CHAPTER 1: DIFFERENTIABLE MANIFOLDS

1.1 The definition of a differentiable manifold

Let M be a topological space. This means that we have a family Ω of open sets defined on M. These satisfy
(1) $\emptyset, M \in \Omega$
(2) the union of any family of open sets is open
(3) the intersection of a finite family of open sets is open

We normally assume also the Hausdorff property: For any pair x, y of distinct points there is a pair of nonoverlapping open sets U, V such that $x \in U$ and $y \in V$.

In any topological space one can define the notion of convergence. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ converges towards $x \in M$ if any open set U such that $x \in U$ contains all the points x_{n} except a finite set.

The basic example of a topological space is \mathbb{R}^{n} equipped with the Euclidean norm $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$. A set $U \subset \mathbb{R}^{n}$ is open if for any $x \in U$ there is a positive number $\epsilon=\epsilon(x)$ such that $y \in U$ if $\|x-y\|<\epsilon$. The convergence is then the usual one: $x^{(n)} \rightarrow x$ if for any $\epsilon>0$ there is an integer n_{ϵ} such that $\left\|x-x^{(n)}\right\|<\epsilon$ for $n>n_{\epsilon}$.

Actually, all the spaces we study in (finite dimensional) differential geometry are locally homeomorphic to \mathbb{R}^{n}.

Definition. A topological space M is called a smooth manifold of dimension n if 1) there is a family of open sets U_{α} (with $\alpha \in \Lambda$) such that the union of all U_{α} 's is equal to $M, 2)$ for each α there is a homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} \subset \mathbb{R}^{n}$ such that 3) the coordinate transformations $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ on their domains of definition are smooth functions in \mathbb{R}^{n}.

Example $1 \mathbb{R}^{n}$ is a smooth manifold. We need only one coordinate chart $U=M$ with $\phi: U \rightarrow \mathbb{R}^{n}$ the identity mapping.

Example 2 The same as above, but take $M \subset \mathbb{R}^{n}$ any open set.
Example 3 Take $M=S^{1}$, the unit circle. Set U equal to the subset parametrized by the polar angle $-0.1<\phi<\pi+0.1$ and V equal to the set $\pi<\phi<2 \pi$. Then $U \cap V$ consists of two intervals $\pi<\phi<\pi+0.1$ and $-0.1<\phi<0 \sim 2 \pi-0.1<\phi<2 \pi$.

The coordinate transformation is the identity map $\phi \mapsto \phi$ on the former and the translation $\phi \mapsto \phi+2 \pi$ on the latter interval.

Exercise Define a manifold structure on the unit sphere S^{2}.
Example 4 The group $G L(n, \mathbb{R})$ of invertible real $n \times n$ matrices is a smooth manifold as an open subset of $\mathbb{R}^{n^{2}}$. It is an open subset since it is a complement of the closed surface determined by the polynomial equation $\operatorname{det} A=0$.

1.2 Differentiable maps

Let M, N be a pair of smooth manifolds (of dimensions m, n) and $f: M \rightarrow N$ a continuous map. If (U, ϕ) is a local coordinate chart on M and (V, ψ) a coordinate chart on N then we have a map $\psi \circ f \circ \phi^{-1}$ from some open subset of \mathbb{R}^{m} to an open subset of \mathbb{R}^{n}. If the composite map is smooth for any pair of coordinate charts we say that f is smooth. The reader should convince himself that the condition of smoothness for f does not depend on the choice of coordinate charts. From elementary results in differential calculus it follows that if $g: N \rightarrow P$ is another smooth map then also $g \circ f: M \rightarrow P$ is smooth.

Note that we can write the map $\psi \circ f \circ \phi^{-1}$ as $y=\left(y_{1}, \ldots, y_{n}\right)=\left(y_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots\right.$ $\left.\ldots, y_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$ in terms of the Cartesian coordinates. Smoothness of f simply means that the coordinate functions $y_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ are smooth functions.

Remark In a given topological space M one can often construct different inequivalent smooth structures. That is, one might be able to construct atlases $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ and $\left\{\left(V_{\alpha}, \psi_{\alpha}\right)\right\}$ such that both define a structure of smooth manifold, say M_{U} and M_{V}, but the manifolds M_{U}, M_{V} are not diffeomorphic (see the definition below). A famous example of this phenomen are the spheres S^{7}, S^{11} (John Milnor, 1956). On the sphere S^{7} there are exactly 28 inequivalent differentiable structures! On the Euclidean space \mathbb{R}^{4} there is an infinite number of differentiable structures (S.K. Donaldson, 1983).

