
CHAPTER 1 : DIFFERENTIABLE MANIFOLDS

1.1 The definition of a differentiable manifold

Let M be a topological space. This means that we have a family Ω of open sets

defined on M. These satisfy

(1) ∅,M ∈ Ω

(2) the union of any family of open sets is open

(3) the intersection of a finite family of open sets is open

We normally assume also the Hausdorff property: For any pair x, y of distinct points

there is a pair of nonoverlapping open sets U, V such that x ∈ U and y ∈ V.

In any topological space one can define the notion of convergence. A sequence

x1, x2, x3, . . . converges towards x ∈M if any open set U such that x ∈ U contains

all the points xn except a finite set.

The basic example of a topological space is Rn equipped with the Euclidean

norm ||x||2 = x2
1 + x2

2 + · · · + x2
n for x = (x1, . . . , xn). A set U ⊂ Rn is open if for

any x ∈ U there is a positive number ε = ε(x) such that y ∈ U if ||x− y|| < ε. The

convergence is then the usual one: x(n) → x if for any ε > 0 there is an integer nε

such that ||x− x(n)|| < ε for n > nε.

Actually, all the spaces we study in (finite dimensional) differential geometry are

locally homeomorphic to Rn.

Definition. A topological space M is called a smooth manifold of dimension n if

1) there is a family of open sets Uα (with α ∈ Λ) such that the union of all Uα’s

is equal to M , 2) for each α there is a homeomorphism φα : Uα → Vα ⊂ Rn such

that 3) the coordinate transformations φα ◦ φ−1
β on their domains of definition are

smooth functions in Rn.

Example 1 Rn is a smooth manifold. We need only one coordinate chart U = M

with φ : U → Rn the identity mapping.

Example 2 The same as above, but take M ⊂ Rn any open set.

Example 3 TakeM = S1, the unit circle. Set U equal to the subset parametrized

by the polar angle−0.1 < φ < π+0.1 and V equal to the set π < φ < 2π. Then U∩V

consists of two intervals π < φ < π + 0.1 and −0.1 < φ < 0 ∼ 2π − 0.1 < φ < 2π.
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The coordinate transformation is the identity map φ 7→ φ on the former and the

translation φ 7→ φ+ 2π on the latter interval.

Exercise Define a manifold structure on the unit sphere S2.

Example 4 The group GL(n,R) of invertible real n × n matrices is a smooth

manifold as an open subset of Rn2
. It is an open subset since it is a complement of

the closed surface determined by the polynomial equation detA = 0.

1.2 Differentiable maps

Let M,N be a pair of smooth manifolds (of dimensions m,n) and f : M → N a

continuous map. If (U, φ) is a local coordinate chart on M and (V, ψ) a coordinate

chart on N then we have a map ψ ◦ f ◦ φ−1 from some open subset of Rm to an

open subset of Rn. If the composite map is smooth for any pair of coordinate charts

we say that f is smooth. The reader should convince himself that the condition

of smoothness for f does not depend on the choice of coordinate charts. From

elementary results in differential calculus it follows that if g : N → P is another

smooth map then also g ◦ f : M → P is smooth.

Note that we can write the map ψ◦f◦φ−1 as y = (y1, . . . , yn) = (y1(x1, . . . , xm), . . .

. . . , yn(x1, . . . , xm)) in terms of the Cartesian coordinates. Smoothness of f simply

means that the coordinate functions yi(x1, x2, . . . , xm) are smooth functions.

Remark In a given topological space M one can often construct different in-

equivalent smooth structures. That is, one might be able to construct atlases

{(Uα, φα)} and {(Vα, ψα)} such that both define a structure of smooth manifold,

say MU and MV , but the manifolds MU ,MV are not diffeomorphic (see the defi-

nition below). A famous example of this phenomen are the spheres S7, S11 (John

Milnor, 1956). On the sphere S7 there are exactly 28 inequivalent differentiable

structures! On the Euclidean space R4 there is an infinite number of differentiable

structures (S.K. Donaldson, 1983).

A diffeomorphism is a one-to-one smooth map f : M → N such that its inverse

f−1 : N → M is also smooth. The set of diffeomorphisms M → M forms a group

Diff(M). A smooth map f : M → N is an immersion if at each point p ∈ M the

rank of the derivative dh
dx is equal to the dimension of M. Here h = ψ ◦ f ◦φ−1 with
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the notation as before. Finally f : M → N is an embedding if f is injective and it

is an immersion; in that case f(M) ⊂ N is an embedded submanifold.

