
MARTINGALES AND HARMONIC ANALYSIS

TUOMAS HYTÖNEN

1. Conditional expectation

1.1. Basic notions of measure theory. A triplet (Ω,F , µ) is called a measure space if
• Ω is a set,
• F is a σ-algebera of Ω, i.e., a collection of subsets of Ω which satisfies

∅,Ω ∈ F , E ∈ F ⇒ EC := Ω \ E ∈ F , Ei ∈ F ⇒
∞⋃
i=0

Ei ∈ F ,

• µ is a measure, i.e., a mapping F → [0,∞] which satisfies

µ(∅) = 0, Ei ∈ F , Ei ∩ Ej = ∅ kun i 6= j ⇒ µ
( ∞⋃
i=0

Ei
)

=
∞∑
i=0

µ(Ei).

A function f : Ω→ R is called F -measurable if f−1(B) := {f ∈ B} := {ω ∈ Ω : f(ω) ∈ B} ∈ F
for all Borel sets B ⊆ R.

Denote by F 0 the collection of sets in F with finite measure, i.e., F 0 := {E ∈ F : µ(E) <∞}.
The measure space (Ω,F , µ) is called σ-finite if there exist sets Ei ∈ F 0 such that

⋃∞
i=0Ei = Ω.

If needed, these sets may be chosen to additionally satisfy either (a) Ei ⊆ Ei+1 or (b) Ei∩Ej = ∅
whenever i 6= j. Part (a) follows by taking E′i :=

⋃i
j=0Ei, and part (b) by setting E′′i := E′i \E′i−1,

where E′−1 := ∅. Unless otherwise stated, it is always assumed in the sequel that (Ω,F , µ) is
σ-finite.

An F -measurable function f : Ω→ R is called σ-integrable if it is integrable on all sets of finite
measure, i.e., if 1Ef ∈ L1(F , µ) for all E ∈ F 0. Denote the collection of all such functions by
L1
σ(F , µ).

1.2. Lemma. If f ∈ L1
σ(F , µ) satisfies

∫
E
f dµ ≥ 0 for all E ∈ F 0, then f ≥ 0 a.e. (almost

everywhere). The same is true if ≥ is replaced by ≤ or =.

Proof. Let Fi := {f < −1/i} ∈ F and Ej be one of the sets in the definition of σ-finiteness, which
are now chosen to be disjoint. Then

0 ≤
∫
Fi∩Ej

f dµ ≤
∫
Fi∩Ej

(
− 1
i
) dµ = −1

i
µ(Fi ∩ Ej) ≤ 0.

Hence µ(Fi ∩ Ej) = 0, and summing up over j ∈ N it follows that µ(Fi) = 0. Since {f < 0} =⋃∞
i=1 Fi, one sees that µ({f < 0}) = 0, which is the same as f ≥ 0 a.e.
The case ≤ is obtained from the one already treated by considering the function −f . The case

= follows from the other two upon observing that x = 0 if and only if x ≥ 0 and x ≤ 0. �

1.3. Sub-σ-algebra and the conditional expectation with respect to it. If G ⊆ F is
another σ-algebra, it is called a sub-σ-algebra of F . In this situation the G -measurability of a
function is a stronger requirement than its F -measurability, since there are fewer choices for the
preimages {f ∈ B}. Similarly the σ-finiteness of (Ω,G , µ) is a stronger requirement than that of
(Ω,F , µ). In the sequel, however, all measure spaces are assumed to be σ-finite unless otherwise
mentioned.
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A function g ∈ L1
σ(G , µ) is called the conditional expectation of f ∈ L1

σ(F , µ) with respect to
G if there holds ∫

G

f dµ =
∫
G

g dµ ∀G ∈ G 0.

This means that g is (in a certain sense) the best possible G -measurable approximation for f .
Observe that the conditional expectation of f with respect to G , if it exists, is unique (a.e.).

Namely, if g1, g2 ∈ L1
σ(G , µ) were both conditional expectations of f , the function g := g1 − g2 ∈

L1
σ(G , µ) would satisfy

∫
G
g dµ = 0 for all G ∈ G 0. By Lemma 1.2 this implies g = 0 a.e., hence

g1 = g2 a.e.
The conditional expectation of f with respect to G , now that it has been proven unique, will

be denoted by E[f |G ]. Next it will be shown that it always exists.

1.4. Existence for L2-functions. The spaces L2(F , µ) and L2(G , µ) are both Hilbert spaces,
and the latter is a closed subspace of the former. If f ∈ L2(F , µ), let g ∈ L2(G , µ) be its orthogonal
projection onto the space L2(G , µ). Hence f − g ⊥ L2(G , µ). If G ∈ G 0, then 1G ∈ L2(G , µ).
Hence

0 = (f − g, 1G) =
∫
G

(f − g) dµ,

and thus g = E[f |G ].

1.5. Simple observations. If g ∈ L1
σ(G , µ), it is its own conditional expectation, g = E[g|G ].

In particular, the conditional expectation of a constant function is the same constant. If f1, f2 ∈
L1
σ(F , µ), and they have conditional expectations E[fi|G ], then for all constants α1, α2 also the

function α1f1 + α2f2 has a conditional expectation, and it is

E[α1f1 + α2f2|G ] = α1E[f1|G ] + α2E[f2|G ].

These observations follow easily directly from the definition of the conditional expectation.
If the pointwise (a.e.) inequality f1 ≤ f2 holds, then also E[f1|G ] ≤ E[f2|G ]. This follows from

the fact that for all G ∈ G 0 one has∫
G

E[f1|G ] dµ =
∫
G

f1 dµ ≤
∫
G

f2 dµ =
∫
G

E[f2|G ] dµ

and Lemma 1.2.
This implies that if f ∈ L1

σ(F , µ), and both E[f |G ] and E[|f | |G ] exist, there holds

|E[f |G ]| = max
{
E[f |G ],−E[f |G ]

}
= max

{
E[f |G ],E[−f |G ]

}
≤ E[|f | |G ],

where the last estimate was based on the facts that both f ≤ |f | and −f ≤ |f |.

1.6. Existence for L1-functions. Let then f ∈ L1(F , µ). By basic integration theory there
exists a sequence of functions fn ∈ L1(F , µ) ∩ L2(F , µ) such that fn → f in L1(F , µ). By 1.4
the conditional expectations gn := E[fn|G ] and E[|fn| |G ] exist and belong to L2(G , µ).

If G ∈ G 0, then∫
G

|gn|dµ =
∫
G

|E[fn|G ]|dµ ≤
∫
G

E[|fn| |G ] dµ =
∫
G

|fn|dµ.

By choosing disjoint G = Ek from the definition of σ-finiteness of the measure space (Ω,G , µ) and
summing over k ∈ N, it follows that ‖gn‖1 ≤ ‖fn‖1, and hence gn ∈ L1(G , µ).

Repeating the previous computation with gn replaced by gn − gm, it similarly follows that
‖gn − gm‖1 ≤ ‖fn − fm‖1, and this tends to zero as n,m → ∞, since fn → f . Hence (gn)∞n=1

is a Cauchy sequence in L1(G , µ) and hence converges to some functions g ∈ L1(G , µ). This g
satisfies, for all G ∈ G 0, the equality∫

G

g dµ = lim
n→∞

∫
G

gn dµ = lim
n→∞

∫
G

E[fn|G ] dµ = lim
n→∞

∫
G

fn dµ =
∫
G

f dµ,

and hence g = E[f |G ].
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1.7. Existence in general. Let finally f ∈ L1
σ(F , µ). Let Gi ∈ G 0 be disjoint sets such that⋃∞

i=0Gi = Ω, which can be chosen by the σ-finiteness of (Ω,G , µ). Now fi := 1Gif ∈ L1(F , µ),
so there exists gi := E[fi|G ] ∈ L1(G , µ).

Observe that then gi = 1Gigi. Indeed, for all G ∈ G 0 there holds∫
G

1Gigi dµ =
∫
G∩Gi

gi dµ =
∫
G∩Gi

fi dµ =
∫
G

fi dµ =
∫
G

gi dµ,

where use was made of the definition of the conditional expectation gi = E[fi|G ] and the fact that
fi = 1Gifi. Now the claim gi = 1Gigi follows from Lemma 1.2.

Then one can set g :=
∑∞
i=0 gi, which converges pointwise trivially, since the gi are supported

on the disjoint sets Gi. It is easy to check directly from the definition that g = E[f |G ].
Altogether, the following result has been established:

1.8. Theorem. Let (Ω,F , µ) and (Ω,G , µ) be σ-finite measure spaces with G ⊆ F . Then for all
f ∈ L1

σ(F , µ) there exists an a.e. unique conditional expectation E[f |G ] ∈ L1
σ(G , µ).

Next, some further properties of the conditional expectation will be investigated with the help
of the following auxiliary result:

1.9. Lemma. Let φ : R→ R be a convex function, and

Hφ := {h : R→ R|h(x) = ax+ b for some a, b ∈ R, and h ≤ φ}.
Then φ(x) = sup{h(x) : h ∈ Hφ}.

Proof. For all h ∈ Hφ there holds h ≤ φ, and hence suph∈Hφ h ≤ φ; thus it remains to prove the
reverse inequality.

Let x0 ∈ R. Then the limit

a := lim
y↘x0

φ(y)− φ(x0)
y − x0

exists. Indeed, from the definition of convexity it follows that the difference quotient inside the
limit is an increasing function of y on the set y ∈ R \ {x0}. Choosing some x1 < x0, the quotient
(φ(y)− φ(x0))/(y− x0) is hence bounded from below by (φ(x1)− φ(x0))/(x1 − x0), when y > x0,
and it decreases as y ↘ x0. From this the existence of the limit follows by well-known properties
of real numbers.

Let then h0(x) := φ(x0) + a(x − x0). By what was said about the behaviour of the difference
quotient defining a, the inequality a(x−x0) ≤ φ(x)−φ(x0) holds for all x ∈ R, and hence h0 ∈ Hφ.
On the other hand, clearly h0(x0) = φ(x0), so suph∈Hφ h(x0) ≥ φ(x0). Since x0 ∈ R was arbitrary,
the claim follows. �

1.10. Theorem (Jensen’s inequality). Let φ : R→ R be convex and f, φ(f) ∈ L1
σ(F , µ). Then

φ
(
E[f |G ]

)
≤ E[φ(f)|G ].

Proof. Let h ∈ Hφ. Then

h
(
E[f |G ]

)
= aE[f |G ] + b = E[af + b|G ] = E[h(f)|G ] ≤ E[φ(f)|G ].

Computing the supremum on the left over all h ∈ Hφ, the claim follows �

1.11. Corollary. Let p ∈ [1,∞] and f ∈ Lp(F , µ). Then E[f |G ] ∈ Lp(G , µ) and

‖E[f |G ]‖p ≤ ‖f‖p.

Proof. Let p < ∞, the case p = ∞ being easier. Since Lp(F , µ) ⊆ L1
σ(F , µ), the conditional

expectation E[f |G ] exists, and similarly E[|f |p |G ]. Since the function t 7→ |t|p is convex, Jensen’s
inequality implies that

|E[f |G ]|p ≤ E[|f |p |G ].
Hence for all G ∈ G 0 there holds∫

G

|E[f |G ]|p dµ ≤
∫
G

E[|f |p |G ] dµ =
∫
G

|f |p dµ.
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By choosing disjoint Gk ∈ G 0 from the definition of the σ-finiteness of (Ω,G , µ) and adding up
the above estimates over all G = Gk, the claim follows. �

Next, versions of the familiar convergence theorems of integration theory are presented for the
conditional expectation.

1.12. Monotone convergence theorem. Recall that the version of integration theory says that
if a sequence of measurable functions satisfies 0 ≤ fn ↗ f a.e., then

∫
fn dµ ↗

∫
f dµ, where

fn ↗ f means “converges increasingly”, which entails both the convergence fn → f and the fact
that fn ≤ fn+1 for all n. The corresponding statement for the conditional expectation is the
following:

0 ≤ fn ↗ f ∈ L1
σ(F , µ) ⇒ E[fn|G ]↗ E[f |G ].

Proof. Since the conditional expectation respects pointwise inequalities (part 1.5), it follows that

0 ≤ fn ≤ fn+1 ≤ f ⇒ 0 ≤ E[fn|G ] ≤ E[fn+1|G ] ≤ E[f |G ].

