Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 4
Winter 2009/ Vuorinen

1. (1) Show that an inversion f in $S^{n-1}(a, r)$, when $a_{n}=0$, preserves the upper half-space

$$
f\left(\mathbf{H}^{n}\right)=\mathbf{H}^{n}
$$

(2) Show that the expression

$$
\frac{|x-y|^{2}}{2 x_{n} y_{n}}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, is invariant under an inversion in $S^{n-1}(a, r)$ when $a_{n}=0$.
Solution: (1) Because $a_{n}=0$ we see that

$$
f x=a+\frac{r^{2}(x-a)}{|x-a|^{2}} \Longrightarrow(f x)_{n}=\frac{r^{2} x_{n}}{|x-a|^{2}}
$$

and hence $f H^{n} \subset H^{n}$. Because $f=f^{-1}$ the assertion follows.
(2) The proof follows from part (1), because by (1.5)[CGQM]

$$
|f x-f y|=\frac{r^{2}|x-y|}{|x-a||y-a|}
$$

2. Let f be the translation $f: x \mapsto x+b$. Find an upper bound for the Lipschitz constant of f in the spherical metric.
Solution: By 1.3[CGQM] $f=f_{1} \circ f_{2}$, where f_{1} is the reflection in $P(b, 0)$ and f_{2} is the reflection in $P\left(b, \frac{|b|^{2}}{2}\right)$. Since $0 \in P(b, 0), f_{1} \in O(n)$ (orthogonal map) and we have that $\operatorname{Lip}\left(f_{1}\right)=1 . ~ P\left(b, \frac{\mid b^{2}}{2}\right)=\partial Q(z, r)$, where $\infty \in \partial Q(z, r)$. Hence f_{2} is the inversion in $\partial Q(z, r)$ and by Lemma 1.54 (3) $[\mathrm{CGQM}], \operatorname{Lip}\left(f_{2}\right) \leq \frac{1}{r_{1}^{2}}-1$.

Now $2 s=q\left(\frac{b}{2}, \infty\right)=\frac{r_{1}^{2}}{\sqrt{1+\frac{|b|^{2}}{4}}}$, and it follows that $s=\frac{1}{\sqrt{4+|b|^{2}}}$. Since $u^{2}+s^{2}=$ $\frac{1}{4}$, it follows that

$$
u=\sqrt{\frac{1}{4}-s^{2}}=\frac{|b|}{2 \sqrt{4+|b|^{2}}}
$$

Then

$$
v=\frac{1}{2}-u=\frac{\sqrt{4+|b|^{2}}-|b|}{2 \sqrt{4+|b|^{2}}}
$$

Thus

$$
\begin{aligned}
r^{2} & =s^{2}+v^{2}=\frac{1}{4+|b|^{2}}+\frac{4+|b|^{2}-2|b| \sqrt{4+|b|^{2}}+|b|^{2}}{4\left(4+|b|^{2}\right)} \\
& =\frac{4+|b|^{2}-|b| \sqrt{4+|b|^{2}}}{2\left(4+|b|^{2}\right)}
\end{aligned}
$$

Hence it follows that

$$
\begin{aligned}
\frac{1}{r^{2}}-1 & =\frac{2\left(4+|b|^{2}\right)}{4+|b|^{2}-|b| \sqrt{4+|b|^{2}}}-1=\frac{2\left(4+|b|^{2}\right)\left(4+|b|^{2}+|b| \sqrt{4+|b|^{2}}\right)}{\left(4+|b|^{2}\right)^{2}-|b|^{2}\left(4+|b|^{2}\right)} \\
& =\frac{1}{2}\left(4+|b|^{2}+|b| \sqrt{4+|b|^{2}}\right)-1=1+\frac{|b|^{2}}{2}+|b| \sqrt{1+\frac{|b|^{2}}{4}}
\end{aligned}
$$

