FUNKTIONAALIANALYYSI II, 2009
EXERCISES, SET 4
TO BE RETURNED ON WEDNESDAY DEC. 16TH AT LATEST, PERSONALLY OR TO THE MAILBOX OF J.T.

1. Let $a, b \in \mathbb{R}$ and $a<b$, and let $C(a, b)$ be the usual space of continuous mappings $f:[a, b] \rightarrow \mathbb{R}$ endowed with the sup-norm. Construct a bounded linear extension operator $E: C(0,1) \rightarrow C(-10,10)$ (having the properties $\|E f\| \leq\|f\|$ and $E f(t)=f(t)$ for all $f \in C(0,1)$ and $t \in[0,1])$. Remark. There are many ways to do this.
2.-3. Let $1 \leq p<\infty, m \in \mathbb{N}$ and $p<q<n p /(n-m p)$. By constructing an explicit sequence of functions, show that the embedding $W^{m, p}(\mathbb{R}) \rightarrow L^{q}(\mathbb{R})$, existing by Theorem 6.4. of the lectures, cannot be compact, i.e., the identity operator is not a compact operator, i.e., the unit ball of the Banach space $W^{m, p}(\mathbb{R})$ is not a precompact subset of $L^{q}(\mathbb{R})$.
2. Is the operator

$$
L:=\left(1-|x|^{2}\right) \sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

elliptic on the domain $\Omega=\{|x|<1\} \subset \mathbb{R}^{3}$ ?
5. Is the operator

$$
\text { a) } L:=\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}, \quad \text { b) } T:=\left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}\right)^{2}
$$

elliptic on $\Omega:=\mathbb{R}^{2}$ ?
6.-8. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with a regular enough (at least $C^{2}$ ) boundary. Consider the following Neumann problem:

$$
\begin{aligned}
& -\Delta u+u=f \quad \text { in the domain } \Omega \\
& \partial_{\nu} u=0 \quad \text { in } \partial \Omega,
\end{aligned}
$$

where $f \in C(\bar{\Omega})$ is given and $\partial_{\nu}$ denotes the partial derivative in the direction of the outer normal vector of the boundary. By a classical solution we mean a function $u \in C^{2}(\bar{\Omega})$ satisfying the above equalities.
a) Let us define the weak solution as a function $u \in W^{1,2}(\Omega)$, which satisfies

$$
\int_{\Omega} \nabla u \nabla \varphi+\int_{\Omega} u \varphi=\int_{\Omega} f \varphi
$$

for all $\varphi \in W^{1,2}(\Omega)$. By using a relevant Green formula show that a classical solution to the above Neumann problem is always a weak solution.
b) Prove the existence and uniqueness of the weak solution using the Lax-Milgram theorem.
9. Let $\Omega:=]-1,1[\subset \mathbb{R}$ and let the coefficient field $\mathbb{K}$ be equal to $\mathbb{R}$. The point evaluation mapping $T: f \mapsto f(0)$ is linear, but it is not a well defined and bounded
linear operator e.g. from $\left.L^{2}(\Omega) \rightarrow \mathbb{R}, \Omega:=\right]-1,1[$ for example since the elements of $L^{2}(\Omega)$ are defined only almost everywhere. Explain how the Sobolev embedding theorem can be used to make sense of the definition of $T$ as a mapping $W^{m, p}(\Omega) \rightarrow \mathbb{R}$, if, say, $m=1, p=2$.

