Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 8
Winter 2009 / Vuorinen

1. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous. Then f is said to be open if it maps all open subsets onto open subsets of G^{\prime}, closed if it maps all closed subsets onto closed subsets of G^{\prime}, and proper if for every compact $K \subset G^{\prime}$ also $f^{-1} K$ is compact. Note the condition $f G=G^{\prime}$ above, i.e. f is a surjective map.
(a) Show that the map $f: H \rightarrow B^{2} \backslash\{0\}, H=\{z \in \mathbb{C}: \operatorname{Re} z<0\}$, $f(z)=\exp (z)$, is open but neither proper nor closed.
(b) Prove: Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. If $y \in G^{\prime}$, then $f^{-1}(y)$ is compact.
(c) Prove: Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. If $y \in G^{\prime}$ and U is an open neighborhood of $f^{-1}(y)$ in G, then there is an open neighborhood V of y in G^{\prime} such that $f^{-1} V \subset U$.

Solution:

(a) It is clear that f is locally injective, hence open, and not proper (the point $z=1 / 2$ has preimages $-\log 2+i 2 \pi k, k \in \mathbb{Z}$.) It is less obvious that it is not closed (consider the closed set $C=\left\{k_{p}=\log (1 / 2+1 / p), p \in \mathbb{N}, p>2\right\}$ whose image is not closed in $B^{2} \backslash\{0\}$).
(b) Suppose the opposite. Then there is a sequence $\left(b_{k}\right)$ in $f^{-1}(y)$ such that $b_{k} \rightarrow b \in \partial G$. Since f is continuous, for each k there is $r_{k} \in(0,1 / k)$ such that if $U_{k}=B^{n}\left(b_{k}, r_{k}\right)$, then $U_{k} \subset G$ and $f U_{k} \subset B^{n}(y, 1 / k)$. Since f is open, $f U_{k}$ is an open neighborhood of y in G^{\prime}. Hence, there is $a_{k} \in U_{k}$ such that $f\left(a_{k}\right) \neq y$. Now $a_{k} \rightarrow b$ and $f\left(a_{k}\right) \rightarrow y$. Hence, $\left\{a_{k} \mid k \geq 1\right\}$ is closed in G, but $\left\{f\left(a_{k}\right) \mid k \geq 1\right\}$ is not closed in G^{\prime}, a contradiction as f is closed.
(c) Suppose the opposite. Then there is a sequence (b_{k}) in $F=G \backslash U$ with $f\left(b_{k}\right) \rightarrow y$. Now F is closed in G and hence $f F$ closed in G^{\prime}. Thus, $y \in f F$. This is a contradiction as $f^{-1}(y) \subset G \backslash F$.
2. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. Then f is proper, i.e., for every compact $E \subset G^{\prime}$, also $f^{-1} E$ is compact.

Solution: Suppose that $E \subset G^{\prime}$ is compact. We must prove that $f^{-1} E$ is compact. Suppose the opposite. By continuity, the set $f^{-1} E$ is closed in G. Hence there is a sequence $\left(x_{j}\right)$ in $f^{-1} E$ such that $x_{j} \rightarrow x \in \partial G$. The set $\left\{x_{j}: j \geq 1\right\}$ is closed in G, and thus $\left\{f\left(x_{j}\right): j \geq 1\right\}$ is closed in G^{\prime}, and hence also in E, i.e., it is compact. The sequence $\left(x_{j}\right)$ has a subsequence $\left(x_{j_{k}}\right)$ such that $f\left(x_{j_{k}}\right) \rightarrow f(z)$ for some $z \in \partial G$. According to exercises 1 b and 1c there is a neighborhood V of $f(z)$ in G^{\prime} such that $A=\overline{f^{-1} V} \subset G$. By passing to a subsequence we may assume that $f\left(x_{j_{k}}\right) \in V$ for all k. Now $x_{j_{k}} \in A$ for all k. The set A is compact and hence $x=\lim x_{j_{k}} \in A \subset G$, a contradiction.
3. For $\alpha>0$ we denote by $I(\alpha)$ the class of compact subsets E of $\overline{\mathbf{B}^{n}}$ with