$\therefore \operatorname{Lip}(f) \leq 1+\frac{|b|^{2}}{2}+|b| \sqrt{1+\frac{|b|^{2}}{4}}$.
3. Verify the following elementary relations.
(1) $1-e^{-s} \leq$ th $s \leq 1-e^{-2 s}$ for $s \geq 0$.
(2) If $s \geq 0$, then

$$
\operatorname{th} s=\frac{\operatorname{th} 2 s}{1+\sqrt{1-\operatorname{th}^{2} 2 s}}
$$

Further, if $u \in[0,1]$ and $2 s=\operatorname{arth} u$, then

$$
\operatorname{th} s=\frac{u}{1+\sqrt{1-u^{2}}} \leq \frac{1}{2}\left(u+u^{2}\right) .
$$

(3) $\log \operatorname{th} s=-2 \operatorname{arth} e^{-2 s}, s>0$.
(4) $\log (1+x) \leq \operatorname{arsh} x \leq 2 \log (1+x), x \geq 0$.
(5) $2 \log \left(1+\sqrt{\frac{1}{2}(x-1)}\right) \leq \operatorname{arch} x \leq 2 \log (1+\sqrt{2(x-1)}), x \geq 1$.

Solution:

(1)

$$
\begin{aligned}
\text { th } s & =\frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}=\frac{1-e^{-2 s}}{1+e^{-2 s}} \leq 1-e^{-2 s} \\
\text { th } s \geq 1-e^{-s} & \Leftrightarrow \frac{1-y^{2}}{1+y^{2}} \geq 1-y \Leftrightarrow y^{3}-2 y^{2}+y \geq 0 \\
& \Leftrightarrow y(y-1)^{2} \geq 0 \Leftrightarrow e^{-s}\left(e^{-s}-1\right)^{2} \geq 0, \text { OK }
\end{aligned}
$$

where we denoted e^{-s} by y.
(2)

$$
\begin{aligned}
\frac{2 \operatorname{th} s}{1+\operatorname{th}^{2} s} & =\frac{2 \frac{\operatorname{sh} s}{\operatorname{ch}^{2}}}{1+\frac{\operatorname{sh}^{2} s}{\operatorname{ch}^{2} s}}=\frac{2 \operatorname{sh} s \operatorname{ch} s}{\operatorname{ch}^{2} s+\operatorname{sh}^{2} s} \\
& =\frac{2 \operatorname{sh} s \operatorname{ch} s}{2 \operatorname{ch}^{2}-1}=\frac{2 \frac{1}{2}\left(e^{s}-e^{-s}\right) \frac{1}{2}\left(e^{s}+e^{-s}\right)}{2\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)\right)^{2}-1} \\
& =\frac{e^{2 s}-e^{-2 s}}{e^{2 s}+e^{-2 s}}=\operatorname{th} 2 s
\end{aligned}
$$

Thus $\operatorname{th}(2 s) \operatorname{th}^{2}(s)-2 \operatorname{th}(s)+\operatorname{th}(2 s)=0$ and

$$
\begin{aligned}
\operatorname{th} s & =\frac{2 \pm \sqrt{4-4 \operatorname{th}^{2}(2 s)}}{2 \operatorname{th}(2 s)}=\frac{1 \pm \sqrt{1-\operatorname{th}^{2}(2 s)}}{\operatorname{th}(2 s)} \\
& =\frac{1-\sqrt{1-\operatorname{th}^{2}(2 s)}}{\operatorname{th}(2 s)}=\frac{\operatorname{th}(2 s)}{1+\sqrt{1-\operatorname{th}^{2}(2 s)}}
\end{aligned}
$$

Now it follows that

$$
\operatorname{th}\left(\frac{1}{2} \operatorname{arth} u\right)=\frac{\operatorname{th}(\operatorname{arth} u)}{1+\sqrt{1-(\operatorname{th} \operatorname{arth} u)^{2}}}=\frac{u}{1+\sqrt{1-u^{2}}}
$$

