Quasiregular Mappings Department of Mathematics and Statistics University of Helsinki Problem Set 1 (2009-01-19) Winter 2009 / Vuorinen

1. Perhaps the simplest non-injective map is $f: z \mapsto z^2$. Find a domain $D \subset \mathbb{C}$ such that $f|_D: D \to fD$ is not closed.

2. Find a Möbius transformation

$$z \mapsto \frac{az+b}{cz+d}, \quad ad-bc \neq 0,$$

which maps $H^2 = \{(x, y) \in \mathbf{R}^2 : y > 0\}$ onto $B^2 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 < 1\}$ such that $(-1, 0, 1) \mapsto (1, i, -1)$ [i = (0, 1)].

3. Let $f: \mathbf{R} \to \mathbf{R}$ be Hölder continuous with exponent $\beta > 1$. Show that f is a constant, equal to f(0).

4.

Let $\sigma: \mathbf{R}_+ \times \mathbf{R}_+ \to \mathbf{R}_+, \mathbf{R}_+ = (0, \infty)$, be defined by $\rho(x, y) = |\log(x/y)|$. Show that ρ is a metric.

(a) Suppose that $u: (\mathbf{R}_+, \rho) \to (\mathbf{R}_+, \rho)$ is uniformly continuous. Show that $u(x) \leq Ax^B$ for some constants A and B for all $x \geq 1$.

(b) Suppose that $u: (\mathbf{R}_+, d) \to (\mathbf{R}_+, \rho)$ is uniformly continuous, where d is the euclidean metric. Find an inequality of the same type as in (a) [but some other function in place of Ax^B].

5. Let $D = H^2 = \{(x, y) \in \mathbf{R}^2 : y > 0\}$. The modulus $M(D; -1, 0, s, \infty)$ of a quadrilateral $(D; -1, 0, s, \infty)$, s > 0, is usually denoted $\tau(s)/2$ [we will define the function $\tau(s)$ later]. Fix $\alpha \in (0, \pi)$ and denote $D_{\alpha} = \{z \in \mathbf{C} : 0 < \arg z < \alpha\}$, r > s > 0, t > u > 0. Using the above notation, find $M(D_{\alpha}; re^{i\alpha}, se^{i\alpha}, u, t)$. [Hint: The modulus is a conformal invariant. Apply an auxiliary Möbius transformation to map the example to the previous case.]

6. Are the following mappings Hölder or Lipschitz?

(a)
$$f: \mathbf{R}^2 \to \mathbf{R}^2, f(x, y) = \begin{cases} (x, y^2), & y > 0, \\ (x, -y^2), & y \le 0, \end{cases}$$

(b) $f: \mathbf{R}^2 \to \mathbf{R}^2, f(x, y) = \begin{cases} (x, 2y), & y > 0, \\ (x, -2y), & y \ge 0, \\ (x, -2y), & y \le 0, \end{cases}$

(c) Let (r, φ, z) be the cylinderical coordinates of $\mathbf{R}^3 (r \ge 0, 0 \le \varphi < 2\pi, z \in \mathbf{R})$. Fix $0 < \alpha < \beta < \pi$ and define $f(r, \varphi, z) = (r, \varphi\beta/\alpha, z)$ if $0 \le \varphi \le \alpha$ and $f(r, \varphi, z) = (r, \beta + (\varphi - \alpha)(2\pi - \beta)/(2\pi - \alpha), z)$ if $\varphi \in (\alpha, 2\pi)$. Then f defines a mapping $f: \mathbf{R}^3 \to \mathbf{R}^3$. File: grh0901.tex, 2009-1-12,9.00