A diffeomorphism is a one-to-one smooth map $f: M \rightarrow N$ such that its inverse $f^{-1}: N \rightarrow M$ is also smooth. The set of diffeomorphisms $M \rightarrow M$ forms a group $\operatorname{Diff}(M)$. A smooth map $f: M \rightarrow N$ is an immersion if at each point $p \in M$ the rank of the derivative $\frac{d h}{d x}$ is equal to the dimension of M. Here $h=\psi \circ f \circ \phi^{-1}$ with
the notation as before. Finally $f: M \rightarrow N$ is an embedding if f is injective and it is an immersion; in that case $f(M) \subset N$ is an embedded submanifold.

A smooth curve on a manifold M is a smooth map γ from an open interval of the real axes to M. Let $p \in M$ and (U, ϕ) a coordinate chart with $p \in U$. Assume that curves γ_{1}, γ_{2} go through p, let us say $p=\gamma_{i}(0)$. We say that the curves are equivalent at $p, \gamma_{1} \sim \gamma_{2}$, if

$$
\left.\frac{d}{d t} \phi\left(\gamma_{1}(t)\right)\right|_{t=0}=\left.\frac{d}{d t} \phi\left(\gamma_{2}(t)\right)\right|_{t=0}
$$

This relation does not depend on the choice of (U, ϕ) as is easily seen by the help of the chain rule:

$$
\frac{d}{d t} \psi\left(\gamma_{1}(t)\right)-\frac{d}{d t} \psi\left(\gamma_{2}(t)\right)=\left(\psi \circ \phi^{-1}\right)^{\prime} \cdot\left(\frac{d}{d t} \phi\left(\gamma_{1}(t)\right)-\frac{d}{d t} \phi\left(\gamma_{2}(t)\right)\right)=0
$$

at the point $t=0$. Clearly if $\gamma_{1} \sim \gamma_{2}$ and $\gamma_{2} \sim \gamma_{3}$ at the point p then also $\gamma_{1} \sim \gamma_{3}$ and $\gamma_{2} \sim \gamma_{1}$. Trivially $\gamma \sim \gamma$ for any curve γ through p so that $" \sim "$ is an equivalence relation.

A tangent vector v at a point p is an equivalence class of smooth curves $[\gamma]$ through p. For a given chart (U, ϕ) at p the equivalence classes are parametrized by the vector

$$
\left.\frac{d}{d t} \phi(\gamma(t))\right|_{t=0} \in \mathbb{R}^{n}
$$

Thus the space $T_{p} M$ of tangent vectors $v=[\gamma]$ inherits the natural linear structure of \mathbb{R}^{n}. Again, it is a simple exercise using the chain rule that the linear structure does not depend on the choice of the coordinate chart.

We denote by $T M$ the disjoint union of all the tangent spaces $T_{p} M$. This is called the tangent bundle of M. We shall define a smooth structure on $T M$. Let $p \in M$ and (U, ϕ) a coordinate chart at p. Let $\pi: T M \rightarrow M$ the natural projection, $(p, v) \mapsto p$. Define $\tilde{\phi}: \pi^{-1}(U) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ as

$$
\tilde{\phi}(p,[\gamma])=\left(\phi(p),\left.\frac{d}{d t} \phi(\gamma(t))\right|_{t=0}\right) .
$$

If now (V, ψ) is another coordinate chart at p then

$$
\left(\tilde{\phi} \circ \tilde{\psi}^{-1}\right)(x, v)=\left(\phi\left(\psi^{-1}(x)\right),\left(\phi \circ \psi^{-1}\right)^{\prime}(x) v\right),
$$

by the chain rule. It follows that $\tilde{\phi} \circ \tilde{\psi}^{-1}$ is smooth in its domain of definition and thus the pairs $\left(\pi^{-1}(U), \tilde{\phi}\right)$ form an atlas on $T M$, giving $T M$ a smooth structure.

Example 1 If M is an open set in \mathbb{R}^{n} then $T M=M \times \mathbb{R}^{n}$.
Example 2 Let $M=S^{1}$. Writing $z \in S^{1}$ as a complex number of unit modulus, consider curves through z written as $\gamma(t)=z e^{i v t}$ with $v \in \mathbb{R}$. This gives in fact a parametrization for the equivalence classes $[\gamma]$ as vectors in \mathbb{R}. The tangent spaces at different points z_{1}, z_{2} are related by the phase shift $z_{1} z_{2}^{-1}$ and it follows that $T M$ is simply the product $S^{1} \times \mathbb{R}$.