We also have

$$
\begin{aligned}
& \frac{u}{1+\sqrt{1-u^{2}}} \leq \frac{1}{2}\left(u+u^{2}\right) \\
\Leftrightarrow & u \leq \frac{1}{2}\left(u+u^{2}\right)\left(1+\sqrt{1-u^{2}}\right)=\frac{1}{2}\left(u+u^{2}+u \sqrt{1-u^{2}}+u^{2} \sqrt{1-u^{2}}\right) \\
\Leftrightarrow & \frac{1}{2} u\left(u+u \sqrt{1-u^{2}}+\sqrt{1-u^{2}}-1\right) \geq 0 \\
\Leftrightarrow & \sqrt{1-u^{2}}(u+1)+u-1 \geq 0,
\end{aligned}
$$

and

$$
\begin{aligned}
\sqrt{1-u^{2}}(u+1)+u-1 & \geq \sqrt{1-u^{2}}(u+1)+\sqrt{1-u^{2}}(u-1) \\
& =2 u \sqrt{1-u^{2}} \geq 0, \mathrm{OK}
\end{aligned}
$$

(3) For all $s>0$ we have

$$
\log \operatorname{th} s=\log \frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}=-\log \frac{1+e^{-2 s}}{1-e^{-2 s}}=-2 \operatorname{arth} e^{-2 s}
$$

(4) For all $x \geq 0$ we have

$$
1+x \leq x+\sqrt{x^{2}+1} \Rightarrow \log (1+x) \leq \log \left(x+\sqrt{x^{2}+1}\right)=\operatorname{arsh} x
$$

We also have

$$
\begin{aligned}
& x+\sqrt{x^{2}+1} \leq x+\sqrt{x^{2}+2 x+1}=x+x+1 \leq(1+x)^{2} \\
\Rightarrow & \operatorname{arsh} x \leq \log \left(1+x^{2}\right)=2 \log (1+x)
\end{aligned}
$$

(5) If $x \geq 1$ we have

$$
\begin{aligned}
& \left(1+\sqrt{\frac{x-1}{2}}\right)^{2} \leq x+\sqrt{x^{2}-1} \\
\Leftrightarrow & 1+\frac{x-1}{2}+\sqrt{2(x-1)} \leq x+\sqrt{x^{2}-1} \\
\Leftrightarrow & \sqrt{2(x-1)} \leq \frac{x-1}{2}+\sqrt{(x-1)(x+1)} \\
\Leftrightarrow & \sqrt{2} \leq \frac{\sqrt{x-1}}{2}+\sqrt{x+1}, \mathrm{OK}
\end{aligned}
$$

$\therefore 2 \log \left(1+\sqrt{\frac{x-1}{2}}\right) \leq \operatorname{arch} x$. In the case $x \geq 1$ we also have that

$$
\begin{aligned}
& x+\sqrt{x^{2}-1} \leq(1+\sqrt{2(x-1)})^{2}=2 x-1+2 \sqrt{2(x-1)} \\
\Leftrightarrow & \sqrt{x^{2}-1} \leq x-1+2 \sqrt{2(x-1)} \\
\Leftrightarrow & \sqrt{x+1} \leq \sqrt{x-1}+2 \sqrt{2} \\
\Leftrightarrow & \sqrt{x+1}-\sqrt{x-1} \leq 2 \sqrt{2} \\
\Leftrightarrow & \frac{2}{\sqrt{x+1}+\sqrt{x-1}} \leq 2 \sqrt{2}, \text { OK }
\end{aligned}
$$

$\therefore \operatorname{arch} x \leq 2 \log (1+\sqrt{2(x-1)})$.
4. Observe first that, for $t \in(0,1)$,

$$
\rho_{\mathrm{H}^{n}}\left(t e_{n}, e_{n}\right)=\rho_{\mathrm{H}^{n}}\left(t e_{n}, S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)\right) .
$$

