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1. Let G,G' C R™ be domains, and let f: G — G’ = fG be continuous.
The cluster set of f at a point b € G is the set C(f,b) = {b' € R :
J(bx) € G™, by — b, f(be) — b'}. It is clear that C(f,b) C G, and that
for injective maps C(f,b) C 0G'. The cluster set C(f,b) is a singleton
iff f has a limit at b. The cluster set is connected if there are arbitrarily
small numbers ¢ > 0 such that B(b,t) N G is connected. We say that f is
boundary preserving if C(f,b) C 8G' for all b € 8G.

(a) Find for each b € S* the cluster set C(f,b) of the analytic function
f:B%? — B?, with f(z) = expg(z) when g(2) = —(1+2)/(1 — 2),2z € B2

(b) Let G,G' C R™ be domains, and let f: G — G’ = fG be open and
continuous. Show that f is boundary preserving iff f is proper.

Solution

(a)

[N, — .

A

Denote H = {z € C : Rez < 0}. First we find C(f,1). It is clear that

C(f,1) = () f(B>n B%(1,¢)).

>0

We will show that .. C(f, 1) = B? which is equivalent to
VYw € B?, 3z, € B?, z;, — 1 such that f(z) — w.

If z € B?\ {0} then there exists sequence (z;) such that z; — 1 and
f(zx) = w for all k. Therefore B?\ {0} C C(f,1).

If z € {0} US?, then there exists (wy) such that w, — w and w; €
B2\ {0}. There exists 2z € B*>\{0} such that |z, —1| < 1/k and f(zx) = wy.
Clearly f(2zx) — w and 2z — 1 as k — oo. Therefore {0} U S* C C(f,1).
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_ Let b= cosf + 1sinf, for § € (0,27). Since f(z) is continuous is in
B2\ {1}, the cluster set is a singleton.

1
C(f,b) = f(b) = —erormame s

@ 1l—cosf—1isin

where
1+ cosf +isind (1+cosf+isinf)(1 —cosf — isinf)
1—cos6—isind (1 —cosf)? — (isinf)?
_ (1+74sinf)?—cos? 1+ 2isinf —sin’f — cos? 8
~ 1—2cosf +cos?f +sin’f 2 —2cosf
1sind
~ 1-—cosf’

2sin @

S C(f,b) = {emo1}, §=arg(b) vbe S\ {1}.

(b) Assume f is boundary preserving. Let F C G’ be compact. Con-
sider a sequence (b) in f'E with b — b € G. We must show that
b€ f~1E. There are two cases:

Case 1 b € 0G. By passing to a subsequence we may assume that f(b;) — ¥'.
Then ' € C(f,b) C 8G'. But f(by) € E for all k, which implies
b € E C G, since E is compact. This is a contradiction.

Case 2 b € G. Now f(bx) — f(b) by continuity and so f(b) € E as E is
compact. Hence b € f~'E.

For the converse implication assume that f is proper. Let b € G and
b € C(f,b). Choose a sequence (bx) € G with by — b and f(bx) — . If
we had b' € G/, then B = {'} U{f(bx) : k > 1} C G’ would be compact,
while f~'E would not, since b € 8G. This is a contradiction because f is
proper. ... b' € G’ and f is boundary preserving.

2. Let f:B"™ — f(B™) C R" be a homeomorphism with the property
that there exists a number K > 1such that forallz,y € B™ ugm~)(f(z), f(¥)) <
Kugpn(z,y), and let (b,) be a sequence of points in B” such that by — b €
OB™ and f(by) — B. (It is known, that fB™ is connected, cf. 1.) Let
p(ak, br) < MVk. Show that limg ,.f(ar) = B exists. Does the same
conclusion hold for noninjective mappings?
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Solution Since dfB™ is connected, we may use 8.31[CGQM], the as-
sumptions, and 8.6[CGQM] to obtain

Jrmn(flar), F(b)) < iufan(f(ak),f(bk))sgugn(ak,bk)

= g“’ (th<p(ak1, bk)/z)) . g" (W) =

Let o be an accumulation point of the sequence (f(ax)). Assume that
q(a,B) =:3e > 0.