Hence
(
E[fn|G ]

)∞
n=1

is a bounded increasing sequence, so it has a pointwise G -measurable limit,
E[fn|G ]↗ g, and 0 ≤ g ≤ E[f |G ], so that g ∈ L1

σ(G , µ). It remains to prove that g = E[f |G ].
Since for all G ∈ G 0 there holds∫

G

g dµ = lim
n→∞

∫
G

E[fn|G ] dµ = lim
n→∞

∫
G

fn dµ =
∫
G

f dµ,

where the first and last steps were based on the usual monotone convergence theorem, it follows
that g = E[f |G ], mikä which completes the proof. �

1.13. Fatou’s lemma. The version of integration theory says that

fn ≥ 0 ⇒
∫

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

For the conditional expectation one similarly proves

0 ≤ fn ∈ L1
σ(F , µ), f := lim inf

n→∞
fn ∈ L1

σ(F , µ) ⇒ E[f |G ] ≤ lim inf
n→∞

E[fn|G ].

Proof. Write out the definition of the limes inferior:

f = lim inf
n→∞

fn = lim
n→∞

inf
m≥n

fm =: lim
n→∞

hn, hn := inf
m≥n

fm.

Now 0 ≤ hn ↗ f , so one can use the monotone convergence theorem to the result that

E[f |G ] = E[ lim
n→∞

hn|G ] = lim
n→∞

E[hn|G ] ≤ lim
n→∞

inf
m≥n

E[fm|G ] = lim inf
n→∞

E[fn|G ].

The estimate ≤ above was based on the fact that hn ≤ fm for all m ≥ n and hence E[hn|G ] ≤
E[fm|G ], from which the mentioned step follows upon taking the infimum. The claim is proven. �

1.14. Dominated convergence theorem. In integration theory one proves that

fn → f, |fn| ≤ g ∈ L1(F , µ) ⇒
∫
|fn − f |dµ→ 0 ⇒

∫
fn dµ→

∫
f dµ,

while the conditional version reads as follows:

fn → f, |fn| ≤ g ∈ L1
σ(F , µ) ⇒ E

[
|fn − f |

∣∣G ]→ 0 ⇒ E[fn|G ]→ E[f |G ].

Proof. This is left as an exercise. �

The following central result concering the conditional expectation has no obvious analogue in
the basic integration theory:

1.15. Theorem. Let f ∈ L1
σ(F , µ), and g be a G -measurable function with g ·f ∈ L1

σ(F , µ). Then

E[g · f |G ] = g · E[f |G ].
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Proof. Let first g be a simple G -measurable function, g =
∑N
k=1 ak1Gk , where Gk ∈ G . Then for

all G ∈ G 0 there holds∫
G

g · E[f |G ] dµ =
N∑
k=1

ak

∫
G∩Gk

E[f |G ] dµ =
N∑
k=1

ak

∫
G∩Gk

f dµ =
∫
G

g · f dµ,

hence g · E[f |G ] = E[g · f |G ] by the uniqueness of the conditional expectation.
If g is a general G -measurable function, by measure theory there exists a sequence of G -simple

functions gn with |gn| ≤ |g| and gn → g. Hence also |gn · f | ≤ |g · f | and gn · f → g · f . An
application of the dominated convergence theorem and the first part of the proof gives

E[g · f |G ] = lim
n→∞

E[gn · f |G ] = lim
n→∞

gn · E[f |G ] = g · E[f |G ],

which was to be proven. �

1.16. Exercises. These deal with some further important properties of the conditional expecta-
tion.

In all exercised it is assumed that Ω is a set, F and G are its σ-algebras with G ⊆ F , and
µ : F → [0,∞] is a measure. Moreover, all functions are assumed to be F -measurable. Except
in Exercise 1, it is also assumed that all measure spaces are σ-finite.

1. Give an example of the following situation: (Ω,F , µ) is σ-finite but (Ω,G , µ) is not.
2. Prove the dominated convergence theorem for conditional expectations. (See Section 1.14.)
3. Prove the tower rule of conditional expectations: If H ⊆ G is yet another σ-algebra, then

for all f ∈ L1
σ(F , µ) there holds E

(
E[f |G ]

∣∣H )
= E[f |H ].

4. Prove the conditional Hölder inequality : If f ∈ Lpσ(F , µ) and g ∈ Lp′σ (F , µ), then

E[f · g|G ] ≤ E[|f |p|G ]1/p · E[|f |p
′
|G ]1/p

′
.

(Hint: prove first that for all a, b ≥ 0 there holds ab ≤ ap/p+ bp
′
/p′.)

1.17. References. The material of this chapter, when restricted to the case of a probability
space (i.e., a measure space with µ(Ω) = 1), is standard in modern Probability and can be found
in various textbooks, such as the lively presentation of Williams [11]. It is well known “among
specialists” that most of the results remain true in more general measure spaces, as it has been
shown above, but it is difficult to find a systematic presentation in the literature.

2. Discrete-time martingales and Doob’s inequality

2.1. Definition. Let (Ω,F , µ) be a measure space and I an ordered set.
• A family of σ-algebras (Fi)i∈I is called a filtration of F if Fi ⊆ Fj ⊆ F whenever i, j ∈ I

and i < j.
• A family of functions (fi)i∈I is called adapted to the given filtration if fi is Fi-measurable

for all i ∈ I.
Let, in addition, the measure spaces (Ω,Fi, µ) be σ-finite.

• An adapted family of functions is called a submartingale if fi ∈ L1
σ(Fi, µ) for all i ∈ I

and fi ≤ E[fj |Fi] whenever i < j.
• It is called a martingale if the last inequality is strengthened to the equality fi = E[fj |Fi]

whenever i < j.

If f ∈ L1
σ(F , µ) and (Fi)i∈I is a filtration, with the related measure spaces σ-finite, then

setting fi := E[f |Fi] for all i ∈ I one gets a martingale. If (fi)i∈I is a martingale, then (|fi|)i∈i is
a submartingale. These facts are easy to check.

In applications the index i ∈ I often admits the interpretation of a time parameter. In these
lectures the considerations are restricted to discrete-time filtrations and martingales, where I ⊆ Z.
If I ⊂ Z is a proper subset and (Fi)i∈I and (fi)i∈I are a filtration and a martingale with the
corresponding index set, then one can always define Fi and fi also for i ∈ Z \ I in such a way
that (Fi)i∈Z and (fi)i∈Z are also a filtration and an adapted martingale (exercise).
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2.2. Questions of density. Although it is not required in the definition of a filtration, it is
interesting to consider the situation where the filtration (Fi)i∈Z generates the full σ-algebra F ,
i.e.,

F = σ
(⋃
i∈Z

Fi

)
.

Recall that the notation σ(A ), where A is any collection of subsets of Ω, designates the smallest
σ-algebra of Ω which contains A . It is obtained as the intersection of all σ-algebras containing
A : there is at least one such σ-algebra (the one containing all subsets of Ω) and one easily checks
that the intersection of (arbitrarily many) σ-algebras is again a σ-algebra.

In the described situation it is natural to ask whether F -measurable sets or functions can
be approximated by sets in

⋃
i∈Z Fi or functions measurable with respect to these generating

σ-algebras. The following results provide positive answers to these questions.
Let us denote by F̃ the collection of those sets of F whose finite parts can be approximated

by sets of
⋃
i∈Z Fi, more precisely

F̃ :=
{
E ∈ F

∣∣∣∀E0 ∈ F 0 ∀ ε > 0 ∃F ∈
⋃
i∈Z

Fi : µ(E0 ∩ [E4F ]) < ε
}
.

Here E4F designates the symmetric difference of sets, E4F := (E \ F ) ∪ (F \ E).

2.3. Lemma. Let (Fi)i∈I be a filtration, and F = σ
(⋃

i∈Z Fi

)
. Then F = F̃ .

Proof. Clearly
⋃
i∈Z Fi ⊆ F̃ ⊆ F . (”⊆” follows from the fact that if E ∈

⋃
i∈Z Fi, then F = E

works as the approximating set in the definition of F̃ for all E0 and ε.) Thus it suffices to show
that F̃ is a σ-algebra. For then – due to the fact that F was the smallest σ-algebra containing⋃
i∈Z Fi – it follows that F ⊆ F̃ , and this implies the assertion.
Trivially ∅,Ω ∈ F , and the implication E ∈ F ⇒ EC ∈ F follows from the fact that

if µ(E0 ∩ [E4F ]) < ε, then also µ(E0 ∩ [EC4FC]) < ε (since EC4FC = E4F ), and thus
FC ∈

⋃
i∈Z Fi works as an approximating set for EC. It remains to prove that Ek ∈ F̃ ⇒ E :=⋃∞

k=1Ek ∈ F̃ .
Fix E0 ∈ F 0 and ε > 0, and denote µ0(G) := µ(E0 ∩ G); this is a finite measure. Since⋃N
k=1Ek ↗ E, i.e., E \

⋃N
k=1Ek ↘ ∅, for sufficiently large N there holds the estimate

µ0

(
E \

N⋃
k=1

Ek

)
< ε.

Let Fk ∈
⋃
i∈Z Fi satisfy µ0(Ek4Fk) < ε · 2−k. Hence Fk ∈ Fi(k) for some i(k) ∈ Z. Let

j := max{i(k); k = 1, . . . , n}, so that Fk ∈ Fj for all k = 1, . . . , n (since (Fi)i∈Z is a filtration)
and hence also

F :=
N⋃
k=1

Fk ∈ Fj ⊆
⋃
i∈Z

Fi.

Now one can estimate

µ0(E \ F ) ≤ µ0

(
E \

N⋃
k=1

Ek

)
+

N∑
k=1

µ0(Ek \ Fk) < ε+
N∑
k=1

ε · 2−k < 2ε,

µ0(F \ E) ≤
N∑
k=1

µ0(Fk \ Ek) < ε,

hence µ0(E4F ) < 3ε, and the proof is complete. �

2.4. Lemma. Let the assumption of Lemma 2.3 be satisfied, and in addition the measure spaces
(Ω,Fi, µ) be σ-finite. If E ∈ F 0, then for all ε > 0 one can find an F ∈

⋃
i∈Z Fi, such that

µ(E4F ) < ε.
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The difference compared to the previous lemma is the fact that there is an estimate for the
measure of the full difference set E4F and not only its intersection with a given E0.

Proof. Since (e.g.) F0 is σ-finite, there are sets Ak ∈ F 0
0 of finite measure with Ak ↗ Ω. Then

E \Ak ↘ ∅, so for some k there holds µ(E \Ak) < ε. Set E0 := Ak and apply Lemma 2.3. This
gives a set F ∈

⋃
i∈Z Fi such that µ(E0 ∩ [E4F ]) < ε. Also F0 := E0 ∩ F ∈

⋃
i∈Z Fi, and this

satisfies

µ(E \ F0) = µ(E \ E0) + µ(E0 ∩ E \ F ) < 2ε, µ(F0 \ E) = µ(E0 ∩ F \ E) < ε.

Hence F0 is a set of the desired type (with the value 3ε). �

As a consequence we get a density result for functions:

2.5. Theorem. Let (Fi)i∈Z be a filtration of the space (Ω,F , µ), where the associated measure
spaces are σ-finite and F = σ

(⋃
i∈Z Fi

)
. Let p ∈ [1,∞). Then⋃
i∈Z

Lp(Fi, µ)

is dense in Lp(F , µ).

Proof. Let f ∈ Lp(F , µ). By integration theory there exists a simple function g =
∑N
k=1 ak1Ek ,

where Ek ∈ F 0, such that ‖f − g‖p < ε. By Lemma 2.4 there are sets Fk ∈ F 0
i(k) ⊆ F 0

j , where

j := max{i(k) : k = 1, . . . , N}, such that µ0(Ek4Fk) < δ. Letting h :=
∑N
k=1 ak1Fk , it follows

that

‖g − h‖p ≤
N∑
k=1

|ak| · ‖1Ek − 1Fk‖p =
N∑
k=1

|ak| · µ(Ek4Fk)1/p < δ1/p
N∑
k=1

|ak| < ε,

as soon as δ is chosen sufficiently small. Hence ‖f − h‖p < 2ε and h ∈ Lp(Fj , µ). �

2.6. Corollary. Under the assumption of Theorem 2.5, for all f ∈ Lp(F , µ) there is convergence

E[f |Fi]→ f in the sense of Lp(F , µ)-norm, when i→∞.