A smooth curve on a manifold M is a smooth map γ from an open interval of

the real axes to M. Let p ∈ M and (U, φ) a coordinate chart with p ∈ U. Assume

that curves γ1, γ2 go through p, let us say p = γi(0). We say that the curves are

equivalent at p, γ1 ∼ γ2, if

d

dt
φ(γ1(t))|t=0 =

d

dt
φ(γ2(t))|t=0.

This relation does not depend on the choice of (U, φ) as is easily seen by the help

of the chain rule:

d

dt
ψ(γ1(t))−

d

dt
ψ(γ2(t)) = (ψ ◦ φ−1)′ ·

(
d

dt
φ(γ1(t))−

d

dt
φ(γ2(t))

)
= 0

at the point t = 0. Clearly if γ1 ∼ γ2 and γ2 ∼ γ3 at the point p then also γ1 ∼ γ3

and γ2 ∼ γ1. Trivially γ ∼ γ for any curve γ through p so that ” ∼ ” is an

equivalence relation.

A tangent vector v at a point p is an equivalence class of smooth curves [γ]

through p. For a given chart (U, φ) at p the equivalence classes are parametrized by

the vector
d

dt
φ(γ(t))|t=0 ∈ Rn.

Thus the space TpM of tangent vectors v = [γ] inherits the natural linear structure

of Rn. Again, it is a simple exercise using the chain rule that the linear structure

does not depend on the choice of the coordinate chart.

We denote by TM the disjoint union of all the tangent spaces TpM. This is

called the tangent bundle of M. We shall define a smooth structure on TM. Let

p ∈M and (U, φ) a coordinate chart at p. Let π : TM →M the natural projection,

(p, v) 7→ p. Define φ̃ : π−1(U) → Rn × Rn as

φ̃(p, [γ]) = (φ(p),
d

dt
φ(γ(t))|t=0).

If now (V, ψ) is another coordinate chart at p then

(φ̃ ◦ ψ̃−1)(x, v) = (φ(ψ−1(x)), (φ ◦ ψ−1)′(x)v),

by the chain rule. It follows that φ̃ ◦ ψ̃−1 is smooth in its domain of definition and

thus the pairs (π−1(U), φ̃) form an atlas on TM , giving TM a smooth structure.
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Example 1 If M is an open set in Rn then TM = M × Rn.

Example 2 Let M = S1. Writing z ∈ S1 as a complex number of unit modulus,

consider curves through z written as γ(t) = zeivt with v ∈ R. This gives in fact a

parametrization for the equivalence classes [γ] as vectors in R. The tangent spaces

at different points z1, z2 are related by the phase shift z1z−1
2 and it follows that

TM is simply the product S1 × R.

Example 3 In general, TM 6= M × Rn. The simplest example for this is the

unit sphere M = S2. Using the spherical coordinates, for example, one can identify

the tangent space at a given point (θ, φ) as the plane R2. However, there is no

natural way to identify the tangent spaces at different points on the sphere; the

sphere is not parallelizable. This is the content of the famous hairy ball theorem.

Any smooth vector field on the sphere has zeros. (If there were a globally nonzero

vector field on S2 we would obtain a basis in all the tangent spaces by taking a

(oriented) unit normal vector field to the given vector field. Together they would

form a basis in the tangent spaces and could be used for identifying the tangent

spaces as a standard R2.)

Exercise The unit 3-sphere S3 can be thought of complex unitary 2×2 matrices

with determinant =1. Use this fact to show that the tangent bundle is trivial,

TS3 = S3 × R3.

Let f : M → N be a smooth map. We define a linear map

Tpf : TpM → Tf(p)N, as Tpf · [γ] = [f ◦ γ],

where γ is a curve through the point p. This map is expressed in terms of local

coordinates as follows. Let (U, φ) be a coordinate chart at p and (V, ψ) a chart

at f(p) ∈ N. Then the coordinates for [γ] ∈ TpM are v = d
dtφ(γ(t))|t=0 and the

coordinates for [f ◦ γ] ∈ Tf(p)N are w = d
dtψ(f(γ(t)))|t=0. But by the chain rule,

w = (ψ ◦ f ◦ φ−1)′(x) · d
dt
φ(γ(t))|t=0 = (ψ ◦ f ◦ φ−1)′(x) · v

with x = φ(p). Thus in local coordinates the linear map Tpf is the derivative of

ψ ◦ f ◦ φ−1 at the point x. Putting together all the maps Tpf we obtain a map

Tf : TM → TN.
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Proposition. The map Tf : TM → TN is smooth.

