Quasiregular Mappings Department of Mathematics and Statistics University of Helsinki Problem Set 10 Winter 2009 / Vuorinen

1. Let $G, G' \subset \overline{\mathbb{R}}^n$ be domains, and let $f: G \to G' = fG$ be continuous. The cluster set of f at a point $b \in \partial G$ is the set $C(f, b) = \{b' \in \overline{\mathbb{R}}^n : \exists (b_k) \in G^n, b_k \to b, f(b_k) \to b'\}$. It is clear that $C(f, b) \subset \overline{G'}$, and that for injective maps $C(f, b) \subset \partial G'$. The cluster set C(f, b) is a singleton iff f has a limit at b. The cluster set is connected if there are arbitrarily small numbers t > 0 such that $B(b, t) \cap G$ is connected. We say that f is boundary preserving if $C(f, b) \subset \partial G'$ for all $b \in \partial G$.

(a) Find for each $b \in S^1$ the cluster set C(f, b) of the analytic function $f: B^2 \to B^2$, with $f(z) = \exp g(z)$ when $g(z) = -(1+z)/(1-z), z \in B^2$.

(b) Let $G, G' \subset \overline{\mathbb{R}}^n$ be domains, and let $f: G \to G' = fG$ be open and continuous. Show that f is boundary preserving iff f is proper.

Solution

(a)

Denote $H = \{z \in \mathbb{C} : \text{Re}z < 0\}$. First we find C(f, 1). It is clear that

$$C(f,1) = igcap_{\epsilon>0} \overline{f(B^2 \cap B^2(1,\epsilon))}.$$

We will show that $\therefore C(f, 1) = \overline{B^2}$ which is equivalent to

$$orall w\in \overline{B^2},\ \exists z_k\in B^2,\ z_k
ightarrow 1$$
 such that $f(z_k)
ightarrow w.$

If $z \in B^2 \setminus \{0\}$ then there exists sequence (z_k) such that $z_k \to 1$ and $f(z_k) = w$ for all k. Therefore $B^2 \setminus \{0\} \subset C(f, 1)$.

If $z \in \{0\} \cup S^1$, then there exists (w_k) such that $w_k \to w$ and $w_k \in B^2 \setminus \{0\}$. There exists $z_k \in B^2 \setminus \{0\}$ such that $|z_k - 1| < 1/k$ and $f(z_k) = w_k$. Clearly $f(z_k) \to w$ and $z_k \to 1$ as $k \to \infty$. Therefore $\{0\} \cup S^1 \subset C(f, 1)$. Let $b = \cos \theta + i \sin \theta$, for $\theta \in (0, 2\pi)$. Since f(x) is continuous is in $\overline{B^2} \setminus \{1\}$, the cluster set is a singleton.

$$C(f,b)=f(b)=rac{1}{e^{rac{1+\cos heta+i\sin heta}{1-\cos heta-i\sin heta}}},$$

where

$$\begin{array}{ll} \displaystyle \frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} &=& \displaystyle \frac{(1+\cos\theta+i\sin\theta)(1-\cos\theta-i\sin\theta)}{(1-\cos\theta)^2-(i\sin\theta)^2} \\ &=& \displaystyle \frac{(1+i\sin\theta)^2-\cos^2\theta}{1-2\cos\theta+\cos^2\theta+\sin^2\theta} = \displaystyle \frac{1+2i\sin\theta-\sin^2\theta-\cos^2\theta}{2-2\cos\theta} \\ &=& \displaystyle \frac{i\sin\theta}{1-\cos\theta} \\ &\therefore C(f,b) &=& \displaystyle \left\{e^{\frac{i\sin\theta}{\cos\theta-1}}\right\}, \ \theta=\arg(b) \ \forall b\in S^1\setminus\{1\}. \end{array}$$

(b) Assume f is boundary preserving. Let $E \subset G'$ be compact. Consider a sequence (b_k) in $f^{-1}E$ with $b_k \to b \in \overline{G}$. We must show that $b \in f^{-1}E$. There are two cases:

- Case 1 $b \in \partial G$. By passing to a subsequence we may assume that $f(b_k) \to b'$. Then $b' \in C(f,b) \subset \partial G'$. But $f(b_k) \in E$ for all k, which implies $b' \in E \subset G'$, since E is compact. This is a contradiction.
- Case 2 $b \in G$. Now $f(b_k) \to f(b)$ by continuity and so $f(b) \in E$ as E is compact. Hence $b \in f^{-1}E$.