Theorem 2.5 said that there exist good approximations for f in the spaces Lp(Fi, µ); this
corollary tells that conditional expectations provide a way of finding them explicitly.

Proof. Let ε > 0. By Theorem 2.5 there are j ∈ Z and g ∈ Lp(Fj , µ), such that ‖f − g‖p < ε.
Now

‖E[f |Fi]− f‖p ≤ ‖E[f − g|Fi]‖p + ‖E[g|Fi]− g‖p + ‖g − f‖p,
and the middle term vanishes for i ≥ j, since then E[g|Fi] = g. Moreover, ‖E[f − g|Fi]‖p ≤
‖f − g‖p, and hence

‖E[f |Fi]− f‖p ≤ 2‖g − f‖p < 2ε,
for i ≥ j. �

2.7. A question of pointwise convergence. According to the general integration theory, a
sequence of functions which converges in the Lp norm also has a subsequence converging pointwise
a.e. In the situation of the previos corollary, one does not even need to restrict to a subsequence,
but proving this fact requires a certain auxiliary device. Let us sketch the proof as far as we can
at the present to see which estimate we are still lacking. First of all,

{E[f |Fi] 6→ f} =
{

lim sup
i→∞

|E[f |Fi]− f | > 0
}

=
∞⋃
n=1

{
lim sup
i→∞

|E[f |Fi]− f | >
1
n

}
,

so it suffices to prove that for all ε > 0 there holds

µ
({

lim sup
i→∞

|E[f |Fi]− f | > ε
})

= 0.

Let δ > 0, and let j ∈ Z and g ∈ Lp(Fj , µ) be such that ‖f − g‖p < δ. Then

|E[f |Fi]− f | ≤ |E[f − g|Fi]|+ |E[g|Fi]− g|+ |g − f |.
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Taking lim supi→∞ of both sides and observing that the middle term approaches zero (it even
equal zero as soon as i ≥ j), it follows that

µ
({

lim sup
i→∞

|E[f |Fi]− f | > 2ε
})
≤ µ

({
lim sup
i→∞

|E[f − g|Fi]| > ε
})

+ µ
({
|g − f | > ε

})
.

The latter term satisfies the basic estimate

µ
({
|g − f | > ε

})
≤ ε−p‖g − f‖pp < (δ/ε)p,

which can be made arbitrarily small, since δ > 0 can be chosen at will.
The remaining lim sup-term can be estimates by

lim sup
i→∞

|E[f − g|Fi]| ≤ sup
i∈Z

E[|f − g| |Fi] =: M(|f − g|),

where the above defined (nonlinear) operator M is Doob’s maximal operator. So there holds

µ
({

lim sup
i→∞

|E[f − g|Fi]| > ε
})
≤ µ

({
M(|f − g|) > ε}

)
,

and we would need an inequality of the type µ
({
Mh > ε

})
≤ Cε−p‖h‖pp to finish the estimate.

This follows from Doob’s inequality for the maximal function.
Let us first define the maximal function in a slightly more general setting:

2.8. Doob’s maximal function. Let (fi)i∈Z be a sequence of functions adapted to a filtration
(Fi)i∈Z. Let us denote the whole sequence simply by f ; hence f = (fi)i∈Z is not itself a function
but a sequence of functions. Then its Doob’s maximal function is defined pointwise by

Mf := f∗ := sup
i∈Z
|fi|.

Observe that this notation is in agreement with the situation considered above, where f ∈
L1
σ(F , µ) is as function and fi = E[f |Fi].

2.9.Theorem (Doob’s inequality). Let f = (fi)i∈Z be a submartingale with fi ≥ 0 and supi∈Z ‖fi‖p <
∞, where p ∈ (1,∞]. Then f∗ ∈ Lp(F , µ) and more precisely

‖f∗‖p ≤ p′ · sup
i∈Z
‖fi‖p.

The analogous results for martingales (even without the requirement that fi ≥ 0) follows at
once, for if (fi)i∈Z is a martingale, then (|fi|)i∈Z fulfills the assumptions of the theorem. The
constant p′ in the inequality is the best possible (in the sense that the result does not hold in
general if p′ is replaced by any number c < p′) – this fact will be proven in the exercises.

Doob’s inequality also has a so-called weak-type version for p = 1, but this will not be dealt
with here.

2.10. Preliminary considerations. Before the actual proof of Doob’s inequality, we make some
simplifying considerations. First of all, notice that the case p = ∞ is trivial, so in the sequel we
will concentrate on p ∈ (1,∞).

Observe that it suffices to prove the claim for submartingales (fi)i∈N indexed by the natural
numbers. Namely, from this it follows (just by making a change of the index variable) that the
estimate also holds for martingales with the index set {n, n+1, n+2, . . .} with an arbitrary n ∈ Z,
i.e.,

‖ sup
i≥n

fi‖p ≤ p′ · sup
i≥n
‖fi‖p.

But clearly supi≥n fi ↗ supi∈Z fi as n → −∞, so the monotone convergence theorem (the usual
form from integration theory) implies that

‖ sup
i∈Z

fi‖p = lim
n→−∞

‖ sup
i≥n

fi‖p ≤ p′ · lim
i→−∞

sup
i≥n
‖fi‖p = p′ · sup

i∈Z
‖fi‖p.

Next observe that one can even restrict to finite submartingales (fi)ni=0 with the index set
{0, 1, . . . , n}. Passing from here to the case of all N can be realized by a similar monotone
convergence argument as above. So it remains to prove that∥∥ max

0≤k≤n
fk
∥∥
p
≤ p′ · max

0≤k≤n
‖fk‖p = p′ · ‖fn‖p;
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the equality above follows from the fact that 0 ≤ fk ≤ E[fn|Fk], and hence ‖fk‖p ≤ ‖fn‖p for all
k = 0, 1, . . . , n.

2.11. Burkholder’s proof for Doob’s inequality. Let us write f∗k := max0≤j≤k fj and dk :=
fk − fk−1. The submartingale assumption tells that

E[dk|Fk−1] = E[fk|Fk−1]− fk−1 ≥ 0,

also recall that fk ≥ 0. In this new notation, the claim to be proven reads as∫
Ω

v(fn, f∗n) dµ ≤ 0, v(x, y) := yp − (p′x)p, 0 ≤ x ≤ y.

Burkholder’s idea is to replace v by a new function u which has “better” properties. Suppose
that we had a measurable function u of two variables, defined in the domain where 0 ≤ x ≤ y,
such that

v(x, y) ≤ u(x, y), |u(x, y)| ≤ Cyp, u(x, x) ≤ 0,

u(x+ h,max{x+ h, y}) ≤ u(x, y)− w(x, y)h, 0 ≤ x ≤ y, 0 ≤ x+ h,

where w is a function defined on the same domain which satisfies 0 ≤ w(x, y) ≤ Cyp−1. The first
two properties express the fact that, on the one hand, the original function v is dominated by u,
but also u is not too big, so that u(x, y) ∈ L1(F , µ) when one substitues Lp(F , µ) functions for
the variables x and y.

The somewhat mysterious-looking final requirement on u above is precisely what is needed to
estimate the expression u(fn, f∗n). Taking x := fn−1, y := f∗n−1 and h := dn, it follows that
fn = x+ h and f∗n = max{fn, f∗n−1} = max{x+ h, y}; siis

u(fn, f∗n) ≤ u(fn−1, f
∗
n−1)− w(fn−1, f

∗
n−1)dn.

The integral of the second term on the right is∫
Ω

w(fn−1, f
∗
n−1)dn dµ =

∫
Ω

E[w(fn−1, f
∗
n−1)dn|Fn−1] dµ

=
∫

Ω

w(fn−1, f
∗
n−1)E[dn|Fn−1] dµ ≥ 0,

since w ≥ 0 and E[dn|Fn−1] ≥ 0. Hence∫
Ω

v(fn, f∗n) ≤
∫

Ω

u(fn, f∗n) dµ ≤
∫

Ω

u(fn−1, f
∗
n−1) dµ.

Iterating the last inequality, after n steps it follows that∫
Ω

u(fn, f∗n) dµ =
∫

Ω

u(f0, f
∗
0 ) dµ =

∫
Ω

u(f0, f0) dµ ≤ 0,

where we observed that f∗0 = max0≤j≤0 fj = f0, and used the property that u(x, x) ≤ 0.
The proof is complete except for showing that functions u and w with the desired properties

actually exist.

2.12. Search for the auxiliary functions I: the form of the functions. How to find appropri-
ate functions u and w? Let us first exploit the homogeneity of the problem to see that if u and w are
suitable functions, then for all λ > 0 also uλ(x, y) := λ−pu(λx, λy) and wλ(x, y) := λ−p+1w(λx, λy)
are such functions. Here it is decisive that the original function v verifies v(x, y) = λ−pv(λx, λy).
Furthermore, observe that even the functions ũ := infλ>0 uλ and w̃ := infλ>0 wλ will do. Here
one should note that infima are still real-valued (and never −∞), since there holds uλ ≥ v
and wλ ≥ 0 for all λ. The functions ũ and w̃ satisfy the additional homogeneity properties
ũ(λx, λy) = λpũ(x, y) and w̃(x, y) = λp−1w̃(x, y), so it suffices to look for such auxiliary functions
which verify these additional restriction. In the sequel, thse will be denoted simply by u and w
without the tildes.

Consider the required inequality u(x+ h,max{x+ h, y}) for x, x+ h ∈ [0, y]. We want that

u(x+ h, y)− u(x, y) ≤ −w(x, y)h.
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Let us rewrite this condition with x replaced by x+ h and h by −h; this gives

u(x, y)− u(x+ h, y) ≤ w(x+ h, y)h.

For h > 0, these imply that

−w(x+ h, y) ≤ u(x+ h, y)− u(x, y)
h

≤ −w(x, y),

so −w is a decreasing as a function of x, and hence w is increasing.
Suppose that u is differentiable and w is continuous with respect to x at the point (x, y). The

limit h↘ 0 of the previous inequality gives

−w(x, y) ≤ ux(x, y) ≤ −w(x, y),

where ux := ∂u/∂x, and hence in fact w = −ux. By the earlier observations, ux is decreasing with
respect to x. Conversely, this condition gives

u(x+ h, y)− u(x, y) =
∫ 1

0

ux(x+ th, y)hdt ≤ ux(x, y)h = −w(x, y)h,

so the original requirement is verified.
The homogeneity condition implies that

u(x, y) = u(y · x/y, y · 1) = ypu(x/y, 1) =: ypφ(x/y),

where φ is defined on [0, 1]. Furthermore,

w(x, y) = ux(x, y) = yp−1φ′(x/y).

so φ′ should be increasing.
Consider then the inequality between u and w for x + h > y. In terms of the new function φ,

the condition says that

(x+ h)pφ(1)− ypφ(x/y) ≤ yp−1φ′(x/y)h,

or equivalently, with the new variables t := x/y and s := h/y, which satisfy t+ s > 1,

(t+ s)pφ(1)− φ(t) ≤ φ′(t)s.

After moving terms, this gets the form

(∗) φ(1)[(t+ s)p − 1] ≤ φ(t)− φ(1) + φ′(t)s.

When s↘ 1− t, the left side tends to zero, and hence φ(t)−φ(1) +φ′(t)(1− t) ≥ 0. On the other
hand, since the derivative φ′ is increasing, the mean value theorem shows that, for some ξ ∈ (t, 1),

φ(t)− φ(1) = (t− 1)φ′(ξ) ≥ (t− 1)φ′(t),

so in fact the differential equation (1− t)φ′(t) + φ(t)− φ(1) = 0 has to be satisfied.
Multiplying both sides by the factor (1− t)−2 = [(1− t)−1]′, it follows that

d

dt

(φ(t)− φ(1)
1− t

)
= 0,

and integration gives

φ(t) = φ(0)(1− t) + φ(1)t =: c0 − c1t.

Substituting back, the auxiliary functions are seen to have the form

u(x, y) = ypφ(x/y) = c0y
p − c1yp−1x, w(x, y) = c1y

p−1.
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2.13. Search for the auxiliary functions II: determining the constants. Let us start from
the easy observations that the requirements yp = v(0, y) ≤ u(0, y) = c0y

p and (c0 − c1)yp =
u(y, y) ≤ 0 are equivalent to the condition c1 ≥ c0 ≥ 1. Hence also w(x, y) ≥ 0 and the upper
bounds required for the absolute values of the functions are clearly satisfied, but still one has to
find c0 and c1 in such a way that also the other conditions hold.