Example 3 In general, $T M \neq M \times \mathbb{R}^{n}$. The simplest example for this is the unit sphere $M=S^{2}$. Using the spherical coordinates, for example, one can identify the tangent space at a given point (θ, ϕ) as the plane \mathbb{R}^{2}. However, there is no natural way to identify the tangent spaces at different points on the sphere; the sphere is not parallelizable. This is the content of the famous hairy ball theorem. Any smooth vector field on the sphere has zeros. (If there were a globally nonzero vector field on S^{2} we would obtain a basis in all the tangent spaces by taking a (oriented) unit normal vector field to the given vector field. Together they would form a basis in the tangent spaces and could be used for identifying the tangent spaces as a standard \mathbb{R}^{2}.)

Exercise The unit 3 -sphere S^{3} can be thought of complex unitary 2×2 matrices with determinant $=1$. Use this fact to show that the tangent bundle is trivial, $T S^{3}=S^{3} \times \mathbb{R}^{3}$.

Let $f: M \rightarrow N$ be a smooth map. We define a linear map

$$
T_{p} f: T_{p} M \rightarrow T_{f(p)} N, \text { as } T_{p} f \cdot[\gamma]=[f \circ \gamma]
$$

where γ is a curve through the point p. This map is expressed in terms of local coordinates as follows. Let (U, ϕ) be a coordinate chart at p and (V, ψ) a chart at $f(p) \in N$. Then the coordinates for $[\gamma] \in T_{p} M$ are $v=\left.\frac{d}{d t} \phi(\gamma(t))\right|_{t=0}$ and the coordinates for $[f \circ \gamma] \in T_{f(p)} N$ are $w=\left.\frac{d}{d t} \psi(f(\gamma(t)))\right|_{t=0}$. But by the chain rule,

$$
w=\left.\left(\psi \circ f \circ \phi^{-1}\right)^{\prime}(x) \cdot \frac{d}{d t} \phi(\gamma(t))\right|_{t=0}=\left(\psi \circ f \circ \phi^{-1}\right)^{\prime}(x) \cdot v
$$

with $x=\phi(p)$. Thus in local coordinates the linear map $T_{p} f$ is the derivative of $\psi \circ f \circ \phi^{-1}$ at the point x. Putting together all the maps $T_{p} f$ we obtain a map

$$
T f: T M \rightarrow T N
$$

Proposition. The map $T f: T M \rightarrow T N$ is smooth.
Proof. Recall that the coordinate charts $(U, \phi),(V, \psi)$ on M, N, respectivly, lead to coordinate charts $\left(\pi^{-1}(U), \tilde{\phi}\right)$ and $\left(\pi^{-1}(V), \tilde{\psi}\right)$ on $T M, T N$. Now

$$
\left(\tilde{\psi} \circ T f \circ \tilde{\phi}^{-1}\right)(x, v)=\left(\left(\psi \circ f \circ \phi^{-1}\right)(x),\left(\psi \circ f \circ \phi^{-1}\right)^{\prime}(x) v\right)
$$

for $(x, v) \in \tilde{\phi}\left(\pi^{-1}(U)\right) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$. Both component functions are smooth and thus $T f$ is smooth by definition.

If $f: M \rightarrow N$ and $g: N \rightarrow P$ are smooth maps then $g \circ f: M \rightarrow P$ is smooth and

$$
T(g \circ f)=T g \circ T f
$$

To see this, the curve γ through $p \in M$ is first mapped to $f \circ \gamma$ through $f(p) \in N$ and further, by $T g$, to the curve $g \circ f \circ \gamma$ through $g(f(p)) \in P$.