For the converse implication assume that f is proper. Let $b \in \partial G$ and $b' \in C(f, b)$. Choose a sequence $(b_k) \in G$ with $b_k \to b$ and $f(b_k) \to b'$. If we had $b' \in G'$, then $E = \{b'\} \cup \{f(b_k) : k \ge 1\} \subset G'$ would be compact, while $f^{-1}E$ would not, since $b \in \partial G$. This is a contradiction because f is proper. $\therefore b' \in \partial G'$ and f is boundary preserving.

2. Let $f: \mathbf{B}^n \to f(\mathbf{B}^n) \subset \mathbf{R}^n$ be a homeomorphism with the property that there exists a number $K \geq 1$ such that for all $x, y \in \mathbf{B}^n \mu_{f(\mathbf{B}^n)}(f(x), f(y)) \leq K\mu_{\mathbf{B}^n}(x, y)$, and let (b_n) be a sequence of points in \mathbf{B}^n such that $b_k \to b \in \partial \mathbf{B}^n$ and $f(b_k) \to \beta$. (It is known, that $\partial f \mathbf{B}^n$ is connected, cf. 1.) Let $\rho(a_k, b_k) < M \forall k$. Show that $\lim_{k \to \infty} f(a_k) = \beta$ exists. Does the same conclusion hold for noninjective mappings? Solution Since $\partial f B^n$ is connected, we may use 8.31[CGQM], the assumptions, and 8.6[CGQM] to obtain

$$egin{aligned} j_{fB^n}(f(a_k),f(b_k)) &\leq rac{1}{c_n}\mu_{fB^n}(f(a_k),f(b_k)) \leq rac{K}{c_n}\mu_{B^n}(a_k,b_k) \ &= rac{K}{c_n}\gamma\left(rac{1}{ ext{th}(
ho(a_k,b_k)/2)}
ight) \leq rac{K}{c_n}\gamma\left(rac{1}{ ext{th}(M/2)}
ight) < \infty. \end{aligned}$$

Let α be an accumulation point of the sequence $(f(a_k))$. Assume that $q(\alpha, \beta) =: 3\varepsilon > 0$.

Let $k_0 \in \mathbb{N}$ be such that $q(f(a_k), \beta) < \varepsilon$ and $q(f(a_k), \alpha) < \varepsilon$ whenever $k \geq k_0$. Then, for $k \geq k_0$,

$$egin{aligned} j_{fB^n}(f(a_k),f(b_k))&=&\log\left(1+rac{|f(a_k)-f(b_k)|}{\min\{d(f(a_k),\partial fB^n),d(f(b_k),\partial fB^n)\}}
ight)\ &\geq&\log\left(1+rac{q(f(a_k),f(b_k))}{d(f(b_k),\partial fB^n)}
ight)\ &\stackrel{\Delta- ext{ineq}}{\geq}&\log\left(1+rac{q(lpha,eta)-q(f(a_k),lpha)-q(f(b_k),eta)}{d(f(b_k),\partial fB^n)}
ight)\ &\geq&\log\left(1+rac{arepsilon}{d(f(b_k),\partial fB^n)}
ight)
ightarrow\infty \end{aligned}$$

as $k \to \infty$, since $f(b_k) \to \beta \in \partial f B^n$ and $\varepsilon > 0$. This is a contradiction. Hence $\alpha = \beta$ and the proof is complete.

Note The conclusion does not hold for noninjective mappings: Let f be as in 1.(a). Choose a_k, b_k as in the following figure:

 $\begin{array}{l} \text{Now } a_k, b_k \rightarrow 1 \in \partial B^2, \ \rho(a_k, b_k) < M, \ \beta \mathrel{\mathop:}= f(b_k) = \lim_{k \rightarrow \infty} f(b_k), \ \text{but} \\ f(a_k) \not \rightarrow \beta. \end{array}$

3. Let A, B, C, D be distinct points on the unit circle S^1 in the stated order and 2α and 2β the lengths of the arcs AB and CD, respectively. Find the least value of $M(\Delta(AB, CD))$. [Hint: |A - C||B - D| = |A - B||C - D| + |B - C||A - D| by Ptolemy's theorem [CG, p. 42], [BER, 10.9.2].]