Let us return to the inequality between u and w for x + h > y. This was already seen to be
equivalent to (∗) in Section 2.12, i.e., to

(c0 − c1)[(t+ s)p − 1] ≤ (c0 − c1t)− (c0 − c1)− c1s = −c1[(t+ s)− 1].

Dividing this by (t+ s−1) and taking the limit s↘ 1− t leads to (c0− c1)p ≤ −c1, i.e., c0p′ ≤ c1.
Conversely, this condition implies the original inequality by the mean value theorem.

There remains the requirement u ≥ v which, after moving terms, attains the form

(c0 − 1)yp − c1yp−1x+ (p′x)p ≥ 0, y ≥ x ≥ 0.

This inequality holds in the limit y → ∞ if and only if c0 > 1. For y = 0 it holds automatically
(although this is actually not needed except when x = 0). The function above attains its smallest
value in the interval y ∈ [0,∞) either at the left endpoint or where the derivative vanishes. The
last condition happens at the unique point where (c0 − 1)pyp−1 − c1(p− 1)yp−2x = 0, i.e.,

y =
c1

c0 − 1
x

p′
≥ c0p

′

c0 − 1
x

p′
> x,

so this is contained in the critical interval [x,∞). At this point the function attains the value

(c0 − 1)1−pcp1(x/p′)p − cp1(c0 − 1)1−p(x/p′)p−1x+ (p′x)p,

and the requirement of its nonnegativity reads (observe that (p′ − 1)−1 = (p− 1))

(c0 − 1)1−pcp1(p′ − 1) ≤ (p′)2p, eli c1 ≤ (p′)2(p− 1)1/p(c0 − 1)1/p′ .

All in all, it has been shown that the functions u(x, y) = c0y
p − c1yp−1x and w(x, y) = c1y

p−1

satisfy the required conditions if and only if

p′c0 ≤ c1 ≤ (p′)2(p− 1)1/p(c0 − 1)1/p′ , c0 > 1.

Let us denote t := c0 − 1 and look for a solution for the inequality

F (t) := p′(p− 1)1/pt1/p
′
− t ≥ 1, t ∈ [0,∞).

The maximal value of the function is reached at the zero of the derivative, i.e., when (p −
1)1/pt1/p

′−1 − 1 = 0 which is solved for t = p− 1. At this point, F (p− 1) = p′(p− 1)− (p− 1) =
p − (p − 1) = 1. Hence, unique values c0 = t + 1 = p and c1 = p′c0 = p′p have been found, and
these give

u(x, y) = pyp−1(y − p′x), w(x, y) = pp′yp−1.

2.14. Convergence of martingales to the reverse direction. We have seen that if (Fj)j∈Z is
a filtration with σ(

⋃
j∈Z Fj) = F , then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds E[f |Fj ]→ f

when j →∞, both in the Lp norm and pointwise a.e. What about j → −∞?
Let make the following additional assumption:

∀F ∈
⋂
j∈Z

Fj : µ(F ) ∈ {0,∞}.

Then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds E[f |Fj ] → 0 when j → −∞, both in the Lp
norm and pointwise a.e.

Proof. At a.e. point ω ∈ Ω, the sequence (E[f |Fj ])j∈Z is bounded from above and from below by
the numbers Mf and −Mf . In particular, it has finite pointwise lim sup and lim inf as j → −∞;
let the first one be denoted by g. A basic observation is that

g = lim sup
j→−∞

E[f |Fj ] = lim sup
i≥j→−∞

E[f |Fj ]



12 TUOMAS HYTÖNEN

can be computed by restricting to the tail j ≤ i for any fixed i ∈ Z. In particular, as the upper
limit of Fi-measurable functions, g itself is Fi-measurable. Since this is true for all i ∈ Z, the
function g is in fact (

⋂
j∈Z Fj)-measurable.

In particular, for all ε > 0 there holds µ({|g| > ε}) ∈ {0,∞}. The latter possibility cannot
hold, since |g| ≤Mf ∈ Lp(F , µ), and hence µ({|g| > ε}) ≤ ε−p‖Mf‖pp <∞. Thus µ({g 6= 0}) =

µ
(⋃∞

n=1{|g| > n−1}
)

= 0, and therefore g = 0 a.e.
A similar argument shows that also lim infj→−∞ E[f |Fj ] = 0, so in fact there exists the point-

wise limit limj→−∞ E[f |Fj ] = 0. By the dominated convergence theorem (the dominating function
being Mf) it follows that the convergence also takes places in the Lp norm. �

By combining the convergence results of this section, the following representation of a function
in terms of its martingale differences is obtained:

2.15. Theorem. Let (Ω,F , µ) be a measure space and (Fj)j∈Z its filtration, such that the spaces
(Ω,Fj , µ) are σ-finite. Let, in addition,

σ
( ⋃
j∈Z

Fj

)
= F , ∀F ∈

⋂
j∈Z

Fj : µ(F ) ∈ {0,∞}.

Then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds

f =
∞∑

j=−∞

(
E[f |Fj ]− E[f |Fj−1]

)
,

where the convergence takes place both in the Lp-norm and pointwise a.e.

Proof. By using the obtained convergence results and writing out the difference as a telescopic
sum, it follows that

f = f − 0 = lim
n→+∞

E[f |Fn]− lim
m→−∞

E[f |Fm] = lim
n→+∞
m→−∞

n∑
j=m+1

(
E[f |Fj ]− E[f |Fj−1]

)
,

and the existence of the limit on the right is, by definition, the same as the convergence of the
series in the assertion. �

2.16. Exercises. Many of the exercises deal with applications of martingale theory and especially
Doob’s maximal inequality to classical analysis.

1. Prove that a filtration indexed by a subset I ⊂ Z of the integers Z and a martingale
adapted to it can be extended so as to be indexed by all of Z. More precisely: Let (Fi)i∈I
be a filtration and (fi)i∈I a martingale adapted to it, where I ⊂ Z. Define Fi and fi for
i ∈ Z \ I in such a way that also (Fi)i∈Z is a filtration and (fi)i∈Z a martingale adapted
to it.

2. With the help of Doob’s inequality, derive Hardy’s inequality : for all 0 ≤ f ∈ Lp(R+)
(where R+ = (0,∞) is equipped with the Borel σ-algebra and the Lebesgue measure)[ ∫ ∞

0

( 1
x

∫ x

0

f(y) dy
)p

dx
]1/p

≤ p′
[ ∫ ∞

0

f(x)p dx
]1/p

.

(Hint: For a fixed δ > 0, consider the filtration (Fn)n∈Z− , where

Fn := σ
({

(0, |n|δ], (kδ, (k + 1)δ] : |n| ≤ k ∈ Z
})
.

Take the limit δ ↘ 0 in the end.)
Notice that it is possible (and not particularly hard) to prove Hardy’s inequality also

by other methods, but the point of the exercise is nevertheless to derive it as a corollary
of Doob’s inequality.

3. Show that the constant p′ is optimal in Hardy’s inequality, and hence also in Doob’s
inequality. (Hint: investigate e.g. the functions f(x) = 1I(x) · xα, where I ⊂ R+ is an
appropriate subinterval and α ∈ R.)
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4. Denote the collections of the usual dyadic intervals of R by Dk := {2−k[j, j + 1) : j ∈ Z},
where k ∈ Z. For all β = (βk)k∈Z ∈ {0, 1}Z, define the collection of shifted dyadic intervals
by

Dβ
k := Dk +

∑
j>k

βj2−j :=
{
I +

∑
j>k

βj2−j : I ∈ Dk

}
,

where I + c := [a+ c, b+ c) if I = [a, b). Note that D0
k = Dk, where 0 stands for the zero

sequence. Denote the corresponding σ-algebras by F β
k := σ(Dβ

k ). Show that (F β
k )k∈Z is

a filtration for all β ∈ {0, 1}Z.
5. Keeping the notations of the previous exercise, define the collection of all (shifted) dyadic

intervals Dβ :=
⋃
k∈Z Dβ

k . Consider the particular sequence β ∈ {0, 1}Z, where βk = 0 if k
is even and βk = 1 if k is odd. Prove that, with some constant C ∈ (0,∞), the following
assertion holds: If J ⊂ R is any finite subinterval, there exists either I ∈ D0 or I ∈ Dβ ,
such that J ⊆ I and |I| ≤ C|J |. (Hint: it might help to sketch a picture.)

6. For f ∈ L1
loc(R), its Hardy–Littlewood maximal function is defined by

MHLf(x) := sup
I3x

1
|I|

∫
I

|f(y)|dy,

where the supremum is over all finite subintervals I ⊂ R which contain x. (Usually
this is denoted simply by M but now the subscript HL is used to distinguish this from
Doob’s maximal function.) Use Doob’s inequality to derive the Hardy–Littlewood maximal
inequality

‖MHLf‖p ≤ Cp‖f‖p, p ∈ (1,∞].

(Hint: Use the result of the previous exercise to show that MHLf is pointwise dominated
by the sum of two Doob’s maximal functions related to different filtrations.)

2.17. References. The core of this chapter, which is Burkholder’s proof for Doob’s inequality, is
taken from Burkholder’s summer school lectures [4]. The idea for Exercises 2 and 3 is also from
there. The results of Exercises 5 and 6 are from Mei [7].

Burkholder developed his technique of proving various inequalities of analysis by ingenious use
of convex functions during the 1980’s. At that time, however, the popularity of this method was
left relatively restricted. Since then, Burkholder’s idea has been rediscovered and systematically
developed in the 2000’s especially by Nazarov, Treil and Volberg. They refer to this proof technique
as the Bellman function method, since the auxiliary functions (“Bellman functions”) appearing in
the arguments have a certain connection to Bellman differential equations from Stochastic Control;
this aspect, however, will not be considered in these lectures.

Doob’s inequality itself appeared for the first time in his classic book [5]. In his original
approach, the Lp inequality is derived from a weak-type estimate in L1, which in turn is proved
by a stopping time technique. This nice argument is commonly found in more recent books as
well (e.g. [11]), and it is also the way that the Hardy–Littlewood inequality is usually proved in
modern textbooks, although not the proof originally given by Hardy and Littlewood [6].

3. Burkholder’s inequality

3.1. The sign transform of a martingale. On a measure space (Ω,F , µ) with a filtration
(Fk)nk=0, consider a martingale f = (fk)nk=0 and denote the corresponding martingale difference
sequence by

d0 := f0, dk := fk − fk−1, k = 1, . . . , n.

So here E[dk|Fk−1] = 0 for all k = 1, . . . , n, and fk =
∑k
j=0 dj .

Let (εk)nk=0 be a sequence of signs, εk ∈ {−1,+1}. The sign transform of the martingale f is
the new martingale g = (gk)nk=0, where gk :=

∑k
j=0 εjdj .

In this chapter, the following fundamental result is proven. It has important consequences,
some of which will be considered later on.
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3.2. Theorem (Burkholder’s inequality). Let p ∈ (1,∞). Then there exists a constant β, such
that if fn ∈ Lp(F , µ) and gn is its sign transform, then

‖gn‖p ≤ β‖fn‖p.

One can take

β = p∗ − 1 := max{p, p′} − 1 = max
{
p− 1,

1
p− 1

}
,

and this constant is optimal.

The core idea of the proof is similar to Burkholder’s proof for Doob’s inequality: to relate the
estimate concerning martingales to the properties of appropriate convex functions. Again it is
useful to start with some simplifying preparatory considerations.

3.3. Lemma (Reduction to finite measure spaces). It suffices to prove Burkholder’s inequality in
the case µ(Ω) <∞, i.e., this case already implies the general case.

Proof. Let (dk)nk=0 be a martingale difference sequence on a σ-finite space (Ω,F , µ). By the
standing assumptions, (Ω,F0, µ) is also σ-finite, and hence there are Ej ∈ F0 of finite measure
with Ej ↗ Ω. Then 1Ejdk → dk as j →∞ pointwise, and then in Lp by dominated convergence.
Hence we can fix some E = Ej such that ‖1Edk − dk‖p < ε for all k = 0, . . . , n. Then (1Edk)nk=0

is another martingale difference sequence, indeed E[1Edk|Fk−1] = 1EE[dk|Fk−1] = 0 for all k ≥ 1
since E is measurable with respect to F0 ⊆ Fk−1.

