Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 10
Winter 2009 / Vuorinen

1. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous. The cluster set of f at a point $b \in \partial G$ is the set $C(f, b)=\left\{b^{\prime} \in \overline{\mathbf{R}}^{n}\right.$: $\left.\exists\left(b_{k}\right) \in G^{n}, b_{k} \rightarrow b, f\left(b_{k}\right) \rightarrow b^{\prime}\right\}$. It is clear that $C(f, b) \subset \overline{G^{\prime}}$, and that for injective maps $C(f, b) \subset \partial G^{\prime}$. The cluster set $C(f, b)$ is a singleton iff f has a limit at b. The cluster set is connected if there are arbitrarily small numbers $t>0$ such that $B(b, t) \cap G$ is connected. We say that f is boundary preserving if $C(f, b) \subset \partial G^{\prime}$ for all $b \in \partial G$.
(a) Find for each $b \in S^{1}$ the cluster set $C(f, b)$ of the analytic function $f: B^{2} \rightarrow B^{2}$, with $f(z)=\exp g(z)$ when $g(z)=-(1+z) /(1-z), z \in B^{2}$.
(b) Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be open and continuous. Show that f is boundary preserving iff f is proper.

Solution

(a)

Denote $H=\{z \in \mathbb{C}: \operatorname{Re} z<0\}$. First we find $C(f, 1)$. It is clear that

$$
C(f, 1)=\bigcap_{\epsilon>0} \overline{f\left(B^{2} \cap B^{2}(1, \epsilon)\right)}
$$

We will show that $\therefore C(f, 1)=\overline{B^{2}}$ which is equivalent to

$$
\forall w \in \overline{B^{2}}, \exists z_{k} \in B^{2}, z_{k} \rightarrow 1 \text { such that } f\left(z_{k}\right) \rightarrow w
$$

If $z \in B^{2} \backslash\{0\}$ then there exists sequence $\left(z_{k}\right)$ such that $z_{k} \rightarrow 1$ and $f\left(z_{k}\right)=w$ for all k. Therefore $B^{2} \backslash\{0\} \subset C(f, 1)$.

If $z \in\{0\} \cup S^{1}$, then there exists $\left(w_{k}\right)$ such that $w_{k} \rightarrow w$ and $w_{k} \in$ $B^{2} \backslash\{0\}$. There exists $z_{k} \in B^{2} \backslash\{0\}$ such that $\left|z_{k}-1\right|<1 / k$ and $f\left(z_{k}\right)=w_{k}$. Clearly $f\left(z_{k}\right) \rightarrow w$ and $z_{k} \rightarrow 1$ as $k \rightarrow \infty$. Therefore $\{0\} \cup S^{1} \subset C(f, 1)$.

Let $b=\cos \theta+i \sin \theta$, for $\theta \in(0,2 \pi)$. Since $f(x)$ is continuous is in $\overline{B^{2}} \backslash\{1\}$, the cluster set is a singleton.

$$
C(f, b)=f(b)=\frac{1}{e^{\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}}},
$$

where

$$
\begin{aligned}
\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta} & =\frac{(1+\cos \theta+i \sin \theta)(1-\cos \theta-i \sin \theta)}{(1-\cos \theta)^{2}-(i \sin \theta)^{2}} \\
& =\frac{(1+i \sin \theta)^{2}-\cos ^{2} \theta}{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}=\frac{1+2 i \sin \theta-\sin ^{2} \theta-\cos ^{2} \theta}{2-2 \cos \theta} \\
& =\frac{i \sin \theta}{1-\cos \theta} . \\
\therefore C(f, b) & =\left\{e^{\frac{i \sin \theta}{\cos \theta-1}}\right\}, \theta=\arg (b) \forall b \in S^{1} \backslash\{1\} .
\end{aligned}
$$

(b) Assume f is boundary preserving. Let $E \subset G^{\prime}$ be compact. Consider a sequence $\left(b_{k}\right)$ in $f^{-1} E$ with $b_{k} \rightarrow b \in \bar{G}$. We must show that $b \in f^{-1} E$. There are two cases:

Case $1 b \in \partial G$. By passing to a subsequence we may assume that $f\left(b_{k}\right) \rightarrow b^{\prime}$. Then $b^{\prime} \in C(f, b) \subset \partial G^{\prime}$. But $f\left(b_{k}\right) \in E$ for all k, which implies $b^{\prime} \in E \subset G^{\prime}$, since E is compact. This is a contradiction.

