Quasiregular Mappings

Department of Mathematics and Statistics
University of Helsinki
Problem Set 3
Winter 2009 / Vuorinen

1. Show that for all $a, x, y \in B^{n}$

$$
\frac{\left|T_{a} x-T_{a} y\right|^{2}}{\left(1-\left|T_{a} x\right|^{2}\right)\left(1-\left|T_{a} y\right|^{2}\right)}=\frac{|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)} .
$$

Hint. Lectures, Ahlfors bracket.
Solution: By (1.36)[LN]

$$
\left(1-\left|T_{a} x\right|^{2}\right)\left(1-\left|T_{a} y\right|^{2}\right)=\frac{\left(1-|a|^{2}\right)\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)\left(1-|y|^{2}\right)}{A[x, a]^{2} A[y, a]^{2}}
$$

and by (1.5)[CGQM] and (1.35)[LN]

$$
\left|T_{a} x-T_{a} y\right|^{2}=\left|\sigma_{a} x-\sigma_{a} y\right|^{2}=\frac{r^{4}|x-y|^{2}}{\left|x-a^{*}\right|^{2}\left|y-a^{*}\right|^{2}}=\frac{\left(1-|a|^{2}\right)^{2}|x-y|^{2}}{A[x, a]^{2} A[y, a]^{2}}
$$

and the assertion follows.
2. Let $r \in(0,1)$. Find a point $a \in\left(0, r e_{1}\right)$ such that $T_{a}(0)=-T_{a}\left(r e_{1}\right)$.

Solution: Denote $a=t e_{1}, 0<t<r$. By (1.34)[LN] and (1.35)[LN]

$$
\begin{aligned}
\left|T_{a}(0)\right| & =\frac{|0-a|}{\sqrt{1-0+0}}=t \\
\left|T_{a}\left(r e_{1}\right)\right| & =\frac{\left|a-r e_{1}\right|}{\sqrt{1-2 t r-t^{2} r^{2}}}=\frac{r-t}{1-r t} .
\end{aligned}
$$

We find t such that

$$
\begin{aligned}
\left|T_{a}(0)\right|=\left|T_{a}\left(r e_{1}\right)\right| & \Leftrightarrow t=\frac{r-t}{1-r t} \\
& \Leftrightarrow t-r t^{2}=r-t \Leftrightarrow r t^{2}-2 t+r=0 \\
& \Leftrightarrow t=\frac{2 \pm \sqrt{4-4 r^{2}}}{2 r}=\frac{1 \pm \sqrt{1-r^{2}}}{r} \\
& \Leftrightarrow\left\{\begin{array}{l}
t=\frac{1+\sqrt{1-r^{2}}}{r}=\frac{1-\left(1-r^{2}\right)}{r\left(1-\sqrt{1-r^{2}}\right)}=\frac{r}{1-\sqrt{1-r^{2}}}>r, \\
\text { OR } \\
t=\frac{1-\sqrt{1-r^{2}}}{r}=\frac{1-\left(1-r^{2}\right)}{r\left(1+\sqrt{1-r^{2}}\right)}=\frac{r}{1+\sqrt{1-r^{2}}}, \quad \text { not possible }
\end{array}\right.
\end{aligned}
$$

$\therefore a=\frac{r e_{1}}{1+\sqrt{1-r^{2}}}$.
3. For $\varphi \in\left(0, \frac{1}{2} \pi\right)$, let $x_{\varphi}=(\cos \varphi, \sin \varphi)$ and $y_{\varphi}=(\cos \varphi,-\sin \varphi)$. Then there exists a Möbius transformation $T_{a}: \mathbf{B}^{2} \rightarrow \mathbf{B}^{2}$ with $T_{a} e_{1}=e_{1}$, $T_{a}\left(-e_{1}\right)=-e_{1}, T_{a}\left(x_{\varphi}\right)=e_{2}=-T_{a}\left(y_{\varphi}\right)$. Find $|a|$.