Assuming Burkholder’s inequality for the finite measure space (E,F ∩ E,µ), it follows that∥∥∥ n∑
k=0

εkdk

∥∥∥
p
≤
∥∥∥ n∑
k=0

εk1Edk
∥∥∥
p

+
n∑
k=0

‖dk − 1Edk‖p ≤ β
∥∥∥ n∑
k=0

1Edk
∥∥∥
p

+
n∑
k=0

ε

≤ β
∥∥∥ n∑
k=0

dk

∥∥∥
p

+ (n+ 1)ε.

Letting ε↘ 0, the assertion follows. �

3.4. Lemma (Reduction to simple martingales). It suffices to prove Burkholder’s inequality in the
case when each fk ∈ Lp(Fk, µ) is a simple function.

Proof. Let (Ω,F , µ) be a finite measure space, and (dk)nk=0 be a martingale difference sequence.
For ε > 0 and each k = 0, 1, . . . , n, there are Fk-simple functions sk, such that ‖dk − sk‖p < ε.

Let Gk := σ(s0, . . . , sk) ⊆ Fk be the smallest σ-algebra for which s0, . . . , sk are measurable.
Since each sj is simple, Gk contains only finitely many sets. Clearly (Gk)∞k=0 is a filtration. The
functions sk may fail to be martingale differences, but the new functions

uk := sk − E[sk|Gk−1]

clearly are. Since Gk−1 is finite, the conditional expectation, and then uk, is again a simple
function. (Note that, in general, the conditional expectation of a simple function need not be
simple; see exercises.)

There holds
E[dk|Gk−1] = E[E[dk|Fk−1]|Gk−1] = E[0|Gk−1] = 0,

and hence
‖E[sk|G 0

k−1]‖p = ‖E[sk − dk|G 0
k−1]‖p ≤ ‖sk − dk‖p < ε;

thus ‖uk − dk‖p < 2ε. So uk is a simple martingale difference sequence which approximates the
original one. Then∣∣∣∥∥∥ n∑

k=0

εkdk

∥∥∥
p
−
∥∥∥ n∑
k=0

εkuk

∥∥∥
p

∣∣∣ ≤ ∥∥∥ n∑
k=0

εk[dk − uk]
∥∥∥
p
≤

n∑
k=0

‖dk − uk‖p ≤ 2ε(n+ 1)

which holds in particular in the case εk ≡ 1.
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If Burkholder’s inequality holds in the simple martingale case∥∥∥ n∑
k=0

εkuk

∥∥∥
p
≤ β

∥∥∥ n∑
k=0

uk

∥∥∥
p
,

then∥∥∥ n∑
k=0

εkdk

∥∥∥
p
≤
∥∥∥ n∑
k=0

εkuk

∥∥∥
p

+ 2(n+ 1)ε ≤ β
∥∥∥ n∑
k=0

uk

∥∥∥
p

+ 2(n+ 1)ε

≤ β
(∥∥∥ n∑

k=0

dk

∥∥∥
p

+ 2(n+ 1)ε
)

+ 2(n+ 1)ε = β
∥∥∥ n∑
k=0

dk

∥∥∥
p

+ 2(β + 1)(n+ 1)ε.

The claim follows with ε↘ 0. �

3.5. Zigzag martingales. Let Z = (Zk)nk=0 = (Xk, Yk)nk=0 be a sequence of pairs of functions
(Xk, Yk). Then Z is called a two-dimensional martingale if both Xk ja Yk are martingales adapted
to the same filtration. Z is called a zigzag martingale if it has the following additional property:
for all k ≥ 1 either Xk −Xk−1 = 0 or Yk − Yk−1 = 0.

Starting from a martingale and its sign transform

fk =
k∑
j=0

dj , gk =
k∑
j=0

εjdj ,

one defines new martingales

Xk := gk + fk =
k∑
j=0

(εj + 1)dj , Yk := gk − fk =
k∑
j=0

(εj − 1)dj ,

and the two-dimensional martingale Zk := (Xk, Yk). This clearly has the zigzag property, since
for all k either εk = 1, and then Yk − Yk−1 = 0, or εk = −1, and then Xk −Xk−1 = 0.

3.6. Lemma. Let u : R× R→ R be a bi-concave function, i.e., both x 7→ u(x, y) and y 7→ u(x, y)
are concave functions R→ R. If Z is a simple zigzag martingale, there holds∫

u(Zk) dµ ≤
∫
u(Zk−1) dµ.

Proof. By symmetry one may suppose that

Xk = Xk−1 =
s∑
r=1

ar1Ar , Ar ∈ F 0
k−1.

Hence∫
u(Zk) dµ =

∫
u(Xk−1, Yk) dµ =

s∑
r=1

∫
Ar

u(ar, Yk) dµ =
s∑
r=1

∫
Ar

E[u(ar, Yk)|Fk−1] dµ

≤
s∑
r=1

∫
Ar

u(ar,E[Yk|Fk−1] dµ =
s∑
r=1

∫
Ar

u(ar, Yk−1) dµ =
∫
u(Xk−1, Yk−1) dµ =

∫
u(Zk−1) dµ,

where Jensen’s inequality for conditional expectations was used. �

3.7. Theorem. Burkholder’s inequality ‖gn‖p ≤ β‖fn‖p holds for a constant β, if and only if
there exists a bi-concave function u : R× R→ R with

u(x, y) ≥ F (x, y) :=
∣∣∣x+ y

2

∣∣∣p − βp∣∣∣x− y
2

∣∣∣p.
Hence finding a bi-concave function u as above is not just one possible way of proving Burkholder’s

inequality, but this task is equivalent to the original problem! Also notice that this theorem by
itself does not yet tell whether Burkholder’s inequality is true or not, but only transforms it to a
new question. There still remains the problem of finding the auxiliary function u, and this will be
dealt with after the proof of the theorem.
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3.8. Additional symmetries for the function u. Observe first that if there is some function
u fulfilling the above conditions, there is even such a u which additionally satisfies

u(αx, αy) = |α|pu(x, y)

for all α ∈ R. Namely, define uα(x, y) := |α|−pu(αx, αy) for α 6= 0. Also this function is bi-concave
and satisfies uα ≥ F . Hence even ũ := infα6=0 uα verifies the same conditions; here one appeals
to the fact that the infimum of concave functions is again concave. Now ũ satisfies the above
homogeneity property for α 6= 0 by a simple change of variable. But then also

ũ(0 · x, 0 · y) = ũ(0, 0) = ũ(α · 0, α · 0) = |α|pũ(0, 0)→ 0 = |0|pũ(x, y)

as α→ 0, and the claim follows for all α ∈ R.
Furthermore one can require that u(x, y) = u(y, x). If this condition is not already satisfied,

then the new function 1
2 [u(x, y) + u(y, x)] will do; it is still bi-concave and at least as large as

F (x, y) = F (y, x).

3.9. Burkholder’s inequality with the help of u. Suppose that a function u exists. Let
Z = (X,Y ) be the zigzag martingale related to a simple martingale f and its sign transform.
Another way of writing the inequality to be proven is as follows:∫ (∣∣∣Xn + Yn

2

∣∣∣p − βp∣∣∣Xn − Yn
2

∣∣∣p)dµ =
∫
F (Xn, Yn) dµ ≤ 0.

By assumption and Lemma 3.6, there holds∫
F (Zn) dµ ≤

∫
u(Zn) dµ ≤

∫
u(Zn−1) dµ ≤ . . . ≤

∫
u(Z0) dµ.

Here either Z0 = (X0, 0) or Z0 = (0, Y0), assume for example the first case. Thanks to the
additional properties of u,

u(x, 0) = u(−x, 0) =
u(x, 0) + u(−x, 0)

2
≤ u

(x− x
2

, 0
)

= u(0, 0) = 0;

and the assertion is proven.

3.10. Constructing u from the martingales. For each pair of points (x, y) ∈ R× R, consider
the set

S(x, y) := {Z = (Zk)nk=0 simple zigzag martingale, Zk : [0, 1)→ R× R, Z0 = (x, y)}.

The filtration has not been fixed, i.e., two zigzag martingales Z,Z ′ ∈ S(x, y) may be adapted
to different filtrations of

(
[0, 1),B([0, 1)), dt

)
. Also the parameter n ∈ N may vary and attain

arbitrarily large values, but it is finite for each fixed Z. Nevertheless, the notation Z∞ := Zn will
be used for simplicity when Z = (Zk)nk=0.

Now define the function

U(x, y) := sup
{∫ 1

0

F (Z∞) dt : Z ∈ S(x, y)
}
∈ (−∞,∞].

The following properties should be checked:
• U(x, y) ≥ F (x, y),
• U is bi-concave, and
• U is real-valued, i.e., U(x, y) <∞ everywhere.

The first property is clear, since the collection S(x, y) contains the trivial zigzag martingale Z =
(Z0) = (Zk)0

k=0, for which Z∞ = (x, y), and hence U(x, y) ≥
∫ 1

0
F (x, y) dt = F (x, y). The last

point, which one could easily forget to think about, is in fact quite essential. Indeed, it would be
easy to fulfill the other two properties with the trivail choice U ≡ ∞ identically, but this function
would not be of any use.
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3.11. Bi-concavity. Let y, x1, x2 ∈ R, α ∈ (0, 1) be arbitrary, x = αx1 + (1 − α)x2, and also
m1,m2 ∈ R, such that U(xi, y) > mi. The claim is that U(x, y) > αm1 + (1−α)m2, which would
imply U(x, y) ≥ αU(x1, y) + (1 − α)U(x2, y) and similarly in the y-coordinate by completely
symmetric considerations.

By the choice of the mi, there are Zi ∈ S(xi, y), such that
∫ 1

0
F (Zi∞) dt > mi. These zigzag

martingales may even be chosen in such a way that

(∗) Y i2k+1 − Y i2k = 0 = Xi
2k+2 −Xi

2k+1

and they have the same length, i.e., Zi = (Zik)nk=0 for the same n ∈ N.

Proof. In case Y i2k+1 − Y i2k 6= 0 for some k, one can ”augment a zero step”, i.e., to define a new
martingale Z̃ij := Zij when 0 ≤ j ≤ 2k and Z̃ij := Zij−1 when j > 2k. Now Z̃i ∈ S(x, y) is another
zigzag martingale with Z̃i∞ = Zi∞, but in addition Z̃i2k+1 = Z̃i2k, so this holds in particular for the
y-component. By repeating this operation finitely many times, starting from the smallest k and
taking into account the similar situations in the x-component, one gets a new Z̃i ∈ S(x, y) which
fulfills the requirement (∗) and also Z̃i∞ = Zi∞, so in particular

∫ 1

0
F (Z̃i∞) dt > mi. Finally, if the

martingales Z̃1 ja Z̃2 have different lenghts, zero steps can be similarly augmented at the end of
the shorter one. �

Then one defines

Z0(t) := (x, y), Zk+1(t) :=

{
Z1
k(t/α), t ∈ [0, α),

Z2
k

(
(t− α)/(1− α)

)
, t ∈ [α, 1),

k = 1, . . . , n.

Clearly ∫ 1

0

F (Z∞) dt =
∫ α

0

F ◦ Z1
∞(t/α) dt+

∫ 1

α

F ◦ Z2
∞
(
(t− α)/(1− α)

)
dt

= α

∫ 1

0

F (Z1
∞) dt+ (1− α)

∫ 1

0

F (Z2
∞) dt > αm1 + (1− α)m2,

so it remains to prove that Z = (Zk)n+1
k=0 ∈ S(x, y).

Proof. Let (F i
k)nk=0 be the filtration related to the martingale Zi = (Zik)nk=0. Set

F0 := {∅, [0, 1)}, Fk+1 := σ
(
α ·F 1

k , α+ (1− α) ·F 2
k

)
.

Then clearly the Z defined above is adapted to (Fk)nk=0, it remains to prove that it is a zigzag
martingale. When k ≥ 1, there holds

E[Zk+1|Fk] = E[1[0,α)Z
1
k(·/α)

∣∣α ·F 1
k−1] + E[1[α,1)Z

2
k

(
(· − α)/(1− α)

)∣∣α+ (1− α) ·F 2
k−1]

= 1[0,α)E[Z1
k |F 1

k−1](·/α) + 1[α,1)E[Z2
k |F 2

k−1]
(
(· − α)/(1− α)

)
= 1[0,α)Z

1
k−1(·/α) + 1[α,1)Z

2
k−1

(
(· − α)/(1− α)

)
= Zk,

where most of the steps where essentially changes of variables, which are easy to verify directly
from the definition of the conditional expectation, especially since the functions and the σ-algebras
above are simple.