Solution Map S^1 onto **R** by a Möbius map $f, f(D) = \infty$. Then

$$egin{aligned} 2\mathsf{M}(\Delta) &= 2\mathsf{M}(f\Delta) = au\left(rac{|fC-fB|}{|fB-fA|}
ight) = au(|fB,fA,fC,fD|) \ &= au(|B,A,C,D|) = au\left(rac{|B-C||A-D|}{|A-B||C-D|}
ight) \end{aligned}$$

by the Möbius invariance of the modulus and the cross ratio. Now

$$\begin{cases} \sin \alpha = \frac{1}{2}|A - B| \\ \sin \beta = \frac{1}{2}|C - D| \end{cases} \Rightarrow \begin{cases} |A - B| = 2\sin \alpha \\ |C - D| = 2\sin \beta \end{cases}$$

and τ is strictly decreasing. Hence minimizing $M(\Delta)$ is equivalent to maximizing $\frac{|B-C||A-D|}{|A-B||C-D|}$ which is equivalent to maximizing |B-C||A-D| which is equivalent, by Ptolemy, to maximizing |A-C||B-D|.

Let w be the length of the arc BC. Then

$$egin{array}{rcl} |A-C|&=&2\sin(rac{2lpha+\omega}{2})\ |B-D|&=&2\sin(rac{2eta+\omega}{2}). \end{array}$$

It follows that

$$egin{array}{rcl} |A-C||B-D|&=&4\sin(lpha+\omega/2)\sin(eta+\omega/2)\ &=&2(\cos(lpha+\omega/2-eta-\omega/2)-\cos(lpha+eta+\omega))\ &=&2(\cos(lpha-eta)-\cos(lpha+eta+\omega)) \end{array}$$

where we used the formula $\sin(a)\sin(b) = (1/2)(\cos(a-b)-\cos(a+b))$. This is maximized when $\cos(\alpha+\beta+\omega) = -1$ which is equivalent to $\alpha+\beta+\omega = \pi$ and furthermore equivalent to $\omega = \pi - \alpha - \beta$.

Then, by Ptolemy's theorem,

$$|B, A, C, D| = \frac{|A - C||B - D| - |A - B||C - D}{|A - B||C - D|}$$

= $\frac{2(\cos(\alpha - \beta) + 1) - 4\sin\alpha\sin\beta}{4\sin\alpha\sin\beta}$
= $\frac{\cos(\alpha - \beta) + 1}{2\sin\alpha\sin\beta} - 1.$
 $\therefore \min M(\Delta(AB, CD)) = \tau \left(\frac{\cos(\alpha - \beta) + 1}{2\sin\alpha\sin\beta} - 1\right) \frac{1}{2}.$

4. Let $E \subset \mathbb{R}^n$ be compact, $\operatorname{cap} E > 0$ and $E(t) = \bigcup_{x \in E} \mathbb{B}^n(x,t)$. It follows from Ziemer's theorem that for a fixed t > 0 $\operatorname{cap}(E(t), \overline{E(s)}) \to \operatorname{cap}(E(t), E), s \to 0$. Show that $\operatorname{cap}(E(t), E) \to \infty$, when $t \to 0$. [Hint: Ziemer's theorem and 5.24[CGQM] may be helpful here.]

Solution The function $h(t) = \operatorname{cap}(\mathrm{E}(t), \mathrm{E})$ is decreasing by 5.3[CGQM]. Hence there exists the limit $\lim_{t\to 0+} h(t) = a \in (0, \infty]$. Assume that $a < \infty$. Denote for t > 0, 0 < s < r, $\Gamma_t = \Delta(E, \partial E(t))$ and $\Gamma_{sr} = \Delta(\partial E(s), \partial E(r); \overline{E(r)} \setminus E(s))$. By Lemma 5.24[CGQM], we have for 0 < s < r,

$$\mathsf{M}(\Gamma_r)^{1/(1-n)} \geq \mathsf{M}(\Gamma_s)^{1/(1-n)} + \mathsf{M}(\Gamma_{sr})^{1/(1-n)}$$

where $\mathsf{M}(\Gamma_s) \to a$, and $\mathsf{M}(\Gamma_{sr}) \to \mathsf{M}(\Gamma_r)$, as $s \to 0$ (Ziemer). This implies that $a^{1/(1-n)} \leq 0$ and therefore $a \leq 0$, which is a contradiction. $\therefore a = \infty$.

