Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 4
Winter 2009/ Vuorinen

1. (1) Show that an inversion f in $S^{n-1}(a, r)$, when $a_{n}=0$, preserves the upper half-space

$$
f\left(\mathbf{H}^{n}\right)=\mathbf{H}^{n} .
$$

(2) Show that the expression

$$
\frac{|x-y|^{2}}{2 x_{n} y_{n}}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, is invariant under an inversion in $S^{n-1}(a, r)$ when $a_{n}=0$.
2. Let f be the translation $f: x \mapsto x+b$. Find an upper bound for the Lipschitz constant of f in spherical metric. (Hint: Lemma 1.54 (3)[CGQM].)
3. Verify the following elementary relations.
(1) $1-e^{-s} \leq \operatorname{th} s \leq 1-e^{-2 s}$ for $s \geq 0$.
(2) If $s \geq 0$, then

$$
\operatorname{th} s=\frac{\operatorname{th} 2 s}{1+\sqrt{1-\operatorname{th}^{2} 2 s}} .
$$

Further, if $u \in[0,1]$ and $2 s=\operatorname{arth} u$, then

$$
\operatorname{th} s=\frac{u}{1+\sqrt{1-u^{2}}} \leq \frac{1}{2}\left(u+u^{2}\right) .
$$

(3) \log th $s=-2 \operatorname{arth} e^{-2 s}, s>0$.
(4) $\log (1+x) \leq \operatorname{arsh} x \leq 2 \log (1+x), x \geq 0$
(5) $2 \log \left(1+\sqrt{\frac{1}{2}(x-1)}\right) \leq \operatorname{arch} x \leq 2 \log (1+\sqrt{2(x-1)}), x \geq 1$.
4. Observe first that, for $t \in(0,1)$,

$$
\rho_{\mathbf{H}^{n}}\left(t e_{n}, e_{n}\right)=\rho_{\mathbf{H}^{n}}\left(t e_{n}, S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)\right) .
$$

Making use of this observation and the formula for ρ-balls in terms of euclidean balls show that

$$
B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)=\bigcup_{t \in(0,1)} D\left(t e_{n}, \log \frac{1}{t}\right) .
$$

5. Assume that $a \geq 0$ and define b by $\operatorname{ch} b=1+\frac{1}{2} a$. Show that

$$
\begin{aligned}
\log (1+\max \{a, \sqrt{a}\}) & \leq b \leq \log (1+a+\sqrt{a}) \\
& \leq 2 \log (1+\max \{a, \sqrt{a}\})
\end{aligned}
$$

6. (1) Show that for distinct points a, b, c, u, v in \mathbf{R}^{n},

$$
\begin{gathered}
|u, a, b, v|=|u, a, c, v||u, c, b, v| \\
|u, a, b, v||u, b, a, v|=1=|u, a, b, v||v, a, b, u| .
\end{gathered}
$$

(2) Conclude from (1) that, for a proper subdomain domain G of \mathbf{R}^{n} and for $x, y \in G$, the quantity

$$
m_{G}(x, y) \equiv \log \sup \{|u, x, y, v|: u, v \in \partial G\}
$$

is nonnegative and symmetric, and that it satisfies the triangle inequality

$$
m_{G}(x, y) \leq m_{G}(x, z)+m_{G}(z, y) .
$$

Observe also that $m_{G}(x, y)=m_{h(G)}(h(x), h(y))$ for $h \in \mathcal{G M}(G)$ and $x, y \in G$.
(3) Show that, for $x \in \mathbf{B}^{n} \backslash\{0\}, e_{x}=x /|x|$,

$$
m_{\mathbf{B}^{n}}(0, x)=\log \left|-e_{x}, 0, x, e_{x}\right|=\log \left(\frac{1+|x|}{1-|x|}\right) .
$$

Conclude that $m_{\mathbf{B}^{n}}(x, y)=\rho_{\mathbf{B}^{n}}(x, y)$ for all x, y of points in \mathbf{B}^{n}.
(4) Show that m_{G} is not a metric for $G=\mathbf{R}^{n} \backslash\{0\}$.

