Quasiregular Mappings Department of Mathematics and Statistics University of Helsinki Problem Set 2 Winter 2009 / Vuorinen

1. Let f be an inversion in $S^{n-1}(a, r)$ as defined in 1.2(2)[CGQM]. Show that $f^{-1} = f$ and that $|x - a||f(x) - a| = r^2$ for all $x \in \mathbb{R}^n \setminus \{a\}$. By considering similar triangles show that the following identity holds for $x, y \in \mathbb{R}^n \setminus \{a\}$:

$$|f(x) - f(y)| = \frac{r^2 |x - y|}{|x - a||y - a|}.$$

2. (a) For 0 < t < 1 let $w(t) = t/\sqrt{1-t^2}$. Show that $q(0, w(t)e_1) = t$ and that

$$\frac{t}{s} < \frac{w(t)}{w(s)} < \frac{2t}{s}$$

for $0 < s < t < \frac{1}{2}\sqrt{3}$. (b) Let $q(A) = \sup\{q(x, y) \colon x, y \in A\}$ for $A \subset \overline{\mathbb{R}^n}$. Show that

$$q(Q(z,r)) = q(\partial Q(z,r)) = 2r\sqrt{1-r^2}$$

for $0 < r \le 1/\sqrt{2}$.

3.(a) Let $x, y \in \mathbf{B}^n$ with s = q(0, x), t = q(0, y). Show that

$$q(x,y) \leq s\sqrt{1-t^2} + t\sqrt{1-s^2} \leq t+s$$
.

(b) Let $x, y \in \mathbf{R}^n \setminus \{0\}$ with q(0, x) > q(0, y). Show that the strict inequality q(x, y) > q(0, x) - q(0, y) holds.

4. For $x, y \in \mathbf{R}^n$ prove the following:

$$q(x,y) = \frac{|x-y|}{\sqrt{(1+|x||y|)^2 + (|x|-|y|)^2}}.$$
$$\frac{|x-y|}{\sqrt{|x-y|^2 + (1+|x||y|)^2}} \le q(x,y) \le \frac{|x-y|}{\sqrt{|x-y|^2 + (1-|x||y|)^2}}$$

$$q(x,y) \le \frac{|x-y|}{2}$$

for $|x||y| \ge 1$, with equality for $x, y \in S^{n-1}$ or x = y.

$$q(x,y) \le |x-y|/(|x|+|y|),$$

with equality iff |x||y| = 1 or x = y.

5. Show that $B^{n}(a, r)$ and $B^{n}(v)$, where $r^{2} < 1 + |a|^{2}$,

$$v = \frac{2r}{\sqrt{(1 + (|a| + r)^2)(1 + (|a| - r)^2)} + 1 + |a|^2 - r^2}}$$

have equal spherical diameters. Note that v < 1. Conclusion: The inversion f_1 in 1.52[CGQM] is in fact the inversion in a euclidean sphere with radius v and center 0.

6. The lines $[-e_1, 0]$ and $[ae_1, \infty]$, a > 0, can be mapped onto $[-e_1, e_1]$ and $[be_1, \infty] \cup [-be_1, \infty]$ by a Möbius transformation. Give a definition for b in terms of a. Notice that $[x, \infty] = \{xt : t \ge 1\}$, if $x \in \mathbf{R}^n \setminus \{0\}$.

7. Are the following mappings Hölder or Lipschitz?

(a)
$$f: \mathbf{B}^2 \to \mathbf{R}^2, f(x, y) = \begin{cases} (x, y^2), & y > 0, \\ (x, -y^2), & y \le 0, \end{cases}$$

(b) $f: \mathbf{R}^2 \to \mathbf{R}^2, f(x, y) = \begin{cases} (x, 2y), & y > 0, \\ (x, y), & y \le 0. \end{cases}$

File: qr0902.tex, 2009-1-23,8.36