Quasiregular Mappings
Department of Mathematics and Statistics
University of Helsinki
Problem Set 6
Winter 2009 / Vuorinen

1. Show that for all $x, y \in G \subsetneq \mathbf{R}^{n}$ the inequality

$$
\inf _{\gamma \in \Gamma_{x y}} \log \left(1+\frac{\ell(\gamma)}{\min \{d(x), d(y)\}}\right) \leq k_{G}(x, y)
$$

where $\Gamma_{x y}$ is the family of all curves connecting the points x and y within G, and $d(x)=\operatorname{dist}(x, \partial G)$.
2. Let $D=\mathbf{R}^{2} \backslash\left\{t e_{1}: t \geq 0\right\}$. Show that there is no constant $C>0$ such that

$$
k_{D}(x, y) \leq C j_{D}(x, y), \forall x, y \in D
$$

3. Let us define

$$
m(x, y)=|x-y|^{1 / 2}
$$

for $x, y \in \mathbf{R}$. Show that m is a metric and $[0,1]$ is not rectifiable with respect to m. (Hint: length of $[0,1]$ is

$$
\left.\sup \left\{\sum_{i=1}^{n} m\left(x_{i}, x_{i+1}\right): n \in \mathbb{N}, x_{1}=0, x_{n+1}=1, x_{k}<x_{k+1}\right\} .\right)
$$

4. Let $r_{k} \in\left(0,2^{-k-3}\right)$, let $B_{k}=B^{n}\left(2^{-k} e_{n}, r_{k}\right)$, and let $E=\cup B_{k}$.
(a) Show that the numbers r_{k} can be chosen so that $\mathrm{M}(\Delta(E, \partial \mathbf{H}))=\infty$.
(b) Show that, for every $\varepsilon>0$, the numbers r_{k} can be chosen so that

$$
\mathrm{M}(\Delta(E, \partial \mathbf{H}))<\varepsilon
$$

(c) Assume that the numbers r_{k} have been chosen as in (b) with $\varepsilon=1$. Show that

$$
\mathrm{M}\left(\Delta\left(E_{r}, \partial \mathbf{H}\right)\right) \rightarrow 0
$$

when $r \rightarrow 0$ where $E_{r}=E \cap \overline{\mathbf{B}^{n}(r)}$.
5. Let $E, F \subset R(2,1), R(a, b)=\mathbf{B}^{n}(a) \backslash \overline{\mathbf{B}^{n}(b)}, a>b>0$, and

$$
\delta=\mathrm{M}\left(\Delta\left(E, F, \mathbf{R}^{n}\right)\right)>0
$$

Find a number $c>1, c=c(n, \delta)$, such that $\mathrm{M}(\Delta(E, F, R(2 c, 1 / c))) \geq$ $\delta / 2$.
6. Let $E \subset \mathbf{B}^{n}$ and $\delta=\mathrm{M}\left(\Delta\left(S^{n-1}(2), E, \mathbf{R}^{n}\right)\right)>0$. Find a number $c>1, c=c(n, \delta)$, such that

$$
\mathrm{M}\left(\Delta\left(S^{n-1}(2), E, R(2 c, 1 / c)\right)\right) \geq \delta / 2
$$

File: qr0906.tex, 2009-2-16,16.00

