FUNKTIONAALIANALYYSI II, 2009 EXERCISES, SET 1

- 1. Prove that the space $\mathcal{D}(\mathbb{R})$ is not sequentially complete when endowed with the topology of $C^{\infty}(\mathbb{R})$.
- 2. Let us consider the function $f \in C^{\infty}(\mathbb{R}^3)$ of three real variables; denote $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Calculate the partial derivative $D^{\alpha}f$ for $\alpha = (1, 1, 0)$ and (0, 1, 2), and for f = a) $x_1e^{x_2+x_3}$, b) $1/(1+x_2^2+x_3^2)$.
- 3. Show that the linear mapping T is continuous from the space $C^{\infty}(\mathbb{R})$ to $C^{\infty}(\mathbb{R})$, if a) Tf(x) := f(x+3), b) $Tf(x) := \sin x f(x)$. (Here $f \in C^{\infty}(\mathbb{R})$ and $x \in \mathbb{R}$).
- 4. Example 2.14, problems (2.33), (2.35) and (2.36).
- 5. Show that $\delta_0 \in \mathcal{D}'(\mathbb{R})$ is not a continuous positive function, i.e., $\delta_0 \neq I(f)$ for any continuous positive function f, for the embedding $I: L^1_{loc}(\mathbb{R}) \to \mathcal{D}'(\mathbb{R})$ constructed in the lecture notes. (Example b) on p.6). Can you actually show that δ_0 is not a locally integrable function?
- 6. Show that in $\mathcal{D}'(\mathbb{R}^2)$ we have

$$\Delta \log \frac{1}{r} = -2\pi \delta_0.$$

Here $r = |x|, x \in \mathbb{R}^2$.

7. Prove that in $\mathcal{D}'(\mathbb{R}^n)$, n > 3,

$$\Delta \frac{1}{r^{n-2}} = -(n-2)\lambda_n \delta_0,$$

where λ_n is the area of the unit ball of \mathbb{R}^n .

8. Prove that the sum

$$T = \sum_{j=1}^{\infty} \frac{\partial^j \delta_j}{\partial x^j}$$

converges in $\mathcal{D}'(\mathbb{R})$. Here δ_j is the Dirac measure of the point j. What is the order of the distribution T? Is it compactly supported?

- 9. Prove Theorem 2.20 of the lecture notes.
- 10. Show that if $f \in C^{\infty}(\mathbb{R})$ and f(0) = 0, then $f\delta_0 = 0$ in the space $\mathcal{D}'(\mathbb{R})$. In particular, $x\delta_0 = 0$.
- 11. Let $T \in \mathcal{D}'(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$. Is the following identity true (where f' is the classical derivative):

$$\frac{d(fT)}{dx} = f'T + f\frac{dT}{dx} ?$$

1