5. Let $f: \mathbf{B}^n \to \mathbf{B}^n$ be a homeomorphism with f(0) = 0 and assume that there is $K \ge 1$ such that for all distinct $x, y \in \mathbf{B}^n$

$$\lambda_{\mathrm{B}^n}(x,y)/K \leq \lambda_{f\mathrm{B}^n}(f(x),f(y)) \leq K\lambda_{\mathrm{B}^n}(x,y).$$

Prove that there are a, b, c, d > 0 such that $a|x|^b \leq |f(x)| \leq c|x|^d$ for all $x \in \mathbf{B}^n$.

Solution By 8.6(2)[CGQM],

$$\lambda_{B^n}(x,0) = rac{1}{2} au_n \left(\operatorname{sh}^2 \left(rac{1}{2}
ho(x,0)
ight)
ight)$$
 ,

and by 8.7[CGQM],

$$c_n\lograc{1}{ hetarac{1}{4}
ho(x,0)}\leqrac{1}{2} au_n\left(hetah^2\left(rac{1}{2}
ho(x,0)
ight)
ight)\leq c_n\lograc{2}{ hetarac{1}{4}
ho(x,0)}$$

Using 2.29(2)[CGQM] and (2.18)[CGQM], we get

$$h rac{1}{4}
ho(x,0) = rac{ h rac{1}{2}
ho(x,0)}{1+\sqrt{1- h^2rac{1}{2}
ho(x,0)}}$$

and

$$egin{array}{rcl} {
m th}^2 {1\over 2}
ho(x,0) &=& {{
m sh}^2 {1\over 2}
ho(x,0) \over {
m ch}^2 {1\over 2}
ho(x,0)} = {{
m sh}^2 {1\over 2}
ho(x,0) \over 1+{
m sh}^2 {1\over 2}
ho(x,0) \ &=& {{|x|^2}\over 1-|x|^2} \ &=& {|x|^2\over 1-|x|^2} = |x|^2. \end{array}$$

Hence $hat{1}{4}
ho(x,0)=|x|/(1+\sqrt{1-|x|^2})$ and

$$c_n\lograc{1+\sqrt{1-|x|^2}}{|x|}\leq \lambda_{B^n}(x,0)\leq c_n\lograc{2(1+\sqrt{1-|x|^2})}{|x|}$$

Since $fB^n = B^n$, f(0) = 0, we get $\lambda_{fB^n}(f(x), f(0)) = \lambda_{B^n}(f(x), 0)$. Consequently,

$$egin{aligned} &c_n\lograc{1+\sqrt{1-|f(x)|^2}}{|f(x)|}\leq Kc_n\lograc{2(1+\sqrt{1-|x|^2})}{|x|}\ &\Rightarrow &rac{|f(x)|}{1+\sqrt{1-|f(x)|^2}}\geqrac{1}{2^K}rac{|x|^K}{(1+\sqrt{1-|x|^2})^K}\ &\Rightarrow &|f(x)|\geqrac{1}{2^K}rac{|x|^K}{2^K}=rac{1}{2^{2K}}|x|^K \end{aligned}$$

$$egin{aligned} &c_n\lograc{1+\sqrt{1-|x|^2}}{|x|}\leq Kc_n\lograc{2(1+\sqrt{1-|f(x)|^2})}{|f(x)|}\ &\Rightarrow \ rac{|x|}{1+\sqrt{1-|x|^2}}\geqrac{|f(x)|^K}{2^K(1+\sqrt{1-|f(x)|^2})^K}\ &\Rightarrow \ |x|\geqrac{|f(x)|^K}{2^{2K}}\ &\Rightarrow \ |f(x)|\leq (2^{2K}|x|)^{1/K}=4|x|^{1/K}\ &\therefore \ rac{1}{2^{2K}}|x|^K\leq |f(x)|\leq 4|x|^{1/K} \ orall x\in B^n. \end{aligned}$$

6. In complex notation, Möbius transformations are defined by T(z) = ^{az+b}/_{cz+d} with Δ = ad - bc ≠ 0. These mappings generate a group.

(a) Prove that T(z₁) - T(z₂) = ^{Δ(z₁-z₂)}/_{(cz₁+d)(cz₂+d)}.

(b) Prove that the cross ratio [z₁, z₂, z₃, z₄] = ^{(z₁-z₃)(z₂-z₄)}/_{(z₁-z₂)(z₃-z₄)} is invariant under T.

under T.