Making use of this observation and the formula for ρ-balls in terms of euclidean balls show that

$$
B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)=\bigcup_{t \in(0,1)} D\left(t e_{n}, \log \frac{1}{t}\right)
$$

Solution 1: Let $y \in S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)$ and $x \in S^{n-1}\left(t e_{n}, 1-t\right) \cap J\left[t e_{n}, y\right]$. Then from (2.9)[CGQM] it follows that

$$
\operatorname{ch} \rho_{\mathrm{H}^{n}}\left(t e_{n}, x\right)=1+\frac{(1-t)^{2}}{2 t x_{n}} \geq 1+\frac{(1-t)^{2}}{2 t}=\operatorname{ch} \rho_{\mathrm{H}^{n}}\left(t e_{n}, e_{n}\right)
$$

Thus $\rho_{\mathrm{H}^{n}}\left(t e_{n}, x\right) \geq \rho_{\mathrm{H}^{n}}\left(t e_{n}, e_{n}\right)$, since $\operatorname{ch} x, x \geq 0$, is strictly increasing. Hence

$$
\rho_{\mathrm{H}^{n}}\left(t e_{n}, y\right)=\rho_{\mathrm{H}^{n}}\left(t e_{n}, x\right)+\rho_{\mathrm{H}^{n}}(x, y) \geq \rho_{\mathrm{H}^{n}}\left(t e_{n}, x\right) \geq \rho_{\mathrm{H}^{n}}\left(t e_{n}, e_{n}\right)
$$

Since $e_{n} \in S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)$ the first claim follows. (2.6)[CGQM] implies that $\rho_{\mathrm{H}^{n}}\left(t e_{n}, e_{n}\right)=\log \frac{1}{t}$, so the first claim implies

$$
D\left(t e_{n}, \log \frac{1}{t}\right)=D\left(t e_{n}, \rho_{\mathrm{H}^{n}}\left(t e_{n}, S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)\right)\right) \subset B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)
$$

for all $t \in] 0,1[$.

Let $z \in B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)$. We have, according to (2.11)[CGQM], that

$$
\begin{aligned}
D\left(t e_{n}, \log \frac{1}{t}\right) & =B^{n}\left(\left(t \operatorname{ch} \log \left(\frac{1}{t}\right)\right) e_{n}, t \operatorname{sh} \log \left(\frac{1}{t}\right)\right) \\
& =B^{n}\left(t \frac{e^{\log \frac{1}{t}}+e^{-\log \frac{1}{t}}}{2} e_{n}, t \frac{e^{\log \frac{1}{t}}-e^{-\log \frac{1}{t}}}{2}\right) \\
& =B^{n}\left(\frac{1+t^{2}}{2} e_{n}, \frac{1-t^{2}}{2}\right)
\end{aligned}
$$

Now we can choose $t \in] 0,1\left[\right.$ to be so small that $z \in B^{n}\left(\frac{1+t^{2}}{2} e_{n}, \frac{1-t^{2}}{2}\right)=$ $D\left(t e_{n}, \log \frac{1}{t}\right)$.
$\therefore B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)=\bigcup_{t \in] 0,1[} D\left(t e_{n}, \log \frac{1}{t}\right)$.
Solution 2: Letting $A=\cup_{t \in(0,1)} D\left(t e_{n}, \log \frac{1}{t}\right)$ and $B=B^{n}\left(\frac{e_{n}}{2}, \frac{1}{2}\right)$, we claim that $A=B$. We know by (2.11)[CGQM] that

$$
D\left(t e_{n}, \log \frac{1}{t}\right)=D\left(t e_{n}, \rho_{\mathrm{H}^{n}}\left(t e_{n}, S^{n-1}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)\right)\right) \subset B^{n}\left(\frac{1}{2} e_{n}, \frac{1}{2}\right)=B
$$