Let kg € N be such that g(f(ax),8) < € and g(f(ax), @) < € whenever
k > ko. Then, for k > kq,

Jre(f@), (b)) = log (1 + e gﬁ%%ﬁ??('bk),afm)})
> log( - RiomarEn)
Bma <1 L 4(e,) - 28‘08:)) g;gncjz(f(bk) ﬂ))
log <1 T o), aan))

as k — oo, since f(by) — B € fB™ and € > 0. This is a contradiction.
Hence a = B and the proof is complete.

Note The conclusion does not hold for noninjective mappings: Let f
be as in 1.(a). Choose a,b;, as in the following figure:

exp

Now G,k,bk —1c 332, p(ak,bk) < M, ,6 = f(bk) = ].II'I].k%oo f(bk), but
flax) # 8.
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3. Let A, B,C, D be distinct points on the unit circle S! in the stated
order and 2a and 20 the lengths of the arcs AB and C D, respectively. Find
the least value of M(A(AB,CD)). [Hint: [A—C||B—D|=|A- B||C -
D|+ |B — C||A — D| by Ptolemy’s theorem [CG, p. 42], [BER, 10.9.2] ]

Solution Map S* onto R by a Mébius map f, f(D) = co. Then

B
C fa
)
f
A % Mobius fA B fC D
D

B c
£y

M(A) = 2M(fa)=T (%) =7(|fB, fA, fC, D))
B-C||A-D
- (8,400 =7 (554" D)

by the Mobius invariance of the modulus and the cross ratio. Now

{ sina = 1|A— B| N { |A— B| =2sina
sing = ;|C — D |C — D| =2sinf
and 7 is strictly decreasing. Hence minimizing M(A) is equivalent to max-
imizing % which is equivalent to maximizing |B — C||A — D| which
is equivalent, by Ptolemy, to maximizing |A — C||B — D|.

Let w be the length of the arc BC. Then

a—l—w

[A-c| = 2sin(*2 1Y)

,B-I-w)

IB-D| = 2sin(

4



QROO0 solutions to exercises 10

It follows that

|A—C||B—D| = 4sin(a+ w/2)sin(8+ w/2)
= 2(cos(a+w/2— B —w/2) —cos(a+ B + w))
= 2(cos(a — fB) — cos(a + B + w))
where we used the formula sin(a) sin(b) = (1/2)(cos(a—b)—cos(a+b)). This
is maximized when cos(a+(+w) = —1 which is equivalent to a+f+w =7

and furthermore equivalent tow =7 —a — 6.
Then, by Ptolemy’s theorem,

[A-C||B-D|-|A-B||C-D|
|A— BJ||C - D|
2(cos(aa — B) + 1) —4sinasinf
4sinasin
cos(a—pB)+1
2sinasin B
cos(a —fB)+1 1)

2sinasin g

|B,A,C,D| =

1.

. 1
. minM(A(AB,CD)) = 7'< 5

4. Let E C R"™ be compact, capF > 0 and E(t) = UycgB"(z,t). It
follows from Ziemer’s theorem that for a fixed ¢t > 0 cap (E(t), E(s)) —
cap(E(t), E),s — 0. Show that cap (E(t), E) — oo, when ¢ — 0. [Hint:
Ziemer’s theorem and 5.24[CGQM] may be helpful here.]

Solution The function h(t) = cap(E(t), E) is decreasing by 5.3[CGQM].
Hence there exists the limit lim; oy A(t) = a € (0,00]. Assume that
a < oo. Denote fort > 0,0 < s < r, I'y = A(E,0E(t)) and Ty, =
A(BE(s),8E(r); E(r) \ E(s)). By Lemma 5.24[CGQM], we have for 0 <
s<r,

M(Fr)l/(lfn) > M(Fs)l/(lfn) 4 M(psr)l/(lfn),

where M(T';) — a, and M(T's,) — M(T',), as s — 0 (Ziemer). This implies
that a'/(t~™) < 0 and therefore a < 0, which is a contradiction. .". a = oo.

5. Let f: B™ — B" be a homeomorphism with f(0) = 0 and assume
that there is K > 1 such that for all distinct z,y € B™

Aen(2,9)/ K < Apn(f(2), f(y)) < KA~ (2, ).