When k = 0, there holds

E[Z1|F0] = E[1[0,α)Z
1
0 |F0] + E[1[α,1)Z

2
0 |F0] = E[1[0,α)|F0](x1, y) + E[1[α,1)|F0](x2, y)

= α(x1, y) + (1− α)(x2, y) = (x, y),

since Zi0 ≡ (xi, y), and the conditional expectation of a function with respect to the trivial σ-
algbera is its average on the whole space.

The general zigzag property would not necessarily be inherited by Z from the Zi, but now
that there holds the stronger property (∗), it is easy to see that a similar condition (with shifted
indices) is also true for Z. �
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3.12. Finiteness of values. So far the assumed inequality of Burkholder has not been used in
the consideration of the properties of U , so it should happen in this last phase. A central step in
proving the finiteness is to show that

U(0, 0) ≤ 0.

Proof. Let Z = (Zk)nk=0 ∈ S(0, 0), in particular Z0 = (X0, Y0) = (0, 0). Define the signs εk and
the martingale differences dk by:

(εk, dk) :=

{
(+1,+ 1

2 [Xk −Xk−1]) if Xk −Xk−1 6= 0,
(−1,− 1

2 [Yk − Yk−1]) otherwise,

and fk :=
∑k
j=1 dj , gk :=

∑k
j=1 εjdj . By the zigzag property, for all k = 1, . . . , n there holds

Xk −Xk−1 = (εk + 1)dk, Yk − Yk−1 = (εk − 1)dk,

and summing up,
Xk = gk + fk, Yk = gk − fk.

Thus in particular∫ 1

0

F (Zn) dt =
∫ 1

0

∣∣∣Xn + Yn
2

∣∣∣p − βp∣∣∣Xn − Yn
2

∣∣∣p dt = ‖gn‖pp − βp‖fn‖pp ≤ 0.

Upon taking the supremum over all Z ∈ S(0, 0), the assertion follows. �

The proof of everywhere finiteness is finished by simple concavity considerations: for all x, y ∈ R
there holds

[U(x, y) + U(−x, y)] + [U(x,−y) + U(−x,−y)] ≤ 2U(0, y) + 2U(0,−y) ≤ 4U(0, 0) ≤ 0 <∞,
so all the terms on the left need to be finite.

3.13. Search for the auxiliary function: reduction to a one-variable problem. By The-
orem 3.7, one should find a bi-concave function u : R× R→ R, such that u ≥ F . By section 3.8,
one can additionally demand that u(x, y) = u(y, x) and u(αx, αy) = |α|pu(x, y) for all α, x, y ∈ R.
But then, if y 6= 0,

u(x, y) = u(y · x/y, y · 1) = |y|pu(x/y, 1) =: |y|pw(x/y),

where
w is concave, w(x) = u(x, 1) ≥ F (x, 1) =: f(x),

w(1/x) = u(1/x, 1) = u(1/x · 1, 1/x · x) = |x|−pu(1, x) = |x|−pu(x, 1) = |x|−pw(x).
(∗)

Conversely, if w is a function verifying the above listed properties, one can define

u(x, y) :=

{
|y|pw(x/y), jos y 6= 0,
|x|pw(0), jos y = 0.

Let us prove that then u again satisfies the properties required for it, so searching for w is com-
pletely equivalent to searching for u.

Observe first that u has the symmetries u(y, x) = u(x, y) and u(αx, αy) = |α|pu(x, y).

Proof. If x 6= 0 6= y, then

u(y, x) = |x|pw(y/x) = |x|p|y/x|pw(x/y) = |y|pw(x/y) = u(x, y),

and if in addition α 6= 0

u(αx, αy) = |αy|pw(αx/αy) = |α|p|y|pw(x/y) = |α|pu(x, y).

If x 6= 0 = y and α 6= 0, then

u(0, x) = |x|pw(0/x) = |x|pw(0) = u(x, 0), u(0, αx) = |α|p|x|pw(0) = |α|pu(0, x).

Finally u(0, 0) = |0|pw(0) = 0, so u(0 · x, 0 · y) = 0 = |0|pu(x, y). �

Another basic observation is the inequality w(0) ≤ 0.
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Proof. Assume, contrary to the claim, that w(0) > 0. Since a concave function is continuous,
there holds w(t) ≥ δ > 0 for all |t| ≤ ε. Thus w(t−1) = |t|−pw(t) ≥ δ|t|−p → ∞, when t → 0.
In particular, for M there is an N , such that w(x) ≥ M , when |x| ≥ N . But by concavity the
holds w(x) ≥M also when (−N,N), and hence on all of R. Thus w ≥M everywhere, and by the
arbitrariness of M it follows that w ≡ +∞. This contradicts the real-valuedness of w. �

From the previous observation it follows that x 7→ u(x, y) is concave for y = 0. For other values
of y, this follows directly from the concavity of w. The symmetry u(x, y) = u(y, x) implies that u
is also concave as a function of y for a fixed x.

If y 6= 0, then
u(x, y) = |y|pw(x/y) ≥ |y|pF (x/y, 1) = F (x, y)

by the obvious homogeneity of the function F , and finally

u(x, 0) = |x|pw(0) ≥ |x|pF (0, 1) = |x|pF (1, 0) = F (x, 0),

which one could also deduce by taking the limit y → 0, since both y 7→ u(x, y) (being concave)
and y 7→ F (x, y) (obviously) are continuous.

3.14. The search for w: miscellanea. Whether or not it is possible to find w ≥ f with the
required properties depends on the function f , and then on the constant β in its definition. Let
us note that it is necessary that β ≥ 1. Indeed, if β < 1, the w(x) ≥ f(x)→∞ as x→ ±∞, and
this is impossible for a concave function w, as we saw in Section 3.13.

The function f , and then the problem of finding a dominating w, is a little different depending
on whether p ∈ (1, 2), p = 2, or p ∈ (2,∞). Let us notice that the case p = 2, unlike the other
two, is trivial. (This is not surprising, since Burkholder’s inequality itself is also easy in this case,
see Exercise 2.) Namely, then

f(x) =
(x+ 1

2

)2

− βp
(x− 1

2

)2

=
1
4

(
(1− β2)x2 + 2(1 + β2)x+ (1− β2)

)
is already concave for all β ≥ 1. With the minimal choice β = 1, it follows that f(x) = x, and one
can take w(x) = x, u(x, y) = xy.

In the sequel, we will concentrate on the case p ∈ (2,∞), leaving the treatment of p ∈ (1, 2)
for the exercises. Note that, just for the proof of Burkholder’s inequality, one would not need to
repeat all the concave function constructions, but one could derive the inequality for p ∈ (1, 2)
from the case p ∈ (2,∞) by a duality argument, see Exercise 1.

3.15. The shape of the function f . Let us compute the derivatives

f(x) =
∣∣∣x+ 1

2

∣∣∣p − βp∣∣∣x− 1
2

∣∣∣p,
f ′(x) =

p

2

(
sgn(x+ 1)

∣∣∣x+ 1
2

∣∣∣p−1

− βp sgn(x− 1)
∣∣∣x− 1

2

∣∣∣p−1)
,

f ′′(x) =
p(p− 1)

4

(∣∣∣x+ 1
2

∣∣∣p−2

− βp
∣∣∣x− 1

2

∣∣∣p−2)
.

For k = 0, 2, it follows that

f (k)(x) = 0 ⇔
∣∣∣x+ 1

2

∣∣∣p−k − βp∣∣∣x− 1
2

∣∣∣p−k ⇔ |x+ 1| = βk|x− 1|, βk := βp/(p−k).

For k = 1, one has the same condition as above, and in addition sgn(x + 1) = sgn(x − 1), i.e.,
|x| > 1. Solving for x,

|x+ 1| = βk|x− 1| ⇔

{
x+ 1 = βk(1− x)
x+ 1 = βk(x+ 1)

⇔

{
x = xk

x = 1/xk
xk :=

βk − 1
βk + 1

∈ [0, 1).

Since β ≥ 1 and p > 2, hence 1 = p/(p−0) < p/(p−1) < p/(p−2), it follows that 1 ≤ β0 ≤ β1 ≤ β2

and then 0 ≤ x0 ≤ x1 ≤ x2 < 1 < 1/x2 ≤ 1/x1 ≤ 1/x0, and all inequalities are strict if β > 1. It
will be shown shortly that this is the case.

So f (k) has zeros at xk and 1/xk for k = 0, 2 and only at 1/x1 for k = 1. A routine investigation
of the signs reveals that f (k) is positive on (xk, 1/xk) and negative on [xk, 1/xk]C for k = 0, 2,
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while f ′ is positive on (−∞, 1/x1) and negative on (1/x1,∞). The fact that f ′′ > 0 on (x2, 1/x2)
shows that f itself does not qualify for w, since it fails to be concave on that interval.

3.16. Lemma (β ≥ p−1). If there exists a concave w ≥ f with w(x) = |x|pw(1/x), then β ≥ p−1.

Proof. Note that 0 = f(x0) ≤ w(x0) and 1 = f(1) ≤ w(1).
For x ∈ (0, 1), consider the difference quotient

w(1)− w(x)
1− x

=
w(1)− xpw(1/x)

1− x
= w(1)

1− xp

1− x
+ xp−1w(1)− w(1/x)

1/x− 1
.

A concave function has the one-sided derivatives D±w(x) = limy→x±(w(y) − w(x))/(y − x) at
every point. So in particular, taking the limit x↗ 1 above, it follows that

D−w(1) = pw(1)−D+w(1)

By the condition w(x0) ≥ 0 and concavity, there holds for all x ∈ (x0, 1),

(∗) w(1)
1− x0

≥ w(1)− w(x0)
1− x0

≥ w(1)− w(x)
1− x

≥ D−w(1) ≥ 1
2
(
D−w(1) +D+w(1)

)
=
p

2
w(1).

Dividing by w(1) > 0, it follows that p/2 ≤ 1/(1 − x0) = (β + 1)/2, and this completes the
proof. �

3.17. The form of w on [x0, 1]. From now on, we fix β := p − 1 and try to find a dominating
function w. With this choice of β, the left and the right sides of (∗) in the proof of Lemma 3.16
are equal, and hence there must be equality at every step. This gives various pieces of useful
information.

First, there must hold w(x0) = 0 and D−w(1) = D+w(1). Hence the derivative w′(1) exists
and equals w′(1) = p/2 · w(1). Finally, from the equality (w(1) − w(x))/(1 − x) = p/2 · w(1), it
follows that

w(x) = αp

(p
2
x−

(p
2
− 1
))
, x ∈ [x0, 1] = [1− 2

p
, 1], αp := w(1).

So w is an affine function on this interval, and it remains to determine the constant αp. The
following Lemma 3.18 implies that there must hold

p

2
αp = f ′(x0) = w′(x0) =

p

2

((x0 + 1
2

)p−1 + βp
(1− x0

2
)p−1

)
=
p

2

((p− 1
p

)p−1 + (p− 1)p
(1
p

)p−1
)

=
p

2

(p− 1
p

)p−1(
1 + (p− 1)

)
,

and hence

αp = p
(p− 1

p

)p−1

.

The lemma still has to be proved:

3.18. Lemma. Let w be concave, w ≥ f and w(x0) = f(x0) at a point x0, where f is differentiable.
Then also w is differentiable at x0 and w′(x0) = f ′(x0).

Proof. Let h > 0. Then

0 ≤ w(x0 ± h)− f(x0 ± h) = [w(x0)± hD±w(x0) + o(h)]− [f(x0)± hf ′(x0) + o(h)]

= ±h[D±w(x0)− f ′(x0)] + o(h).

For the + case, D+w(x0) < f ′(x0) would lead to a contradiction, since then the right side would
be negative for small h. Similarly, D−w(x0) > f ′(x0) would make a contradiction in the − case.
Hence

D−w(x0) ≤ f ′(x0) ≤ D+w(x0) ≤ D−w(x0),

where the last inequality was due to concavity. Thus all the expressions are equal. �
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3.19. Checking that the obtained w works. So we have seen that if a function w exists, it
has to be w(x) = αp

(
p/2 · x− (p/2− 1)

)
on the interval [x0, 1]. But does this function satisfy the

condition w ≥ f? This has to be checked.
The second derivative f ′′ is negative on (x0, x2) and positive on (x2, 1), thus f ′ is decreasing

on the first interval and increasing on the second. Hence, on the whole interval,

f ′ ≤ max{f ′(x0), f ′(1)} = max{w′(x0), p/2} = max{αp, 1} · p/2 = αp · p/2 ≡ w′.