hence $A \subset B$. To prove $B \subset A$, let $x \in B$. Then there exists some $r \in(0,1 / 2)$ such that

$$
x \in B^{n}\left(\frac{e_{n}}{2}, r\right)=D\left(s e_{n}, M\right)
$$

for some $s \in(0,1)$ and $M<\log \frac{1}{s}$. According with Diagram 2.4, p. 22 in CGQM, we can choose M such that

$$
\frac{r}{\sqrt{\frac{1}{4}-r^{2}}}=\operatorname{sh} M \Longrightarrow M=\operatorname{arsh} \frac{2 r}{\sqrt{1-4 r^{2}}}
$$

(whereas ch $M=1 / \sqrt{1-4 r^{2}}$.)
5. Assume that $a \geq 0$ and define b by $\operatorname{ch} b=1+\frac{1}{2} a$. Show that

$$
\begin{aligned}
\log (1+\max \{a, \sqrt{a}\}) & \leq b \leq \log (1+a+\sqrt{a}) \\
& \leq 2 \log (1+\max \{a, \sqrt{a}\})
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \operatorname{ch} b=1+\frac{a}{2} \Rightarrow b=\operatorname{arch}\left(1+\frac{a}{2}\right)=\log \left(1+\frac{a}{2}+\sqrt{a+\frac{a^{2}}{4}}\right) \\
& b \geq \log \left(1+\frac{a}{2}+\frac{a}{2}\right)=\log (1+a) \\
& b \geq \log \left(1+\frac{a}{2}+\sqrt{a}\right) \geq \log (1+\sqrt{a}) \\
& \therefore b \geq \log (1+\max \{a, \sqrt{a}\})
\end{aligned}
$$

For all $a>0$ we have that

$$
\begin{aligned}
b & =\log \left(1+\frac{a}{2}+\sqrt{a+\frac{a^{2}}{4}}\right) \\
& \leq \log \left(1+\frac{a}{2}+\sqrt{a}+\sqrt{\frac{a^{2}}{4}}\right)=\log (1+a+\sqrt{a})
\end{aligned}
$$

and in the case $a \in] 0,1[$ it follows that

$$
\log (1+a+\sqrt{a}) \leq \log (1+2 \sqrt{a}) \leq \log (1+2 \sqrt{a}+a)=\log (1+\sqrt{a})^{2}
$$

and in the case $a \geq 1$ it follows that

$$
\begin{aligned}
& \log (1+a+\sqrt{a}) \leq \log (1+2 a) \leq \log \left(1+2 a+a^{2}\right)=\log (1+a)^{2} . \\
\therefore & \log (1+a+\sqrt{a}) \leq 2 \log (1+\max \{a, \sqrt{a}\})
\end{aligned}
$$

6. (1) Show that for distinct points a, b, c, u, v in \mathbb{R}^{n},

$$
\begin{gathered}
|u, a, b, v|=|u, a, c, v||u, c, b, v| \\
|u, a, b, v||u, b, a, v|=1=|u, a, b, v||v, a, b, u|
\end{gathered}
$$

(2) Conclude from (1) that, for a proper subdomain domain G of \mathbb{R}^{n} and for $x, y \in G$, the quantity

$$
m_{G}(x, y) \equiv \log \sup \{|u, x, y, v|: u, v \in \partial G\}
$$

is nonnegative and symmetric, and that it satisfies the triangle inequality

$$
m_{G}(x, y) \leq m_{G}(x, z)+m_{G}(z, y)
$$

Observe also that $m_{G}(x, y)=m_{h(G)}(h(x), h(y))$ for $h \in \mathcal{G M}(G)$ and $x, y \in$ G.
(3) Show that, for $x \in \mathbf{B}^{n} \backslash\{0\}, e_{x}=x /|x|$,

$$
m_{\mathrm{B}^{n}}(0, x)=\log \left|-e_{x}, 0, x, e_{x}\right|=\log \left(\frac{1+|x|}{1-|x|}\right) .
$$

Conclude that $m_{\mathrm{B}^{n}}(x, y)=\rho_{\mathrm{B}^{n}}(x, y)$ for all x, y of points in \mathbf{B}^{n}.
(4) Show that m_{G} is not a metric for $G=\mathbb{R}^{n} \backslash\{0\}$.