Prove that there are a,b,c¢,d > 0 such that a|z|® < |f(z)| < c|z|? for all
z € B™.
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Solution By 8.6(2)[CGQM],

Apn(z,0) = —Tn (sh2 <%p(m,0)>> ,
and by 8.7[CGQM],

1 1 1 2
log - < =7, h2<— , ))<n1 .
8 thip(z,0) = 2" (s RP@0))) < e %8 th Zp(z, 0)

Using 2.29(2)[CGQM] and (2.18)[CGQM], we get

th 1p(:lc 0) = th 30(z,0)
4 1+ /1 - th’ 1p(z,0)
and
o2 L (2,0) sh®1p(z,0)  sh®1lp(z,0)
5 P\T hZl 21
1p(z,0)  1+sh®Lp(z,0)

2
e z|? _ |g?

T4 B, 1—[aP+[of

Hence th ip(z,0) = |z|/(1 +4/1 — |z|?) and
144/1—|z|? 1+4/1—|z|
—| | < Apn(z,0) <c,lo ( | )

z| z|

Since fB™ = B™, f(0) = 0, we get Asp~(f(2), f(0)) = Ag~(f(z),0). Con-
sequently,

¢, log

HI-f@F 20 y/1- ()

log gy el B
@ o1 el
T @E (1 e
1 |z|® 1

f(z)] > oK oK — 22K| x|
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and

1+,/1—\x|2<K I 2(1+ /1 —|f(z)[?)

n L .

C, 108 |$‘ S AcC g ‘f(a;)‘
S /N f@)*

1+ m T 2K(14 /1 —|f(2)]D)K
= |z| > f@)*

- 22K

= |f(z)| < (2%F|z|)/" = 4|z

22LK‘$|K < |f(z)| < 4jz[''* vz e B™

6. In complex notation, Mdbius transformations are defined by T'(z) =

ZZ"—I;’ with A = ad — bc # 0. These mappings generate a group.

(a) Prove that T'(2;) — T(22) = %.

(b) Prove that the cross ratio [21, 22, 23, 24] = % is invariant
under T.
(c) Prove that r‘;,((j)) =2 D(;,,((Z))) = —1, and S =0,
o T (2) ~ § T"(z) 2 _ T"(2) '_ E T"(2) 2
T7T(z) 2\T(2) T'(z2) 2\T'(2) ) -
Solution
(a)

azi+b azy,+b
czy+d B czy +d
(az; + b)(czo + d) — (aze + b)(cz; + d)
(cz1 + d)(czo + d)
aczi2s + bczo + adzy + bd — aczizo — bczy — adzy — bd
(cz1 + d)(cza + d)

(ad — bc)z; + (be — ad)z,

(cz1 + d)(czp + d)

Az — 25)
(cz1 + d)(cza +d)

T(2) — T(22) =

7
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(b)

(T(21) — T(23))(T (22) — T'(24))
(T(21) — T(22))(T (25) — T'(24))

A(z1—23) A(z2—24)
(cz1+d)(cz3+d) (cz2+d)(cza+d)
A(z1 722) A(Zsfz‘;)
(cz1+d)(cz2+d) (cza+d)(cza+d)

(21 — 23)(22 — 24)
(21 — 22)(23 — 24)

[T(21),T(22), T(23), T(24)] =

—
Q
~—

= [zlj 22,23, 24]-

()
T'(z) — a(cz+d) —c(az+b) ad—bc A
N (cz + d)? "~ (cz+d)? (cz+d)?
—2¢(cz +d)A —2cA
(2) (cz +d)* (cz +d)3
T(2) —3c(cz +d)*(—2cA)  62A
(cz + d)® (ez+d)t

Hence

T'(2)  (arap -2

T(z) @y Ccz+d’

T! L
p(52) = p(&2
T"(2) (e rdp

T///(z) _§(T"(z)>2 B (ii?y} 3( 9% )2
5 =

T'(2) T'(2) (czﬁ 7 2 \cz+d
_ 6> 3 4c _0.
(cz+d)*> 2(cz+d)? ’
(T“(z))l _ ( —2c )’ _ —c(—2c)  2c
T'(2) cz+d (cz+d)?> (cz+d)?

) @T())) 3 @T())) - @i E "



