Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 10
Winter 2009 / Vuorinen

1. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous. The cluster set of f at a point $b \in \partial G$ is the set $C(f, b)=\left\{b^{\prime} \in \overline{\mathbf{R}}^{n}: \exists\left(b_{k}\right) \in\right.$ $\left.G^{n}, b_{k} \rightarrow b, f\left(b_{k}\right) \rightarrow b^{\prime}\right\}$. It is clear that $C(f, b) \subset \overline{G^{\prime}}$, and that for injective maps $C(f, b) \subset \partial G^{\prime}$. The cluster set $C(f, b)$ is a singleton iff f has a limit at b. The cluster set is connected if there are arbitrarily small numbers $t>0$ such that $B(b, t) \cap G$ is connected. We say that f is boundary preserving if $C(f, b) \subset \partial G^{\prime}$ for all $b \in \partial G$.
(a) Find for each $b \in S^{1}$ the cluster set $C(f, b)$ of the analytic function $f: B^{2} \rightarrow B^{2}$, with $f(z)=\exp g(z)$ when $g(z)=-(1+z) /(1-z), z \in B^{2}$.
(b) Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be open and continuous. Show that f is boundary preserving iff f is proper.
2. Let $f: \mathbf{B}^{n} \rightarrow f\left(\mathbf{B}^{n}\right) \subset \mathbf{R}^{n}$ be a homeomorphism with the property that there exists a number $K \geq 1$ such that for all $x, y \in \mathbf{B}^{n} \mu_{f\left(\mathbf{B}^{n}\right)}(f(x), f(y)) \leq$ $K \mu_{\mathbf{B}^{n}}(x, y)$, and let $\left(b_{n}\right)$ be a sequence of points in \mathbf{B}^{n} such that $b_{k} \rightarrow$ $b \in \partial \mathbf{B}^{n}$ and $f\left(b_{k}\right) \rightarrow \beta$. (It is known, that $\partial f \mathbf{B}^{n}$ is connected, cf. 1.) Let $\rho\left(a_{k}, b_{k}\right)<M \forall k$. Show that $\lim _{k \rightarrow \infty} f\left(a_{k}\right)=\beta$ exists. Does the same conclusion hold for noninjective mappings?
3. Let A, B, C, D be distinct points on the unit circle S^{1} in the stated order and 2α and 2β the lengths of the $\operatorname{arcs} A B$ and $C D$, respectively. Find the least value of $\mathrm{M}(\Delta(A B, C D))$. [Hint: $|A-C||B-D|=|A-B||C-D|+$ $|B-C||A-D|$ by Ptolemy's theorem [CG, p. 42], [BER, 10.9.2].]
4. Let $E \subset \mathbf{R}^{n}$ be compact, cap $E>0$ and $E(t)=\cup_{x \in E} \mathbf{B}^{n}(x, t)$. It follows from Ziemer's theorem that for a fixed $t>0 \operatorname{cap}(E(t), \overline{E(s)}) \rightarrow$ $\operatorname{cap}(E(t), E), s \rightarrow 0$. Show that $\operatorname{cap}(E(t), E) \rightarrow \infty$, when $t \rightarrow 0$. [Hint: Ziemer's theorem and $5.24[\mathrm{CGQM}]$ may be helpful here.]
5. Let $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ be a homeomorphism with $f(0)=0$ and assume that there is $K \geq 1$ such that for all distinct $x, y \in \mathbf{B}^{n}$

$$
\lambda_{\mathbf{B}^{n}}(x, y) / K \leq \lambda_{f \mathbf{B}^{n}}(f(x), f(y)) \leq K \lambda_{\mathbf{B}^{n}}(x, y) .
$$

Prove that there are $a, b, c, d>0$ such that $a|x|^{b} \leq|f(x)| \leq c|x|^{d}$ for all $x \in \mathbf{B}^{n}$.
6. In complex notation, Möbius transformations are defined by $T(z)=\frac{a z+b}{c z+d}$ with $\Delta=a d-b c \neq 0$. These mappings generate a group.
(a) Prove that $T\left(z_{1}\right)-T\left(z_{2}\right)=\frac{\Delta\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)}$.
(b) Prove that the cross ratio $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}$ is invariant under T.
(c) Prove that $\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}=-\frac{2 c}{c z+d}, D\left(\frac{T^{\prime}(z)}{T^{\prime \prime}(z)}\right)=-\frac{1}{2}$, and $S_{T}=0$,

$$
S_{T}=\frac{T^{\prime \prime \prime}(z)}{T^{\prime}(z)}-\frac{3}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2}=\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{T^{\prime \prime}(z)}{T^{\prime}(z)}\right)^{2} .
$$

L. V. Ahlfors writes in [A5]: "For those who like computing I recommend proving the formula:"

$$
[f(z+t a), f(z+t b), f(z+t c), f(z+t d)]=[a, b, c, d]\left(1+\frac{t^{2}}{6} S_{f}(z)+O\left(t^{3}\right)\right)
$$

Here f is an analytic function. This formula is not part of problem 6.