(c) Prove that $rac{T''(z)}{T'(z)}=-rac{2c}{cz+d},\ D(rac{T'(z)}{T''(z)})=-rac{1}{2},$ and $S_T=0,$

$$S_T = rac{T'''(z)}{T'(z)} - rac{3}{2} \left(rac{T''(z)}{T'(z)}
ight)^2 = \left(rac{T''(z)}{T'(z)}
ight)' - rac{1}{2} \left(rac{T''(z)}{T'(z)}
ight)^2$$

Solution

(a)

$$egin{aligned} T(z_1) - T(z_2) &=& rac{az_1+b}{cz_1+d} - rac{az_2+b}{cz_2+d} \ &=& rac{(az_1+b)(cz_2+d)-(az_2+b)(cz_1+d)}{(cz_1+d)(cz_2+d)} \ &=& rac{acz_1z_2+bcz_2+adz_1+bd-acz_1z_2-bcz_1-adz_2-bd}{(cz_1+d)(cz_2+d)} \ &=& rac{(ad-bc)z_1+(bc-ad)z_2}{(cz_1+d)(cz_2+d)} \ &=& rac{\Delta(z_1-z_2)}{(cz_1+d)(cz_2+d)}. \end{aligned}$$

and

(b)

$$\begin{split} [T(z_1),T(z_2),T(z_3),T(z_4)] &= \frac{(T(z_1)-T(z_3))(T(z_2)-T(z_4))}{(T(z_1)-T(z_2))(T(z_3)-T(z_4))} \\ &\stackrel{(a)}{=} \frac{\frac{\Delta(z_1-z_3)}{(cz_1+d)(cz_3+d)}\frac{\Delta(z_2-z_4)}{(cz_2+d)(cz_4+d)}}{\frac{\Delta(z_1-z_2)}{(cz_1+d)(cz_2+d)}\frac{\Delta(z_3-z_4)}{(cz_3+d)(cz_4+d)}} \\ &= \frac{(z_1-z_3)(z_2-z_4)}{(z_1-z_2)(z_3-z_4)} = [z_1,z_2,z_3,z_4]. \end{split}$$

(c)

$$egin{array}{rll} T'(z) &=& rac{a(cz+d)-c(az+b)}{(cz+d)^2} = rac{ad-bc}{(cz+d)^2} = rac{\Delta}{(cz+d)^2} \ T''(z) &=& rac{-2c(cz+d)\Delta}{(cz+d)^4} = rac{-2c\Delta}{(cz+d)^3} \ T'''(z) &=& rac{-3c(cz+d)^2(-2c\Delta)}{(cz+d)^6} = rac{6c^2\Delta}{(cz+d)^4}. \end{array}$$

Hence

$$\begin{aligned} \frac{T''(z)}{T'(z)} &= \frac{\frac{-2c}{(cz+d)^3}}{\frac{\Delta}{(cz+d)^2}} = \frac{-2c}{cz+d};\\ D\left(\frac{T'(z)}{T''(z)}\right) &= D\left(\frac{\frac{\Delta}{(cz+d)^2}}{\frac{-2c\Delta}{(cz+d)^3}}\right)\\ &= D\left(\frac{cz+d}{-2c}\right) = D\left(-\frac{1}{2}z-\frac{d}{2c}\right) = -\frac{1}{2};\\ \frac{T'''(z)}{T'(z)} - \frac{3}{2}\left(\frac{T''(z)}{T'(z)}\right)^2 &= \frac{\frac{6c^2\Delta}{(cz+d)^4}}{\frac{\Delta}{(cz+d)^2}} - \frac{3}{2}\left(\frac{-2c}{cz+d}\right)^2\\ &= \frac{6c^2}{(cz+d)^2} - \frac{3}{2}\frac{4c^2}{(cz+d)^2} = 0;\\ \left(\frac{T''(z)}{T'(z)}\right)' &= \left(\frac{-2c}{cz+d}\right)' = \frac{-c(-2c)}{(cz+d)^2} = \frac{2c^2}{(cz+d)^2}\\ &\Rightarrow \left(\frac{T''(z)}{T'(z)}\right)' - \frac{1}{2}\left(\frac{T''(z)}{T'(z)}\right)^2 &= \frac{2c^2}{(cz+d)^2} - \frac{1}{2}\frac{4c^2}{(cz+d)^2} = 0.\end{aligned}$$