Solution:

By geometry

$$
|a|=\frac{1}{\cos \phi}-\tan \phi=\frac{1-\sin \phi}{\cos \phi} .
$$

4. Let $x, y \in \mathbb{R}^{n}$ and let t_{x} be a spherical isometry with $t_{x}(x)=0$. Show
that

$$
\left|t_{x} y\right|=\frac{|x-y|}{\sqrt{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)-|x-y|^{2}}} .
$$

Let $\alpha \in\left[0, \frac{1}{2} \pi\right]$ be such that $\sin \alpha=q(x, y)$. Then α is the angle between the segments $\left[e_{n+1}, t_{x} x\right]=\left[e_{n+1}, 0\right]$ and $\left[e_{n+1}, t_{x} y\right]$ at e_{n+1}. Show that the above formula can be rewritten as $\left|t_{x} y\right|=\tan \alpha$.
Solution: By (1.47)[CGQM] and (1.15)[CGQM] in the lecture notes we have that

$$
\begin{aligned}
\left|t_{x} y\right|^{2} & =\frac{q(x, y)^{2}}{1-q(x, y)^{2}}=\frac{\frac{|x-y|^{2}}{\left(1+|x|^{2}\right)\left(1+\left.y\right|^{2}\right)}}{1-\frac{|x-y|^{2}}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)}} \\
& =\frac{|x-y|^{2}}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)-|x-y|^{2}}
\end{aligned}
$$

We take square roots to get the first equality.

If we assume that $\sin \alpha=q(x, y)$ and $\alpha \in\left[0, \frac{\pi}{2}\right]$, we have

$$
\begin{aligned}
\left|t_{x} y\right|^{2} & =\frac{q(x, y)^{2}}{1-q(x, y)^{2}}=\frac{\sin ^{2} \alpha}{1-\sin ^{2} \alpha} \\
& =\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}=\tan ^{2} \alpha
\end{aligned}
$$

Now $\tan \alpha \in[0, \infty]$ and thus $\left|t_{x} y\right|=\tan \alpha$.
5. For $x, y \in \mathbf{B}^{n}$ and $T_{x} \in \mathcal{M}\left(\mathbf{B}^{n}\right)$ show that

$$
\left|T_{x} y\right|=\frac{|x-y|}{\sqrt{|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}}=\frac{s}{\sqrt{1+s^{2}}},
$$

where $s^{2}=|x-y|^{2} /\left(\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)\right)$.

Solution: By (2.25)[CGQM], (2.18)[CGQM] and (2.12)[CGQM] we have

$$
\begin{aligned}
\left|T_{x} y\right| & =\operatorname{th} \frac{\rho(x, y)}{2}=\frac{\operatorname{sh} \frac{\rho(x, y)}{2}}{\operatorname{ch} \frac{\rho(x, y)}{2}} \\
& =\frac{\operatorname{sh} \frac{\rho(x, y)}{2}}{\sqrt{1+\operatorname{sh}^{2} \frac{\rho(x, y)}{2}}}=\frac{\frac{|x-y|}{\sqrt{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}}}{\sqrt{1+|x-y|^{2} /\left(\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)\right)}} \\
& =\frac{s}{\sqrt{1+s^{2}}}=\frac{|x-y|}{\sqrt{|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}},
\end{aligned}
$$

with $s^{2}=\frac{|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}$.
6. Let $h:[0, \infty) \rightarrow[0, \infty)$ be strictly increasing with $h(0)=0$ such that $h(t) / t$ is decreasing. Show that $h(x+y) \leq h(x)+h(y)$ for all $x>0$. With $h(t)=t^{\alpha}, \alpha \in(0,1)$, apply this result to show that if $d(x, y)$ is a metric then $d^{\alpha}(x, y)=d(x, y)^{\alpha}$ also is a metric.

Solution: Let $x, y>0$. Then

$$
\left\{\begin{array} { l }
{ \frac { h (x + y) } { x + y } \leq \frac { h (x) } { x } } \\
{ \frac { h (x + y) } { x + y } \leq \frac { h (y) } { y } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x h(x+y) \leq(x+y) h(x) \\
y h(x+y) \leq(x+y) h(y)
\end{array}\right.\right.
$$

After addition we have

$$
(x+y) h(x+y) \leq(x+y)(h(x)+h(y))
$$

From this follows the claim $h(x+y) \leq h(x)+h(y)$. Let $\left.h(t)=t^{\alpha}, \alpha \in\right] 0,1[$. Then h is strictly increasing, $h(0)=0$ and $\frac{h(t)}{t}=t^{\alpha-1}$ is decreasing, since
$\alpha-1 \in]-1,0[$. Let d be a metric. For the application it suffices to prove the triangle inequality:

$$
\begin{aligned}
d^{\alpha}(x, y) & =h(d(x, y)) \leq h(d(x, z)+d(z, y)) \\
& \leq h(d(x, z))+h(d(z, y))=d^{\alpha}(x, z)+d^{\alpha}(z, y)
\end{aligned}
$$

for all x, y and z in the metric space. In the calculation the first inequality follows from the \triangle-inequality for the metric d and from the fact that h is increasing. The second inequality follows from the first part of the exercise.