$$
A=\int_{B^{n}(2) \backslash E} \frac{d m}{d(x, E)^{\alpha}}<\infty
$$

Then, for example, $\{0\} \in I(\alpha)$ when $\alpha<n$, and $S^{n-1} \in I(\alpha)$ when $\alpha<1$. Fix $E \in I(\alpha)$, denote $E_{k}=\left\{x \in \mathbf{R}^{\mathbf{n}}: 2^{-\mathrm{k}-1} \leq \mathbf{d}(\mathrm{x}, \mathrm{E}) \leq 2^{-\mathrm{k}}\right\}, k=$ $1,2, \ldots$, and for $p>0$ let Γ_{p} be the family of all curves in $\Delta\left(E, S^{n-1}(2) ; \mathbf{R}^{\mathrm{n}}\right)$ with $\ell\left(\gamma \cap E_{k}\right) \geq 2^{-k p}$. Show that $\mathrm{M}\left(\Gamma_{p}\right)=0$ for $p<\alpha / n$.

Solution: Fix $\varepsilon>0$. Define $\rho(x)=c d(x, E)^{-\alpha / n}, c=(\varepsilon / A)^{1 / n}$ for $|x| \leq 2$ and $\rho(x)=0$ for $|x|>2$. Then $\int_{\mathbf{R}^{\mathrm{n}} \backslash \mathbf{E}} \rho^{n} d m<\varepsilon$, since $E \in I(\alpha)$. Fix $p \in(0, \alpha / n)$. For $\gamma \in \Gamma_{p}$ we have

$$
\int_{\gamma} \rho d s \geq c \sum_{k=0}^{\infty} \int_{\gamma \cap E_{k}} \rho d s \geq \sum_{k=0}^{\infty} 2^{-p k} 2^{k \alpha / n}=\infty
$$

Hence $\rho \in F\left(\Gamma_{p}\right)$. Because $\varepsilon>0$ is arbitrary $M\left(\Gamma_{p}\right)=0$. (Cf. also Lemma 5.7[CGQM].)
4. Let $x, y \in \mathbf{B}^{n}, x \neq y$ and $M \in\left(0, \frac{\rho(x, y)}{2}\right)$. Show that

$$
\mathrm{M}\left(\Delta\left(D(x, M), D(y, M) ; \mathbf{B}^{n}\right)\right) \geq d_{1}(n, M) \rho(x, y)^{1-n}
$$

where $d_{1}>0$.
Solution: By the Möbius invariance of the modulus, we may assume that $x=e_{n}, y=e^{\rho(x, y)} e_{n}$ in \mathbf{H}^{n}. Let Γ be the curve family which consists of line segments $\left\{t y \mid 1 \leq t \leq e^{\rho(x, y)}\right\}, y \in Y$, and let $\triangle=$ $\triangle\left(D(x, M), D(y, M), \mathbf{H}^{n}\right)$. Then $\Gamma \subset \Delta$.

By (5.12)[CGQM],

$$
\begin{aligned}
\mathrm{M}(\Gamma) & =m_{n-1}(Y)\left(\log \frac{e^{\rho(x, y)}}{1}\right)^{1-n} \\
& =m_{n-1}(Y) \rho(x, y)^{1-n}
\end{aligned}
$$

where $m_{n-1}(Y)=\omega_{n-1} \alpha / \pi=\omega_{n-1} \arcsin (\operatorname{th} M) / \pi$. Hence we have

$$
\mathrm{M}(\triangle) \geq \mathrm{M}(\Gamma)=d_{1}(n, M) \rho(x, y)^{1-n}
$$

where $d_{1}(n, M)=\omega_{n-1} \arcsin (\operatorname{th} M) / \pi>0$.
5. Let $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ be a homeomorphism mapping each sphere centered at 0 onto another sphere centered at 0 (such a mapping is called a radial mapping) and with the property that for some $K \geq 1, \mathrm{M}(\Gamma) / K \leq$ $\mathrm{M}(f(\Gamma)) \leq K \mathrm{M}(\Gamma)$ whenever Γ is the family of all curves connecting the boundary components of a spherical annulus centered at 0 . Show that for all $x \in \mathbf{B}^{n}$

$$
|x|^{1 / \alpha} \leq|f(x)| \leq|x|^{\alpha}, \alpha=K^{1 /(1-n)}
$$

Solution:

Denote by $h:[0,1) \rightarrow[0,1)$ the map $h(t)=\left|f\left(t e_{1}\right)\right|$. Let $0<s<r<1$ and $\Gamma=\Delta\left(S^{n-1}(r), S^{n-1}(s)\right)$. Now $\mathrm{M}(\Gamma)=\omega_{n-1}\left(\log \frac{r}{s}\right)^{1-n}$ and since f is a radial mapping we have

$$
\begin{equation*}
\mathrm{M}(f \Gamma)=\omega_{n-1}\left(\log \frac{h(r)}{h(s)}\right)^{1-n} \tag{1}
\end{equation*}
$$

Denote $\alpha=K^{1 /(1-n)}$. By (1) and the modulus property of f we have

$$
\begin{aligned}
& \frac{1}{K} \mathrm{M}(\Gamma) \leq \mathrm{M}(f \Gamma) \leq K \mathrm{M}(\Gamma) \\
\Leftrightarrow & \left(\frac{1}{\alpha}\right)^{1-n}\left(\log \frac{r}{s}\right)^{1-n} \leq\left(\log \frac{h(r)}{h(s)}\right)^{1-n} \leq \alpha^{1-n}\left(\log \frac{r}{s}\right)^{1-n} \\
\Leftrightarrow & \alpha \log \frac{r}{s} \leq \log \frac{h(r)}{h(s)} \leq \frac{1}{\alpha} \log \frac{r}{s} \\
\Leftrightarrow & \left(\frac{r}{s}\right)^{\alpha} \leq \frac{h(r)}{h(s)} \leq\left(\frac{r}{s}\right)^{1 / \alpha} .
\end{aligned}
$$

Hence $h(r) \geq(r / s)^{\alpha} h(s)$ and h is increasing. From this we can conclude that $h(r) \rightarrow 1$ as $r \rightarrow 1$. (This conclusion can also be obtained by using purely topological arguments.) Letting $r \rightarrow 1$, we obtain the inequality

$$
\left(\frac{1}{s}\right)^{\alpha} \leq \frac{1}{h(s)} \leq\left(\frac{1}{s}\right)^{1 / \alpha}
$$

which implies that

$$
s^{1 / \alpha} \leq h(s) \leq s^{\alpha}
$$

and furthermore that

$$
|x|^{1 / \alpha} \leq|f(x)| \leq|x|^{\alpha} .
$$

6. Let $G=\mathbb{B}^{2} \backslash\{0\}$.
(a) For $0<r<1 / 2$ compute the quasihyperbolic area w.r.t. k_{G} of the annulus $\{z: r<|z|<1 / 2\}$.
(b) For $1 / 2<r<1$ compute the quasihyperbolic area w.r.t. k_{G} of the annulus $\{z: 1 / 2<|z|<r\}$.

Solution: Let us denote $A(a, b)=\{z \in G: a<|z|<b\}$.
(a)

$$
m_{k}\left(A\left(r_{0}, 1 / 2\right)\right)=\int_{0}^{2 \pi} \int_{1 / 2}^{r_{0}} \frac{d r}{r} d \alpha=2 \pi(\log (1 / 2)-\log (r))=2 \pi \log \frac{1}{2 r}
$$

(b)

$$
m_{k}\left(A\left(1 / 2, r_{1}\right)\right)=\int_{0}^{2 \pi} \int_{r_{1}}^{1 / 2} \frac{r d r}{(1-r)^{2}} d \alpha=2 \pi\left(\frac{1}{1-r_{1}}+\log \left(1-r_{1}\right)-2-\log (1 / 2)\right)
$$