Case $2 b \in G$. Now $f\left(b_{k}\right) \rightarrow f(b)$ by continuity and so $f(b) \in E$ as E is compact. Hence $b \in f^{-1} E$.

For the converse implication assume that f is proper. Let $b \in \partial G$ and $b^{\prime} \in C(f, b)$. Choose a sequence $\left(b_{k}\right) \in G$ with $b_{k} \rightarrow b$ and $f\left(b_{k}\right) \rightarrow b^{\prime}$. If we had $b^{\prime} \in G^{\prime}$, then $E=\left\{b^{\prime}\right\} \cup\left\{f\left(b_{k}\right): k \geq 1\right\} \subset G^{\prime}$ would be compact, while $f^{-1} E$ would not, since $b \in \partial G$. This is a contradiction because f is proper. $\therefore b^{\prime} \in \partial G^{\prime}$ and f is boundary preserving.
2. Let $f: \mathbf{B}^{n} \rightarrow f\left(\mathbf{B}^{n}\right) \subset \mathbf{R}^{\mathbf{n}}$ be a homeomorphism with the property that there exists a number $K \geq 1$ such that for all $x, y \in \mathbf{B}^{n} \mu_{f\left(\mathrm{~B}^{n}\right)}(f(x), f(y)) \leq$ $K \mu_{\mathrm{B}^{n}}(x, y)$, and let $\left(b_{n}\right)$ be a sequence of points in \mathbf{B}^{n} such that $b_{k} \rightarrow b \in$ $\partial \mathbf{B}^{n}$ and $f\left(b_{k}\right) \rightarrow \beta$. (It is known, that $\partial f \mathbf{B}^{n}$ is connected, cf. 1.) Let $\rho\left(a_{k}, b_{k}\right)<M \forall k$. Show that $\lim _{k \rightarrow \infty} f\left(a_{k}\right)=\beta$ exists. Does the same conclusion hold for noninjective mappings?

Solution Since $\partial f B^{n}$ is connected, we may use 8.31[CGQM], the assumptions, and $8.6[\mathrm{CGQM}]$ to obtain

$$
\begin{aligned}
j_{f B^{n}}\left(f\left(a_{k}\right), f\left(b_{k}\right)\right) & \leq \frac{1}{c_{n}} \mu_{f B^{n}}\left(f\left(a_{k}\right), f\left(b_{k}\right)\right) \leq \frac{K}{c_{n}} \mu_{B^{n}}\left(a_{k}, b_{k}\right) \\
& =\frac{K}{c_{n}} \gamma\left(\frac{1}{\operatorname{th}\left(\rho\left(a_{k}, b_{k}\right) / 2\right)}\right) \leq \frac{K}{c_{n}} \gamma\left(\frac{1}{\operatorname{th}(M / 2)}\right)<\infty .
\end{aligned}
$$

Let α be an accumulation point of the sequence $\left(f\left(a_{k}\right)\right)$. Assume that $q(\alpha, \beta)=: 3 \varepsilon>0$.

