FUNKTIONAALIANALYYSI II, 2009 EXERCISES, SET 3 TO BE RETURNED ON WED. DECEMBER 2nd AT LATEST, PERSONALLY OR TO THE MAILBOX OF J.T.

1. Let $\Omega :=]0, \infty [\subset \mathbb{R}$. Show that the following inclusions are *strict*, i.e., the spaces are not the same: $C^1(\overline{\Omega}) \subset C^1_B(\Omega) \subset C^1(\Omega)$.

2. Show that the space $C(\overline{\mathbb{R}})$ is not dense in $L^{\infty}(\mathbb{R})$.

3. For all λ , $0 < \lambda < 1$, construct a function $f : \mathbb{R} \to \mathbb{R}$, which is an element of the Hölder–space $C^{0,\lambda}(\bar{\mathbb{R}})$ but not that of $C^1(\bar{\mathbb{R}})$.

4. Let a > 0 and b > 0, and $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, and $f(x) := x^{-a}$, $q(x) := x^{-b}$

for $|x| \le 1$, and f(x) = g(x) = 0 for |x| > 1.

What does the Young inequality imply about the existence of the function f * g as an element in the space $L^r(\mathbb{R})$ for different a, b and $1 \le r \le \infty$?

5. Show that the operator P defined just before Theorem 5.12 in the lecture notes is an isometry from the Sobolev space onto a closed subspace of X.

6. Show by an example, that $W_0^{1,1}(\Omega) \neq W^{1,1}(\Omega)$ for $\Omega := \{|x| < 1\} \subset \mathbb{R}^2$.

7. Using the definition, show that the open unit ball of \mathbb{R}^2 has the cone property.