Solution:

(1)

$$
\begin{aligned}
|u, a, c, v||u, c, b, v| & =\frac{|u-c||a-v||u-b||c-v|}{|u-a||c-v||u-c||b-v|}=|u, a, b, v| \\
|u, a, b, v||u, b, a, v| & =\frac{|u-b||a-v||u-a||b-v|}{|u-a||b-v||u-b||a-v|}=1 \\
|u, a, b, v||v, a, b, u| & =\frac{|u-b||a-v||v-b||a-u|}{|u-a||b-v||v-a||b-u|}=1 .
\end{aligned}
$$

(2) Since $|u, x, y, v||v, x, y, u|=1$, one of the cross ratios is greater than or equal to 1 . From this it follows that $m_{G}(x, y) \geq 0$.
Since $|u, x, y, v||u, y, x, v|=1$, we have that

$$
|u, x, y, v|=\frac{1}{|u, y, x, v|}=|v, y, x, u|
$$

which means that $m_{G}(x, y)=m_{G}(y, x)$.
Let $x, y \in G$, then fix $u, v \in \partial G$ such that $m_{G}(x, y)=\log |u, x, y, v|$. Then for $z \in G$ we have

$$
\begin{aligned}
m_{G}(x, y) & =\log |u, x, y, v|=\log (|u, x, z, v||u, z, y, v|) \\
& \leq m_{G}(x, z)+m_{G}(z, y)
\end{aligned}
$$

The $G M(G)$-invariance follows directly from the invariance of the cross ratio.
(3) Fix $x \in B^{n} \backslash\{0\}$ and let $e_{x}=\frac{x}{\mid x}$. If $u \in S^{n-1}$, the triangle inequality yields

$$
1-|x| \leq|u-x| \leq 1+|x|
$$

with equality on the left iff $u=e_{x}$ and with equality on the right iff $u=-e_{x}$. Hence

$$
\sup \left\{|u, 0, x, v| \mid u, v \in \partial B^{n}\right\}=\left|-e_{x}, 0, x, e_{x}\right|=\frac{1+|x|}{1-|x|}
$$

and the formula for $m_{B^{n}}(0, x)$ follows.
Let $x, y \in B^{n} \backslash\{0\}, x \neq y$, and $h \in G M\left(B^{n}\right)$ such that $h(y)=0$ and $h(x) \in] 0, e_{1}\left[\right.$. By the reasoning above, $\sup \left\{|u, x, y, v| \| u, v \in \partial B^{n}\right\}=$ $\left|-e_{1}, h(y), h(x), e_{1}\right|$. Hence it follows from the $G M\left(B^{n}\right)$-invariance that $\sup \left\{|u, x, y, v| \mid u, v \in \partial B^{n}\right\}=\left|x_{*}, x, y, y_{*}\right|$ where $x_{*}=h^{-1}\left(e_{1}\right)$ and $y_{*}=$ $h^{-1}\left(-e_{1}\right)$. It follows from (2.9)[CGQM] that $m_{B^{n}}(x, y)=\rho_{B^{n}}(x, y)$.
(4) Now $\partial G=\{0, \infty\}$ and

$$
m_{G}(x, y)=\max \{\log |0, x, y, \infty|, \log |\infty, x, y, 0|\}=\left|\log \left(\frac{|x|}{|y|}\right)\right|
$$

for all $x, y \in G$. Hence $m_{G}(x,-x)=0$ for all $x \neq 0$ and m_{G} cannot be a metric.