Let $k_{0} \in \mathbb{N}$ be such that $q\left(f\left(a_{k}\right), \beta\right)<\varepsilon$ and $q\left(f\left(a_{k}\right), \alpha\right)<\varepsilon$ whenever $k \geq k_{0}$. Then, for $k \geq k_{0}$,

$$
\begin{aligned}
j_{f B^{n}}\left(f\left(a_{k}\right), f\left(b_{k}\right)\right) & =\log \left(1+\frac{\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|}{\min \left\{d\left(f\left(a_{k}\right), \partial f B^{n}\right), d\left(f\left(b_{k}\right), \partial f B^{n}\right)\right\}}\right) \\
& \geq \log \left(1+\frac{q\left(f\left(a_{k}\right), f\left(b_{k}\right)\right)}{d\left(f\left(b_{k}\right), \partial f B^{n}\right)}\right) \\
& \stackrel{\Delta-\text { ineq }}{ } \log \left(1+\frac{q(\alpha, \beta)-q\left(f\left(a_{k}\right), \alpha\right)-q\left(f\left(b_{k}\right), \beta\right)}{d\left(f\left(b_{k}\right), \partial f B^{n}\right)}\right) \\
& \geq \log \left(1+\frac{\varepsilon}{d\left(f\left(b_{k}\right), \partial f B^{n}\right)}\right) \rightarrow \infty
\end{aligned}
$$

as $k \rightarrow \infty$, since $f\left(b_{k}\right) \rightarrow \beta \in \partial f B^{n}$ and $\varepsilon>0$. This is a contradiction. Hence $\alpha=\beta$ and the proof is complete.

Note The conclusion does not hold for noninjective mappings: Let f be as in 1.(a). Choose a_{k}, b_{k} as in the following figure:

Now $a_{k}, b_{k} \rightarrow 1 \in \partial B^{2}, \rho\left(a_{k}, b_{k}\right)<M, \beta:=f\left(b_{k}\right)=\lim _{k \rightarrow \infty} f\left(b_{k}\right)$, but $f\left(a_{k}\right) \nrightarrow \beta$.
3. Let A, B, C, D be distinct points on the unit circle S^{1} in the stated order and 2α and 2β the lengths of the $\operatorname{arcs} A B$ and $C D$, respectively. Find the least value of $\mathrm{M}(\Delta(A B, C D)$). [Hint: $|A-C||B-D|=|A-B| \mid C-$ $D|+|B-C|| A-D \mid$ by Ptolemy's theorem [CG, p. 42], [BER, 10.9.2].]

Solution $\operatorname{Map} S^{1}$ onto \mathbf{R} by a Möbius map $f, f(D)=\infty$. Then

by the Möbius invariance of the modulus and the cross ratio. Now

$$
\left\{\begin{array} { c }
{ \operatorname { s i n } \alpha = \frac { 1 } { 2 } | A - B | } \\
{ \operatorname { s i n } \beta = \frac { 1 } { 2 } | C - D | }
\end{array} \Rightarrow \left\{\begin{array}{l}
|A-B|=2 \sin \alpha \\
|C-D|=2 \sin \beta
\end{array}\right.\right.
$$

and τ is strictly decreasing. Hence minimizing $M(\Delta)$ is equivalent to maximizing $\frac{|B-C| A-D \mid}{|A-B| C-D \mid}$ which is equivalent to maximizing $|B-C||A-D|$ which is equivalent, by Ptolemy, to maximizing $|A-C||B-D|$.

Let w be the length of the arc $B C$. Then

$$
\begin{aligned}
& |A-C|=2 \sin \left(\frac{2 \alpha+\omega}{2}\right) \\
& |B-D|=2 \sin \left(\frac{2 \beta+\omega}{2}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|A-C||B-D| & =4 \sin (\alpha+\omega / 2) \sin (\beta+\omega / 2) \\
& =2(\cos (\alpha+\omega / 2-\beta-\omega / 2)-\cos (\alpha+\beta+\omega)) \\
& =2(\cos (\alpha-\beta)-\cos (\alpha+\beta+\omega))
\end{aligned}
$$

where we used the formula $\sin (a) \sin (b)=(1 / 2)(\cos (a-b)-\cos (a+b))$. This is maximized when $\cos (\alpha+\beta+\omega)=-1$ which is equivalent to $\alpha+\beta+\omega=\pi$ and furthermore equivalent to $\omega=\pi-\alpha-\beta$.