Proof. Recall that the coordinate charts (U, φ), (V, ψ) on M,N, respectivly, lead to

coordinate charts (π−1(U), φ̃) and (π−1(V ), ψ̃) on TM,TN. Now

(ψ̃ ◦ Tf ◦ φ̃−1)(x, v) = ((ψ ◦ f ◦ φ−1)(x), (ψ ◦ f ◦ φ−1)′(x)v)

for (x, v) ∈ φ̃(π−1(U)) ∈ Rm×Rm. Both component functions are smooth and thus

Tf is smooth by definition.

If f : M → N and g : N → P are smooth maps then g ◦ f : M → P is smooth

and

T (g ◦ f) = Tg ◦ Tf.

To see this, the curve γ through p ∈M is first mapped to f ◦ γ through f(p) ∈ N

and further, by Tg, to the curve g ◦ f ◦ γ through g(f(p)) ∈ P.

In terms of local coordinates xi at p, yi at f(p) and zi at g(f(p)) the chain rule

becomes the standard formula,

∂zi

∂xj
=

∑
k

∂zi

∂yk

∂yk

∂xj
.

1.3 Vector fields

We denote by C∞(M) the algebra of smooth real valued functions on M. A

derivation of the algebra C∞(M) is a linear map d : C∞(M) → C∞(M) such that

d(fg) = d(f)g + fd(g)

for all f, g. Let v ∈ TpM and f ∈ C∞(M). Choose a curve γ through p representing

v. Set

v · f =
d

dt
f(γ(t))|t=0.

Clearly v : C∞(M) → R is linear. Furthermore,

v · (fg) =
d

dt
f(γ(t))|t=0g(γ(0)) + f(γ(0))

d

dt
g(γ(t))|t=0 = (v · f)g(p) + f(p)(v · g).

A vector field on a manifold M is a smooth distribution of tangent vectors on

M, that is, a smooth map X : M → TM such that X(p) ∈ TpM. From the
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previous formula follows that a vector field defines a derivation of C∞(M); take

above v = X(p) at each point p ∈ M and the right- hand-side defines a smooth

function on M and the operation satisfies the Leibnitz’ rule.

We denote by D1(M) the space of vector fields on M. As we have seen, a vector

field gives a linear map X : C∞(M) → C∞(M) obeying the Leibnitz’ rule. Con-

versely, one can prove that any derivation of the algebra C∞(M) is represented by

a vector field.

One can develope an algebraic approach to manifold theory. In that the com-

mutative algebra A = C∞(M) plays a central role. Points in M correspond to

maximal ideals in the algebra A. Namely, any point p defines the ideal Ip ⊂ A

consisting of all functions which vanish at the point p.

The action of a vector field on functions is given in terms of local coordinates

x1, . . . , xn as follows. If v = X(p) is represented by a curve γ then

(X · f)(p) =
d

dt
f(γ(t))t=0 =

∑
k

∂f

∂xk

dxk

dt
(t = 0) ≡

∑
k

Xk(x)
∂f

∂xk
.

Thus a vector field is locally represented by the vector valued function (X1(x), . . . , Xn(x)).

In addition of being a real vector space, D1(M) is a left module for the algebra

C∞(M). This means that we have a linear left multiplication (f,X) 7→ fX. The

value of fX at a point p is simply the vector f(p)X(p) ∈ TpM.

As we have seen, in a coordinate system xi a vector field defines a derivation

with local representation X =
∑

k Xk
∂

∂xk
. In a second coordinate system x′k we

have a representation X =
∑
X ′

k
∂

∂x′
k
. Using the chain rule for differentiation we

obtain the coordinate transformation rule

X ′
k(x′) =

∑
j

∂x′k
∂xj

Xj(x),

for x′k = x′k(x1, . . . , xn).

We shall denote ∂k = ∂
∂xk

and we use Einstein’s summation convention over

repeated indices,

Let X,Y ∈ D1(M). We define a new derivation of C∞(M), the commutator

[X,Y ] ∈ D1(M), by

[X,Y ]f = X(Y f)− Y (Xf).
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We prove that this is indeed a derivation of C∞(M).