The estimate αp ≥ 1, which was used above, is left as an exercise.
So (f−w)′ ≤ 0 and hence f−w is decreasing, thus f−w ≤ (f−w)(x0) = 0, and this completes

the check.

3.20. First solution for w. With the function w determined on [x0, 1], it is also determined on
[1, 1/x0] due to the requirement that w(x) = |x|pw(1/x). This gives

w(x) = αp

(p
2
xp−1 −

(p
2
− 1
)
xp
)
, x ∈ [1, 1/x0] = [1,

p

p− 2
]

w′(x) = αp

(p
2

(p− 1)xp−2 − p− 2
2

pxp−1
)
,

w′′(x) =
1
2
αpp(p− 1)(p− 2)xp−3(1− x) ≤ 0,

since p > 2 and x ≥ 1. So the function is concave on [1, 1/x0].
To check that w, which is concave on [x0, 1] and [1, 1/x0], is actually concave on the whole

interval [x0, 1/x0], one has to compare the one-sided derivatives at 1. But substituting above,

D+w(1) = αp

(p
2

(p− 1)− p

2
(p− 2)

)
= αp

p

2
= D−w(1),

so this is fine.
Moreover, since w(x) ≥ f(x) on [x0, 1], it follows at once that

w(x) = xpw(x−1) ≥ xpf(x−1) = f(x)

also fot x ∈ [1, 1/x0]. In particular, w(1/x0) = f(1/x0) = 0. Moreover,

(∗) −x−2w′(x−1) = D[w(x−1)] = D[x−pw(x)] = −px−p−1w(x) + x−pw′(x).

Since the same computation holds with f in place of w, and since w(k)(x0) = f (k)(x0) for k = 0, 1,
it follows that also w′(1/x0) = f ′(1/x0).

With the function w defined on [x0, 1/x0] as above, it is seen that the following function provides
the required concave dominant of f on all R:

w̃(x) :=

{
w(x), x ∈ [x0, 1/x0] = [p−2

p , p
p−2 ]

f(x), otherwise.

Indeed, we have seen that it is concave on the intervals (−∞, x0], [x0, 1/x0] and [1/x0,∞) and
the one-sided derivatives agree at x0 and 1/x0, so it is actually concave on R. The function w̃
also dominates f , and it satisfies w̃(x) = |x|pw̃(1/x), since both f and w do. This completes the
search for the function w, and hence the proof of Burkholder’s inequality in the case p ∈ (2,∞).

The function w̃ is actually the smallest possible solution of the problem. Indeed, on the interval
[x0, 1/x0] the function was uniquely determined, and on the rest of R, where there could be some
freedom, it clearly cannot be smaller, since otherwise it would not dominate f .

3.21. Second solution for w. The function w is not uniquely determined outside [x0, 1/x0], so
if we do not care about having the minimal solution, there is some freedom of choice. Consider
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the function

w(x) := αp

(∣∣∣x+ 1
2

∣∣∣− (p− 1)
∣∣∣x− 1

2

∣∣∣)max{1, |x|}p−1

= αp ×


(
− p−2

2 |x|
p − p

2 |x|
p−1
)
, x ∈ (−∞,−1],(

p
2x−

p−2
2

)
, x ∈ [−1, 1],(

− p−2
2 xp + p

2x
p−1
)
, x ∈ [1,∞),

which coincides with the earlier definition on the interval [x0, 1/x0]. It also satisfies the property
w(x) = |x|pw(1/x), as one readily checks.

Clearly w is concave on [−1, 1], and the proof above for the concavity on [1, 1/x0] actually works
for [1,∞), since the function has the same expression on this whole half-line. For x ∈ (−∞,−1),

w′′(x) = −1
2
αpp(p− 1)(p− 2)

(
|x|p−2 + |x|p−3

)
≤ 0,

so it is also concave there. That D−w(1) = D+w(1) was already checked above, and

D−w(−1) = αp
1
2

(
(p− 2)p+ p(p− 1)

)
= αp

p

2
(2p− 3) > αp

p

2
(4− 3) = D+w(−1).

So the derivative has a discontinuity, but the inequality is to the right direction for concavity.
It remains to prove that w ≥ f everywhere. This was already done for [x0, 1/x0]. As for

[−1, x0], there holds f ′′ ≤ 0, and hence f ′ is decreasing, thus f ′ ≥ f ′(x0) = w′(x0) ≡ w′. Then
f −w is increasing, thus f −w ≤ (f −w)(x0) = 0, and this interval is also dealt with. Finally, the
mapping x 7→ x−1 transforms (−∞, 1] onto [−1, 0) and [1/x0,∞) onto (0, x0] so the domination
on these remaining intervals follows as in (∗) of Section 3.20.

3.22. The biconcave function u. With simple algebra one checks that

max{1, |x|} =
∣∣∣x+ 1

2

∣∣∣+
∣∣∣x− 1

2

∣∣∣,
and hence

w(x) = αp

(∣∣∣x+ 1
2

∣∣∣− βp∣∣∣x− 1
2

∣∣∣)(∣∣∣x+ 1
2

∣∣∣+
∣∣∣x− 1

2

∣∣∣)p−1

,

where βp = p− 1. From here one also gets the original biconcave function u, the search for which
was reduced to the search for w:

u(x, y) = |y|pw(x/y) = αp

(∣∣∣x+ y

2

∣∣∣− βp∣∣∣x− y2

∣∣∣)(∣∣∣x+ y

2

∣∣∣+
∣∣∣x− y

2

∣∣∣)p−1

.

Note that these formulae also work for p = 2, since then α2 = β2 = 1 and

w(x) =
∣∣∣x+ 1

2

∣∣∣2 − ∣∣∣x− 1
2

∣∣∣2 = x, u(x, y) = xy.

As it turns out (see the exercises), they also work for p ∈ (1, 2), provided that one chooses the
constants αp and βp appropriately. The definitions

αp := p
(

1− 1
p∗

)p−1

, βp := p∗ − 1

are good for all p ∈ (1,∞).

3.23. Extensions of Burkholder’s inequality. Burkholder’s inequality, as stated and proved
above, can be generalized in various ways. The sign transform (multiplication of the martingale
differences by εk ∈ {−1,+1}) can be replaced by much more general martingale transforms, where
one multiplies dk by a predictable function vk ∈ L∞(Fk−1, µ) (with F−1 := F0). Observe from
the tower property that vkdk is again a martingale difference sequence. This version will not be
treated in these lectures, however.

The following simpler extension is easy to prove: For all real numbers λk ∈ [−1, 1], there holds∥∥∥ n∑
k=0

λkdk

∥∥∥
p
≤ β

∥∥∥ n∑
k=0

dk

∥∥∥
p
.
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Proof. Write the numbers 1
2 (λk+1) ∈ [0, 1] with their binary expansion, 1

2 (λk+1) =
∑∞
j=1 bkj2

−j ,
where bkj ∈ {0, 1}. Then notice that bkj = 1

2 (εkj + 1) for appropriate εkj ∈ {−1, 1}, and it follows
that λk =

∑∞
j=1 εkj2

−j . Hence∥∥∥ n∑
k=0

λkdk

∥∥∥
p

=
∥∥∥ n∑
k=0

∞∑
j=1

εkj2−jdk
∥∥∥
p
≤
∞∑
j=1

2−j
∥∥∥ n∑
k=0

εkjdk

∥∥∥
p
≤
∞∑
j=1

2−jβ
∥∥∥ n∑
k=0

dk

∥∥∥
p

= β
∥∥∥ n∑
k=0

dk

∥∥∥
p
.

�

One can also prove the corresponding results for infinite series:

3.24. Corollary. Let
∑∞
k=0 dk be a series of martingale differences which converges in Lp(F , µ).

Then, for all λk ∈ [−1, 1], the series
∑∞
k=0 λkdk also converges and satisfies∥∥∥ ∞∑

k=0

λkdk

∥∥∥
p
≤ β

∥∥∥ ∞∑
k=0

dk

∥∥∥
p
.

Proof. Given ε > 0, there is N(ε) so that ‖
∑n
k=m dk‖p < ε whenever n ≥ m ≥ N(ε). By (a

reindexed version of) Burkholder’s inequality from Section 3.23, this implies∥∥∥ n∑
k=m

λkdk

∥∥∥
p
< βε

for all n ≥ m ≥ N(ε), and this means that the series
∑∞
k=0 λkdk converges. Moreover,∥∥∥ ∞∑

k=0

λkdk

∥∥∥
p

= lim
n→∞

∥∥∥ n∑
k=0

λkdk

∥∥∥
p
≤ β lim

n→∞

∥∥∥ n∑
k=0

dk

∥∥∥
p

= β
∥∥∥ ∞∑
k=0

dk

∥∥∥
p
,

and this completes the proof. �

In a similar way one can prove the result for doubly infinite series,∥∥∥ ∞∑
k=−∞

λkdk

∥∥∥
p
≤ β

∥∥∥ ∞∑
k=−∞

dk

∥∥∥
p
,

whenever the series on the right converges in Lp(F , µ).

3.25. Burkholder’s inequality with random signs. If one writes down Burkholder’s inequality
with the new martingale difference sequence εkdk in place of dk, one finds that on the left one gets
εk · εkdk = dk, and hence ∥∥∥∑

k

dk

∥∥∥
p
≤ β

∥∥∥∑
k

εkdk

∥∥∥
p
.

(The summation could be any of the possibilities 1 ≤ k ≤ n, 1 ≤ k < ∞ or −∞ < k < ∞
considered above.)

So there is actually a two-sided inequality

β−1
∥∥∥∑

k

dk

∥∥∥
p
≤
∥∥∥∑

k

εkdk

∥∥∥
p
≤ β

∥∥∥∑
k

dk

∥∥∥
p

valid for any fixed sequence of signs εk ∈ {−1,+1}. Then it also holds if one takes the average
over all possible choices of signs!

To be precise, let (εk)k∈Z denote a sequence of independent random variables on some proba-
bility space, with distribution P(εk = +1) = P(εk = −1) = 1

2 and write E for the expectation, i.e.,
integral over the probability space with respect to dP. Raising the above two-sided inequality to
power p and taking the expectation with respect to the signs εk, it follows that

(∗) β−1
∥∥∥∑

k

dk

∥∥∥
p
≤
(∫

Ω

E
∣∣∣∑
k

εkdk(x)
∣∣∣p dµ(x)

)1/p

≤ β
∥∥∥∑

k

dk

∥∥∥
p
.

In the situation of Theorem 2.15, when dk = E[f |Fk]−E[f |Fk−1], k ∈ Z, there holds
∑
k dk = f ,

and the middle expression in (∗) is seen to give a new equivalent norm for Lp(F , µ).
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3.26. Exercises.
1. Let βp denote the optimal constant in Burkholder’s inequality in Lp. Without using any

knowledge about the value of βp, prove that βp′ = βp for all p ∈ (1,∞). (Hint: express
gn as a linear transformation Tεfn of fn, where Tε is a suitable linear combination of
conditional expectations. What does the adjoint operator look like?)

2. Give a short proof of Burkholder’s inequality for p = 2, and show that it is actually an
equality in this case. (Hint: orthogonality.)

3. Let φ : [0, 1] → [0, 1] be a Borel measurable function. Let A := {(x, y) ∈ [0, 1]2 : y ≤
φ(x)}. Let G := B([0, 1]) × {∅, [0, 1]} be the product of the Borel σ-algbera in the
first coordinate and the trivial σ-algebra in the second. Find the conditional expectation
E[1A|G ]. Conclude that the conditional expectation of a simple function is not necessarily
simple.

4. Let p ∈ (1,∞) and suppose that β is a number such that ‖f∗n‖p ≤ β‖fn‖p for all simple
martingales (fk)nk=0. (By Doob’s inequality, this is true with β = p′, but the value is not
needed in this exercise.) Let F : R × [0,∞) → R be the function F (x, y) := yp − βp|x|p,
and

U(x, y) := sup
{∫

F (f∞,max{f∗, y}) dt : f = (fk)nk=0 simple martingale,

fk : [0, 1)→ R, f0 ≡ x
}
,

where f∞ := fn if f = (fk)nk=0. Check the following properties for all x ∈ R, y ∈ [0,∞)
and α ∈ (0,∞):

U(0, 0) ≤ 0, U(αx, αy) = αpU(x, y),

U(x,max{|x|, y}) = U(x, y) ≥ F (x,max{|x|, y}).

