 j=0

= aa > (~)"MspaFloF_

0<i<j<k—1

O<]<7,<k

= Zaa Z (—l)iJrjsk’aF,i o Flg—l

0<i<j<k—1

J 1—1
+ E +J3k oFj o Fy— )
0<]<7,<k:

Relabel ¢ +— 7,5 +— i — 1 in the first term of right-hand-side of the last equality;

then the terms cancel.

A cycle is a singular chain s such that ds = 0. A boundary is a singular chain
b such that b = Js for some singular chain s. Denote by Zj the space of k-cycles
and by By the space of k-boundaries. Finally, the singular k-homology group is the
space

Hy(M) = Hy(M,R) = Z(M)/Bj,(M).

Sometimes one considers also the homology group Hy(M,Z) which is defined as
the real homology group but one restricts to integral linear combinations of the
singular k-simplexes.

Exercise Show that Hy(M) is isomorphic with R*  where k is the number of
path connected components of M.

The homology groups Hj of contractible manifolds vanish for k£ > 0, so in par-
ticular Hx(R™) = 0 for £ > 0. On the other hand, H, (S™) = R but Hy(S™) = 0 for
0<k<n.

We define the integral of a k-form over a singular k-chain s =) aqSk,q,

/w: E aa/ Sp o W-
s o Tk
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Each of the integral on the right is an ordinary Riemann integral of a smooth
function defined in the standard simplex o, C RF, after writing each of the pull-

back forms as f(x)dxi A ...dzy.

Theorem. (Stokes’ theorem)

/dw:/w
s Os

for any w € QF~Y(M) and for any singular k-chain s.

Proof. By linearity, it is sufficient to give the proof for a single singular k-simplex

si. But in this case a typical term in sjw can be written as
k
Spw = ij(x)dxl A.oodzy A..odeg(—1)771
j=1

for some smooth functions b;. Then
d(syw) = si(dw) =Y (7b;)dwy A -+ Aday = f(x)dey A A day.

We can now apply to familiar Gauss’ theorem for vector fields in R¥,

/8jbjda:1...dxk:/ b - ndS,
Ok oo

where n is the outward normal vector field on o and dS is the Euclidean area
measure on the surface 0oy, of the k-simplex. But the right-hand-side of the equation

is equal to the integral |, P sjw, which proves the theorem.

We have a pairing Hy (M) x H¥(M) — R which is given as

<BLkl>= [w

Because of Stokes’ theorem the right-hand-side does not depend on particular rep-

resentatives of the (co)homology classes, i.e., if s — s’ is a boundary and w — &’ is

/
/WZ/M.
s s’

For compact oriented manifolds one can prove that the pairing is nondegenerate,

a coboundary then

Le., if < [s],[w] >= 0 for all [w] (resp. for all [s]) then [s] = 0 (resp. [w] = 0).
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There is a more refined version of Stokes’ theorem (which we are not going to
prove). This uses the idea of a closed submanifold with boundary. A manifold M
with boundary is defined using the half space R = {x € R"|z,, > 0} as a model
instead of the vector space R™. That is, M should be equipped with a cover by open
sets U and coordinate maps ¢ : U — R’} which are homeomorphism to open subsets
of the half space. The coordinate transformations ¢ o9 ~! are again required to be
smooth in their domain of definition. Note that the derivative in the z,, direction
at the boundary points x,, = 0 is only defined to the positive direction.

Example The closed unit ball B" = {z € R"|||z|| < 1} is a manifold with
boundary. The set of boundary points is the manifold S™~!.

Let N C M be an oriented manifold with boundary (dimension n) embedded in
M. Tts boundary dN is a manifold of dimension n — 1. Let w € Q" 1(M). Then

/dwz/ w.
N ON

Note that the integral on the left is an integral of a n-form over a manifold of

one can prove

dimension n (and this we have already defined) and on the right we have an integral

of a (n — 1)-form over a manifold of dimension n — 1.

Additional reading: Nakahara: 5.4, 5.5, and Chapter 6
Chern, Chen, and Lam: Chapters 2 and 3