In terms of local coordinates x_{i} at p, y_{i} at $f(p)$ and z_{i} at $g(f(p))$ the chain rule becomes the standard formula,

$$
\frac{\partial z_{i}}{\partial x_{j}}=\sum_{k} \frac{\partial z_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{j}}
$$

1.3 Vector fields

We denote by $C^{\infty}(M)$ the algebra of smooth real valued functions on $M . A$ derivation of the algebra $C^{\infty}(M)$ is a linear map $d: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
d(f g)=d(f) g+f d(g)
$$

for all f, g. Let $v \in T_{p} M$ and $f \in C^{\infty}(M)$. Choose a curve γ through p representing v. Set

$$
v \cdot f=\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0}
$$

Clearly $v: C^{\infty}(M) \rightarrow \mathbb{R}$ is linear. Furthermore,

$$
v \cdot(f g)=\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0} g(\gamma(0))+\left.f(\gamma(0)) \frac{d}{d t} g(\gamma(t))\right|_{t=0}=(v \cdot f) g(p)+f(p)(v \cdot g)
$$

A vector field on a manifold M is a smooth distribution of tangent vectors on M, that is, a smooth map $X: M \rightarrow T M$ such that $X(p) \in T_{p} M$. From the
previous formula follows that a vector field defines a derivation of $C^{\infty}(M)$; take above $v=X(p)$ at each point $p \in M$ and the right- hand-side defines a smooth function on M and the operation satisfies the Leibnitz' rule.

We denote by $D^{1}(M)$ the space of vector fields on M. As we have seen, a vector field gives a linear map $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ obeying the Leibnitz' rule. Conversely, one can prove that any derivation of the algebra $C^{\infty}(M)$ is represented by a vector field.

One can develope an algebraic approach to manifold theory. In that the commutative algebra $\mathcal{A}=C^{\infty}(M)$ plays a central role. Points in M correspond to maximal ideals in the algebra \mathcal{A}. Namely, any point p defines the ideal $I_{p} \subset \mathcal{A}$ consisting of all functions which vanish at the point p.

The action of a vector field on functions is given in terms of local coordinates x_{1}, \ldots, x_{n} as follows. If $v=X(p)$ is represented by a curve γ then

$$
(X \cdot f)(p)=\frac{d}{d t} f(\gamma(t))_{t=0}=\sum_{k} \frac{\partial f}{\partial x_{k}} \frac{d x_{k}}{d t}(t=0) \equiv \sum_{k} X_{k}(x) \frac{\partial f}{\partial x_{k}}
$$

Thus a vector field is locally represented by the vector valued function $\left(X_{1}(x), \ldots, X_{n}(x)\right)$.
In addition of being a real vector space, $D^{1}(M)$ is a left module for the algebra $C^{\infty}(M)$. This means that we have a linear left multiplication $(f, X) \mapsto f X$. The value of $f X$ at a point p is simply the vector $f(p) X(p) \in T_{p} M$.

As we have seen, in a coordinate system x_{i} a vector field defines a derivation with local representation $X=\sum_{k} X_{k} \frac{\partial}{\partial x_{k}}$. In a second coordinate system x_{k}^{\prime} we have a representation $X=\sum X_{k}^{\prime} \frac{\partial}{\partial x_{k}^{\prime}}$. Using the chain rule for differentiation we obtain the coordinate transformation rule

$$
X_{k}^{\prime}\left(x^{\prime}\right)=\sum_{j} \frac{\partial x_{k}^{\prime}}{\partial x_{j}} X_{j}(x)
$$

for $x_{k}^{\prime}=x_{k}^{\prime}\left(x_{1}, \ldots, x_{n}\right)$.
We shall denote $\partial^{k}=\frac{\partial}{\partial x_{k}}$ and we use Einstein's summation convention over repeated indices,

Let $X, Y \in D^{1}(M)$. We define a new derivation of $C^{\infty}(M)$, the commutator $[X, Y] \in D^{1}(M)$, by

$$
[X, Y] f=X(Y f)-Y(X f)
$$

We prove that this is indeed a derivation of $C^{\infty}(M)$.

$$
\begin{aligned}
{[X, Y](f g) } & =X(Y(f g))-Y(X(f g))=X(f Y g+g Y f)-Y(f X g+g X f) \\
& =(X f)(Y g)+f X(Y g)+(X g)(Y f)+g X(Y f)-(Y f)(X g)-f Y(X g) \\
& -(Y g)(X f)-g Y(X f)=f[X, Y] g+g[X, Y] f .
\end{aligned}
$$

Writing $X=X_{k} \partial^{k}$ and $Y=Y_{k} \partial^{k}$ we obtain the coordinate expression

$$
[X, Y]_{k}=X_{j} \partial^{j} Y_{k}-Y_{j} \partial^{j} X_{k}
$$

Thus we may view $D^{1}(M)$ simply as the space of first order linear partial differential operators on M with the ordinary commutator of differential operators. The commutator $\left[X, Y\right.$] is also called the Lie bracket on $D^{1}(M)$. It has the basic properties
(1) $[X, Y]$ is linear in both arguments
(2) $[X, Y]=-[Y, X]$
(3) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.