[X,Y ](fg) = X(Y (fg))− Y (X(fg)) = X(fY g + gY f)− Y (fXg + gXf)

= (Xf)(Y g) + fX(Y g) + (Xg)(Y f) + gX(Y f)− (Y f)(Xg)− fY (Xg)

− (Y g)(Xf)− gY (Xf) = f [X,Y ]g + g[X,Y ]f.

Writing X = Xk∂
k and Y = Yk∂

k we obtain the coordinate expression

[X,Y ]k = Xj∂
jYk − Yj∂

jXk.

Thus we may view D1(M) simply as the space of first order linear partial dif-

ferential operators on M with the ordinary commutator of differential operators.

The commutator [X,Y ] is also called the Lie bracket on D1(M). It has the basic

properties

(1) [X,Y ] is linear in both arguments

(2) [X,Y ] = −[Y,X]

(3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last property is called the Jacobi identity. A vector space equipped with a Lie

bracket satisfying the properties above is called a Lie algebra.

Other examples of Lie algebras:

Example 1 Any vector space with the bracket [X,Y ] = 0.

Example 2 The angular momentum Lie algebra with basis L1, L2, L3 and

nonzero commutators [L1, L2] = L3 + cyclically permuted relations.

Example 3 The space of n×n matrices with the usual commutator of matrices,

[X,Y ] = XY − Y X.

Exercise Check the relations

[X, fY ] = f [X,Y ] + (Xf)Y, and [fX, Y ] = f [X,Y ]− (Y f)X

for X,Y ∈ D1(M) and f ∈ C∞(M).

Let f : M → N be a diffeomorphism and X ∈ D1(M). We can define a vector

field Y = f∗X on N by setting Y (q) = Tpf ·X(p) for q = f(p). In terms of local

coordinates,

Y = Yk
∂

∂yk
= Xj

∂yk

∂xj

∂

∂yk
.
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In the case M = N this gives back the coordinate transformation rule for vector

fields.

Let X ∈ D1(M). Consider the differential equation

X(γ(t)) =
d

dt
γ(t)

for a smooth curve γ. In terms of local coordinates this equation is written as

Xk(x(t)) =
d

dt
xk(t), k = 1, 2, . . . , n.

By the theory of ordinary differential equations this system has locally, at a neigh-

borhood of an initial point p = γ(0), a unique solution. However, in general the

solution does not need to extend to −∞ < t < +∞ except in the case when M is a

compact manifold. The (local) solution γ is called an integral curve of X through

the point p.

The integral curves for a vector field X define a (local) flow on the manifold M.

This is a (local) map

f : R×M →M

given by f(t, p) = γ(t) where γ is the integral curve through p. We have the identity

(1) f(t+ s, p) = f(t, f(s, p)),

which follows from the uniqueness of the local solution to the first order ordinary

differential equation. In coordinates,

d

dt
fk(t, f(s, x)) = Xk(f(t, f(s, x)))

and
d

dt
fk(t+ s, x) = Xk(f(t+ s, x)).

Thus both sides of (1) obey the same differential equation. Since the initial con-

ditions are the same, at t = 0 both sides are equal to f(0, f(s, x)) = f(s, x), the

solutions must agree.

Denoting ft(p) = f(t, p), observe that the map R → Diffloc(M), t 7→ ft, is a

homomorphism,

ft ◦ fs = ft+s.
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Thus we have a one parameter group of (local) transformations ft on M. In the case

when M is compact we actually have globally globally defined transformations on

M.

Example Let X(r, φ) = (−r sinφ, r cosφ) be a vector field on M = R2. The

integral curves are solutions of the equations

x′(t) = −r(t) sinφ(t)

y′(t) = r(t) cosφ(t)

and the solutions are easily seen to be given by (x(t), y(t)) = (r0 cos(φ+φ0), r0 sin(φ+

φ0)), where the initial condition is specified by the constants φ0, r0. The one pa-

rameter group of tranformations generated by the vector field X is then the group

of rotations in the plane.

Further reading: M. Nakahara: Geometry, Topology and Physics, Institute of

Physics Publ. (1990), sections 5.1 - 5.3 . S. S. Chern, W.H. Chen, K.S. Lam:

Lectures on Differential Geometry, World Scientific Publ. (1999), Chapter 1.