Then, by Ptolemy's theorem,

$$
\begin{aligned}
|B, A, C, D| & =\frac{|A-C||B-D|-|A-B||C-D|}{|A-B||C-D|} \\
& =\frac{2(\cos (\alpha-\beta)+1)-4 \sin \alpha \sin \beta}{4 \sin \alpha \sin \beta} \\
& =\frac{\cos (\alpha-\beta)+1}{2 \sin \alpha \sin \beta}-1 . \\
\therefore \min \mathrm{M}(\Delta(A B, C D)) & =\tau\left(\frac{\cos (\alpha-\beta)+1}{2 \sin \alpha \sin \beta}-1\right) \frac{1}{2} .
\end{aligned}
$$

4. Let $E \subset \mathbf{R}^{\mathbf{n}}$ be compact, $\operatorname{cap} E>0$ and $E(t)=\cup_{x \in E} \mathbf{B}^{n}(x, t)$. It follows from Ziemer's theorem that for a fixed $t>0 \operatorname{cap}(E(t), E(s)) \rightarrow$ $\operatorname{cap}(E(t), E), s \rightarrow 0$. Show that $\operatorname{cap}(E(t), E) \rightarrow \infty$, when $t \rightarrow 0$. [Hint: Ziemer's theorem and $5.24[\mathrm{CGQM}]$ may be helpful here.]

Solution The function $h(t)=\operatorname{cap}(\mathrm{E}(\mathrm{t}), \mathrm{E})$ is decreasing by 5.3[CGQM]. Hence there exists the limit $\lim _{t \rightarrow 0+} h(t)=a \in(0, \infty]$. Assume that $a<\infty$. Denote for $t>0,0<s<r, \Gamma_{t}=\Delta(E, \partial E(t))$ and $\Gamma_{s r}=$ $\Delta(\partial E(s), \partial E(r) ; \overline{E(r)} \backslash E(s))$. By Lemma $5.24[\mathrm{CGQM}]$, we have for $0<$ $s<r$,

$$
\mathrm{M}\left(\Gamma_{r}\right)^{1 /(1-n)} \geq \mathrm{M}\left(\Gamma_{s}\right)^{1 /(1-n)}+\mathrm{M}\left(\Gamma_{s r}\right)^{1 /(1-n)}
$$

where $\mathrm{M}\left(\Gamma_{s}\right) \rightarrow a$, and $\mathrm{M}\left(\Gamma_{s r}\right) \rightarrow \mathrm{M}\left(\Gamma_{r}\right)$, as $s \rightarrow 0$ (Ziemer). This implies that $a^{1 /(1-n)} \leq 0$ and therefore $a \leq 0$, which is a contradiction. $\therefore a=\infty$.
5. Let $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ be a homeomorphism with $f(0)=0$ and assume that there is $K \geq 1$ such that for all distinct $x, y \in \mathbf{B}^{n}$

$$
\lambda_{\mathbf{B}^{n}}(x, y) / K \leq \lambda_{f \mathbf{B}^{n}}(f(x), f(y)) \leq K \lambda_{\mathbf{B}^{n}}(x, y)
$$

Prove that there are $a, b, c, d>0$ such that $a|x|^{b} \leq|f(x)| \leq c|x|^{d}$ for all $x \in \mathbf{B}^{n}$.

Solution By 8.6(2)[CGQM],

$$
\lambda_{B^{n}}(x, 0)=\frac{1}{2} \tau_{n}\left(\operatorname{sh}^{2}\left(\frac{1}{2} \rho(x, 0)\right)\right),
$$

and by $8.7[\mathrm{CGQM}]$,

$$
c_{n} \log \frac{1}{\operatorname{th} \frac{1}{4} \rho(x, 0)} \leq \frac{1}{2} \tau_{n}\left(\operatorname{sh}^{2}\left(\frac{1}{2} \rho(x, 0)\right)\right) \leq c_{n} \log \frac{2}{\operatorname{th} \frac{1}{4} \rho(x, 0)}
$$