The last property is called the Jacobi identity. A vector space equipped with a Lie bracket satisfying the properties above is called a Lie algebra.

Other examples of Lie algebras:
Example 1 Any vector space with the bracket $[X, Y]=0$.
Example 2 The angular momentum Lie algebra with basis L_{1}, L_{2}, L_{3} and nonzero commutators $\left[L_{1}, L_{2}\right]=L_{3}+$ cyclically permuted relations.

Example 3 The space of $n \times n$ matrices with the usual commutator of matrices, $[X, Y]=X Y-Y X$.

Exercise Check the relations

$$
[X, f Y]=f[X, Y]+(X f) Y, \text { and }[f X, Y]=f[X, Y]-(Y f) X
$$

for $X, Y \in D^{1}(M)$ and $f \in C^{\infty}(M)$.
Let $f: M \rightarrow N$ be a diffeomorphism and $X \in D^{1}(M)$. We can define a vector field $Y=f_{*} X$ on N by setting $Y(q)=T_{p} f \cdot X(p)$ for $q=f(p)$. In terms of local coordinates,

$$
Y=Y_{k} \frac{\partial}{\partial y_{k}}=X_{j} \frac{\partial y_{k}}{\partial x_{j}} \frac{\partial}{\partial y_{k}}
$$

In the case $M=N$ this gives back the coordinate transformation rule for vector fields.

Let $X \in D^{1}(M)$. Consider the differential equation

$$
X(\gamma(t))=\frac{d}{d t} \gamma(t)
$$

for a smooth curve γ. In terms of local coordinates this equation is written as

$$
X_{k}(x(t))=\frac{d}{d t} x_{k}(t), k=1,2, \ldots, n
$$

By the theory of ordinary differential equations this system has locally, at a neighborhood of an initial point $p=\gamma(0)$, a unique solution. However, in general the solution does not need to extend to $-\infty<t<+\infty$ except in the case when M is a compact manifold. The (local) solution γ is called an integral curve of X through the point p.

The integral curves for a vector field X define a (local) flow on the manifold M. This is a (local) map

$$
f: \mathbb{R} \times M \rightarrow M
$$

given by $f(t, p)=\gamma(t)$ where γ is the integral curve through p. We have the identity

$$
\begin{equation*}
f(t+s, p)=f(t, f(s, p)) \tag{1}
\end{equation*}
$$

which follows from the uniqueness of the local solution to the first order ordinary differential equation. In coordinates,

$$
\frac{d}{d t} f_{k}(t, f(s, x))=X_{k}(f(t, f(s, x)))
$$

and

$$
\frac{d}{d t} f_{k}(t+s, x)=X_{k}(f(t+s, x))
$$

Thus both sides of (1) obey the same differential equation. Since the initial conditions are the same, at $t=0$ both sides are equal to $f(0, f(s, x))=f(s, x)$, the solutions must agree.

Denoting $f_{t}(p)=f(t, p)$, observe that the map $\mathbb{R} \rightarrow \operatorname{Diff} l_{l o c}(M), t \mapsto f_{t}$, is a homomorphism,

$$
f_{t} \circ f_{s}=f_{t+s}
$$

Thus we have a one parameter group of (local) transformations f_{t} on M. In the case when M is compact we actually have globally globally defined transformations on M.

Example Let $X(r, \phi)=(-r \sin \phi, r \cos \phi)$ be a vector field on $M=\mathbb{R}^{2}$. The integral curves are solutions of the equations

$$
\begin{aligned}
& x^{\prime}(t)=-r(t) \sin \phi(t) \\
& y^{\prime}(t)=r(t) \cos \phi(t)
\end{aligned}
$$

and the solutions are easily seen to be given by $(x(t), y(t))=\left(r_{0} \cos \left(\phi+\phi_{0}\right), r_{0} \sin (\phi+\right.$ $\left.\phi_{0}\right)$), where the initial condition is specified by the constants ϕ_{0}, r_{0}. The one parameter group of tranformations generated by the vector field X is then the group of rotations in the plane.

Further reading: M. Nakahara: Geometry, Topology and Physics, Institute of Physics Publ. (1990), sections 5.1-5.3 . S. S. Chern, W.H. Chen, K.S. Lam: Lectures on Differential Geometry, World Scientific Publ. (1999), Chapter 1.

