Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 8
Winter 2009 / Vuorinen

1. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous. Then f is said to be open if it maps all open subsets onto open subsets of G^{\prime}, closed if it maps all closed subsets onto closed subsets of G^{\prime}, and proper if for every compact $K \subset G^{\prime}$ also $f^{-1} K$ is compact. Note the condition $f G=G^{\prime}$ above, i.e. f is a surjective map.
(a) Show that the map $f: H \rightarrow B^{2} \backslash\{0\}, H=\{z \in \mathbf{C}: \operatorname{Re} z<0\}$, $f(z)=\exp (z)$, is open but neither proper nor closed.
(b) Prove: Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. If $y \in G^{\prime}$, then $f^{-1}(y)$ is compact.
(c) Prove: Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. If $y \in G^{\prime}$ and U is an open neighborhood of $f^{-1}(y)$ in G, then there is an open neighborhood V of y in G^{\prime} such that $f^{-1} V \subset U$.
2. Let $G, G^{\prime} \subset \overline{\mathbf{R}}^{n}$ be domains, and let $f: G \rightarrow G^{\prime}=f G$ be continuous, open, and closed. Then f is proper, i.e., for every compact $E \subset G^{\prime}$, also $f^{-1} E$ is compact.
3. For $\alpha>0$ we denote by $I(\alpha)$ the class of compact subsets E of $\overline{\mathbf{B}}^{n}$ with

$$
\int_{B^{n}(2) \backslash E} \frac{d m}{d(x, E)^{\alpha}}<\infty .
$$

Then, for example, $\{0\} \in I(\alpha)$ when $\alpha<n$, and $S^{n-1} \in I(\alpha)$ when $\alpha<1$. Fix $E \in I(\alpha)$, denote $E_{k}=\left\{x \in \mathbf{R}^{n}: 2^{-k-1} \leq d(x, E) \leq 2^{-k}\right\}, k=1,2, \ldots$, and for $p>0$ let Γ_{p} be the family of all curves in $\Delta\left(E, S^{n-1}(2) ; \mathbf{R}^{n}\right)$ with $\ell\left(\gamma \cap E_{k}\right) \geq 2^{-k p}$. Show that $\mathrm{M}\left(\Gamma_{p}\right)=0$ for $p<\alpha / n$.
4. Let $x, y \in \mathbf{B}^{n}, x \neq y$ and $M \in\left(0, \frac{\rho(x, y)}{2}\right)$. Show that

$$
\mathrm{M}\left(\Delta\left(D(x, M), D(y, M) ; \mathbf{B}^{n}\right)\right) \geq d_{1}(n, M) \rho(x, y)^{1-n}
$$

where $d_{1}>0$.
5. Let $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ be a homeomorphism mapping each sphere centered at 0 onto another sphere centered at 0 (such a mapping is called a radial mapping) and with the property that for some $K \geq 1, \mathrm{M}(\Gamma) / K \leq \mathrm{M}(f(\Gamma)) \leq K \mathrm{M}(\Gamma)$ whenever Γ is the family of all curves connecting the boundary components of a spherical annulus centered at 0 . Show that for all $x \in \mathbf{B}^{n}$

$$
|x|^{1 / \alpha} \leq|f(x)| \leq|x|^{\alpha}, \alpha=K^{1 /(1-n)}
$$

6. Let $G=\mathbb{B}^{2} \backslash\{0\}$.
(a) For $0<r<1 / 2$ compute the quasihyperbolic area w.r.t. k_{G} of the annulus $\{z: r<|z|<1 / 2\}$.
(b) For $1 / 2<r<1$ compute the quasihyperbolic area w.r.t. k_{G} of the annulus $\{z: 1 / 2<|z|<r\}$.