Using 2.29(2)[CGQM] and (2.18)[CGQM], we get

$$
\operatorname{th} \frac{1}{4} \rho(x, 0)=\frac{\operatorname{th} \frac{1}{2} \rho(x, 0)}{1+\sqrt{1-\operatorname{th}^{2} \frac{1}{2} \rho(x, 0)}}
$$

and

$$
\begin{aligned}
\operatorname{th}^{2} \frac{1}{2} \rho(x, 0) & =\frac{\operatorname{sh}^{2} \frac{1}{2} \rho(x, 0)}{\operatorname{ch}^{2} \frac{1}{2} \rho(x, 0)}=\frac{\operatorname{sh}^{2} \frac{1}{2} \rho(x, 0)}{1+\operatorname{sh}^{2} \frac{1}{2} \rho(x, 0)} \\
& =\frac{\frac{|x|^{2}}{1-|x|^{2}}}{1+\frac{|x|^{2}}{1-|x|^{2}}}=\frac{|x|^{2}}{1-|x|^{2}+|x|^{2}}=|x|^{2}
\end{aligned}
$$

Hence th $\frac{1}{4} \rho(x, 0)=|x| /\left(1+\sqrt{1-|x|^{2}}\right)$ and

$$
c_{n} \log \frac{1+\sqrt{1-|x|^{2}}}{|x|} \leq \lambda_{B^{n}}(x, 0) \leq c_{n} \log \frac{2\left(1+\sqrt{1-|x|^{2}}\right)}{|x|}
$$

Since $f B^{n}=B^{n}, f(0)=0$, we get $\lambda_{f B^{n}}(f(x), f(0))=\lambda_{B^{n}}(f(x), 0)$. Consequently,

$$
\begin{aligned}
& c_{n} \log \frac{1+\sqrt{1-|f(x)|^{2}}}{|f(x)|} \leq K c_{n} \log \frac{2\left(1+\sqrt{1-|x|^{2}}\right)}{|x|} \\
\Rightarrow & \frac{|f(x)|}{1+\sqrt{1-|f(x)|^{2}}} \geq \frac{1}{2^{K}} \frac{|x|^{K}}{\left(1+\sqrt{1-|x|^{2}}\right)^{K}} \\
\Rightarrow & |f(x)| \geq \frac{1}{2^{K}} \frac{|x|^{K}}{2^{K}}=\frac{1}{2^{2 K}}|x|^{K}
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{n} \log \frac{1+\sqrt{1-|x|^{2}}}{|x|} \leq K c_{n} \log \frac{2\left(1+\sqrt{1-|f(x)|^{2}}\right)}{|f(x)|} \\
\Rightarrow & \frac{|x|}{1+\sqrt{1-|x|^{2}}} \geq \frac{|f(x)|^{K}}{2^{K}\left(1+\sqrt{\left.1-\mid f(x)^{2}\right)^{K}}\right.} \\
\Rightarrow & |x| \geq \frac{|f(x)|^{K}}{2^{2 K}} \\
\Rightarrow & |f(x)| \leq\left(2^{2 K}|x|\right)^{1 / K}=4|x|^{1 / K} \\
\therefore & \frac{1}{2^{2 K}}|x|^{K} \leq|f(x)| \leq 4|x|^{1 / K} \quad \forall x \in B^{n} .
\end{aligned}
$$

6. In complex notation, Möbius transformations are defined by $T(z)=$ $\frac{a z+b}{c z+d}$ with $\Delta=a d-b c \neq 0$. These mappings generate a group.
(a) Prove that $T\left(z_{1}\right)-T\left(z_{2}\right)=\frac{\Delta\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)}$.
(b) Prove that the cross ratio $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}$ is invariant under T.
(c) Prove that $\frac{T^{\prime \prime}(z)}{T^{\prime \prime}(z)}=-\frac{2 c}{c z+d}, D\left(\frac{T^{\prime}(z)}{T^{\prime \prime}(z)}\right)=-\frac{1}{2}$, and $S_{T}=0$,

$$
S_{T}=\frac{T^{\prime \prime \prime}(z)}{T^{\prime}(z)}-\frac{3}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2}=\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2} .
$$

Solution

(a)

$$
\begin{aligned}
T\left(z_{1}\right)-T\left(z_{2}\right) & =\frac{a z_{1}+b}{c z_{1}+d}-\frac{a z_{2}+b}{c z_{2}+d} \\
& =\frac{\left(a z_{1}+b\right)\left(c z_{2}+d\right)-\left(a z_{2}+b\right)\left(c z_{1}+d\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \\
& =\frac{a c z_{1} z_{2}+b c z_{2}+a d z_{1}+b d-a c z_{1} z_{2}-b c z_{1}-a d z_{2}-b d}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \\
& =\frac{(a d-b c) z_{1}+(b c-a d) z_{2}}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \\
& =\frac{\Delta\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
{\left[T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right] } & =\frac{\left(T\left(z_{1}\right)-T\left(z_{3}\right)\right)\left(T\left(z_{2}\right)-T\left(z_{4}\right)\right)}{\left(T\left(z_{1}\right)-T\left(z_{2}\right)\right)\left(T\left(z_{3}\right)-T\left(z_{4}\right)\right)} \\
& \stackrel{(a)}{=} \frac{\frac{\Delta\left(z_{1}-z_{3}\right)}{\left(c z_{1}+d\right)\left(c z_{3}+d\right)} \frac{\Delta\left(z_{2}-z_{4}\right)}{\left(c z_{2}+\operatorname{cz}\right)\left(z_{4}+d\right)}}{\frac{\Delta\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \frac{\Delta\left(z_{3}-z_{4}\right)}{\left(c z_{3}+d\right)\left(c z_{4}+d\right)}} \\
& =\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]
\end{aligned}
$$

(c)

$$
\begin{aligned}
T^{\prime}(z) & =\frac{a(c z+d)-c(a z+b)}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}}=\frac{\Delta}{(c z+d)^{2}} \\
T^{\prime \prime}(z) & =\frac{-2 c(c z+d) \Delta}{(c z+d)^{4}}=\frac{-2 c \Delta}{(c z+d)^{3}} \\
T^{\prime \prime \prime}(z) & =\frac{-3 c(c z+d)^{2}(-2 c \Delta)}{(c z+d)^{6}}=\frac{6 c^{2} \Delta}{(c z+d)^{4}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{T^{\prime \prime}(z)}{T^{\prime}(z)}=\frac{\frac{-2 c \Delta}{(c z+d)^{3}}}{\frac{\Delta}{(c z+d)^{2}}}=\frac{-2 c}{c z+d} ; \\
& D\left(\frac{T^{\prime}(z)}{T^{\prime \prime}(z)}\right)=D\left(\frac{\frac{\Delta}{(c z+d)^{2}}}{\frac{-2 c \Delta}{(c z+d)^{3}}}\right) \\
& =D\left(\frac{c z+d}{-2 c}\right)=D\left(-\frac{1}{2} z-\frac{d}{2 c}\right)=-\frac{1}{2} ; \\
& \frac{T^{\prime \prime \prime}(z)}{T^{\prime}(z)}-\frac{3}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2}=\frac{\frac{6 c^{2} \Delta}{(c z+d)^{4}}}{\frac{\Delta}{(c z+d)^{2}}}-\frac{3}{2}\left(\frac{-2 c}{c z+d}\right)^{2} \\
& =\frac{6 c^{2}}{(c z+d)^{2}}-\frac{3}{2} \frac{4 c^{2}}{(c z+d)^{2}}=0 ; \\
& \left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{\prime}=\left(\frac{-2 c}{c z+d}\right)^{\prime}=\frac{-c(-2 c)}{(c z+d)^{2}}=\frac{2 c^{2}}{(c z+d)^{2}} \\
& \Rightarrow\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2}=\frac{2 c^{2}}{(c z+d)^{2}}-\frac{1}{2} \frac{4 c^{2}}{(c z+d)^{2}}=0 .
\end{aligned}
$$