Also prove that x 7→ U(x, y) is concave for every y ∈ [0,∞).

5. For p ∈ [2,∞), let αp := p
(p− 1

p

)p−1

. Prove the estimate αp ≥ 1, which was used in

Section 3.19.
The following exercises deal with the search for a concave function w : R → R such that

w(x) = |x|pw(1/x) for all x 6= 0, and

w(x) ≥ f(x) :=
∣∣∣x+ 1

2

∣∣∣p − βp∣∣∣x− 1
2

∣∣∣p,
in the case when p ∈ (1, 2). A general hint: use similar ideas as in the case p ∈ (2,∞) on the
lecture, but note that some details are a little different.

6. Find the zeros of f and its first and second derivative, and sketch the graph of f .
7. Prove that if w exists, then β ≥ (p− 1)−1. (Hint: Consider the one-sided derivatives of w

at the point x = −1. In order to divide a certain inequality by a constant, you will need
to know that w(−1) < 0. Conclude this from the concavity and what you know about
w(1) and w(0); see section 3.13 in the notes.)

8. From now on, fix β := (p − 1)−1. Show that w (if it exists) must be an affine function
(i.e., of the form ax + b) on the interval [−1, x0], where x0 is the smaller zero of f . Find
the formula for w on this interval. (Hint: the derivatives of w and f must be equal at a
certain point.)

9. Check that the function w, which you obtained in the previous exercise, satisfies the
inequality w ≥ f on [−1, x0].

10. Where else is the function w uniquely determined by the conditions posed on it? Write
down the formula for w (maybe piecewise defined). How could you define w on the rest
of R to satisfy the required conditions?

3.27. References. The presentation follows Burkholder’s summer school lectures [4] quite closely,
with the addition of some details here and there. The inequality (but not yet with the optimal
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constant) was originally proved in [2]. (It is only contained as part of the proof of Theorem 9
in [2], not as a separate result!) The optimal constant was obtained in [3].

4. Petermichl’s dyadic shift and the Hilbert transform

4.1. Dyadic systems of intervals. We call D a dyadic system (of intervals) if D =
⋃
j∈Z Dj ,

where each Dj is a partition of R consisting of intervals of the form [x, x+ 2−j), and each interval
I ∈ D is a union of two intervals I− and I+ (its left and right halves) from Dj+1. Let us derive a
representation for arbitrary dyadic systems in terms of the standard dyadic system D0 =

⋃
j∈Z D0

j ,
where D0

j = {2−j [k, k + 1) : k ∈ Z}. (This already appeared in Exercise 2.16(4).)
It is easy to see that Dj has to be of the form D0

j + xj for some xj ∈ R. If one adds an integer
multiple of 2−j to xj , the collection D0

j +xj does not change, so one can demand that xj ∈ [0, 2−j).
Then xj is actually the unique end-point of intervals in Dj , which falls on the interval [0, 2−j).
Since this is also an end-point of the intervals in Dj+1, there must hold xj − xj+1 ∈ {0, 2−j−1}.
Let us write βj+1 := 2j+1(xj − xj+1) ∈ {0, 1} so that xj = 2−j−1βj + xj+1, and by iteration

xj =
∑
i>j

2−iβi, β = (βi)i∈Z ∈ {0, 1}Z.

Hence an arbitrary dyadic system is of the form Dβ , where Dβ
j := D0

j +
∑
i>j 2−iβi.

In the sequel we will also need dilated dyadic systems rDβ := {rI : I ∈ Dβ}, where rI = [ra, rb)
if I = [a, b). Note that 2jDβ = Dβ′ for another β′ ∈ {0, 1}Z, so only the dilation factors r ∈ [1, 2)
will be relevant.

4.2. Dyadic σ-algebras and conditional expectations. Let F β
j := σ(Dβ

j ), and then rF β
j =

σ(rDβ
j ). Let us consider β ∈ {0, 1}Z and r ∈ [1, 2) fixed for the moment, and write simply

Fj := rF β
j and Dj := rDβ

j . Then (Fj)j∈Z is a filtration (Exercise 2.16(4)). Moreover,

σ
( ⋃
j∈Z

Fj

)
= B(R), ∀F ∈

⋂
j∈Z

Fj : |F | ∈ {0,∞},

where B(R) stands for the Borel σ-algebra of R, and |F | for the Lebesgue measure of F ∈ B(R).
For the first property one checks that every open set O ⊆ R is a (necessarily countable) union of
dyadic intervals. For the second, note that if F ∈ Fj \ {∅}, then |F | ≥ r2−j , and this tends to
+∞ as j → −∞.

4.3. Haar functions. Let Lp(R) := Lp(B(R), dx). By Theorem 2.15, it follows that every
f ∈ Lp(R) has the following series representation which converges both pointwise and in the Lp
norm:

f =
∞∑

j=−∞

(
E[f |Fj+1]− E[f |Fj ]

)
=

∞∑
j=−∞

∑
I∈Dj

( 1I−
|I−|

∫
I−

f dx+
1I+
|I+|

∫
I+

f dx− 1I
|I|

∫
I

f dx
)

=
∞∑

j=−∞

∑
I∈Dj

(
1I−

2
|I|

∫
I−

f dx+ 1I+
2
|I|

∫
I+

f dx−
(
1I+ + 1I−

) 1
|I|

{∫
I+

f dx+
∫
I−

f dx
})

=
∞∑

j=−∞

∑
I∈Dj

(
1I−
{ 1
|I|

∫
I−

f dx− 1
|I|

∫
I+

f dx
}

+ 1I+
{ 1
|I|

∫
I+

f dx− 1
|I|

∫
I−

f dx
})

=
∞∑

j=−∞

∑
I∈Dj

(
1I− − 1I+

) 1
|I|

∫ (
1I− − 1I+

)
f dx =

∞∑
j=−∞

∑
I∈Dj

hI

∫
hIf dx,

where the Haar function hI associated to the interval I is defined by

hI := |I|−1/2
(
1I− − 1I+

)
.
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Note that

hI(x) = |I|−1/2h
(x− inf I

|I|

)
, h := h[0,1) = 1[0,1/2) − 1[1/2,1).

Let us write 〈hI , f〉 :=
∫
hIf dx. By Burkholder’s inequality with the random signs (Sec-

tion 3.25), it follows that

(∗) β−1‖f‖p ≤
(∫

R
E
∣∣∣ ∞∑
j=−∞

εj
∑
I∈Dj

hI(x)〈hI , f〉
∣∣∣p dx

)1/p

≤ β‖f‖p.

4.4. Petermichl’s dyadic shift. The dyadic shift operator X = Xβ,r associated to the dyadic
system D = rDβ is defined as a modification of the Haar expansion f =

∑∞
−∞

∑
I∈Dj

hI〈hI , f〉:

Xf :=
∞∑

j=−∞

∑
I∈Dj

HI〈hI , f〉, HI := 2−1/2(hI− − hI+) = |I|−1/2
(
1I−−∪I++ − 1I−+∪I+−

)
,

where I−− := (I−)− and so on. (The symbol X is the Cyrillic letter ‘š’ as a reference to the word
‘shift’, which starts with this sound.)

Now there is the question of convergence of the above series and the boundedness of the shift
operator. For I ∈ D , let I∗ be the unique interval I∗ ∈ D such that I∗ ⊃ I and |I∗| = 2|I|. Let
αI := +1 if I = I∗− and αI := −1 if I = I∗+. Then observe that

n∑
j=m

∑
I∈Dj

2−1/2(hI− − hI+)〈hI , f〉 =
n∑

j=m

∑
J∈Dj+1

αJ2−1/2hJ〈hJ∗ , f〉.

By (∗) of Section 4.3 it follows that∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β

(∫
R

E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ2−1/2hJ(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

.

Now comes the core trick of the argument! For a fixed x, there is only one non-zero term in the sum
J ∈ Dj+1 for each j — indeed, the one with J 3 x. When this term ξj := αJ2−1/2hJ(x)〈hJ∗ , f〉 is
multiplied by the random sign εj , it does not matter if the ξj itself is positive or negative; in any
case εjξj is a random variable which is equal to −ξj with probability 1

2 and +ξj with probability
1
2 , and it is independent of the other εiξi for i 6= j. Hence the resulting random variable would
have the same distribution if hJ(x) were replaced by |hJ(x)| = |J |−1/21J(x). Thus(∫

R
E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ2−1/2hJ(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ(2|J |)−1/21J(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑
I∈Dj

|I|−1/2
(
1I−(x)− 1I+(x)

)
〈hI , f〉

∣∣∣p dx
)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑
I∈Dj

hI(x)〈hI , f〉
∣∣∣p dx

)1/p

≤ β
∥∥∥ n∑
j=m

∑
I∈Dj

hI〈hI , f〉
∥∥∥
p
.

Combining everything∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β2

∥∥∥ n∑
j=m

∑
I∈Dj

hI〈hI , f〉
∥∥∥
p
.

The right side tends to zero as m,n → ∞ or m,n → −∞; hence so does the left side, and thus
by Cauchy’s criterion the series

∑∞
j=−∞

∑
I∈Dj

HI〈hI , f〉 converges in Lp(R), and the limit Xf
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satisfies

‖Xf‖p = lim
n→+∞
m→−∞

∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β2‖f‖p.

4.5. The Hilbert transform. The Hilbert transform is formally the singular integral

“Hf(x) =
1
π

∫ ∞
−∞

1
y
f(x− y) dy, ”

but to make precise sense of the right side one needs to be a bit more careful. Hence one defines
the truncated Hilbert transforms

Hε,Rf(x) :=
1
π

∫
ε<|y|<R

1
y
f(x− y) dy

and, for f ∈ Lp(R),
Hf := lim

ε→0
R→∞

Hε,Rf

if the limits exists in Lp(R).
Simple examples show that, for a general f ∈ Lp(R), this can only happen in the range p ∈

(1,∞). In fact, for f = 1(a,b), there holds

Hε,R1(a,b)(x)→ log
∣∣∣x− a
x− b

∣∣∣
pointwise. In the neighbourhood of the points a, b, the logarithmic singularity belongs to Lp for
all p <∞, but of course not to L∞. As x→∞,

log
∣∣∣x− a
x− b

∣∣∣ = log
∣∣∣1− a/x
1− b/x

∣∣∣ = log(1− a

x
)− log(1− b

x
) =

b− a
x

+O(
1
x2

),

which is in Lp for all p > 1 but not in L1.

4.6. Invariance considerations. For r ∈ (0,∞), let δr denote the dilation of a function by r,
δrf(x) := f(rx). For h ∈ R, let τhf(x) := f(x+h) be the translation by h. Both these are clearly
bounded operators on all Lp(R) spaces, p ∈ [1,∞].

Simple changes of variables in the defining formula show that

Hε,Rδrf = δrHεr,Rrf, Hε,Rτhf = τhHε,Rf,

and hence, if Hf exists, so do Hδrf and Hτhf , and

Hδrf = δrHf, Hτhf = τhHf.

These properties are referred to as the invariance of H under dilations and translations.
The aim is to prove the existence of Hf for all f ∈ Lp(R) by relating H to the dyadic shift

operators. The basic obstacle is the fact that the X operators are neither translation nor dilation
invariant: If f = hI for a I ∈ D , then Xf = HI , but if f = hJ , where J /∈ D is a slightly
translated or dilated version of I, then Xf has a much more complicated expression.

The idea to overcome this problem is to average over the shifts Xβ,r associated to all translated
and dilated dyadic systems rDβ

4.7. The average dyadic shift operator. Let the space {0, 1}Z be equipped with the probability
measure µ such that the coordinates βj are independent and have probability µ(β = 0) = µ(β =
1) = 1/2. On [1, 2), the measure dr/r will be used; this is the restiction on the mentioned interval
of the invariant measure of the multiplicative group (R+, ·).

We would like to define the average dyadic shift as the following integral:

(∗) 〈X〉f(x) :=
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,rf(x) =
∑
j∈Z

∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)
∑
I∈rDβ

j

HI(x)〈hI , f〉,

but this needs first some justification.
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Let Mβ,r denote Doob’s maximal operator related to the filtration (σ(rDβ
j ))j∈Z. Then observe

that

Xβ,r
−m,nf(x) :=

n∑
j=−m

∑
I∈rDβ

j

HI(x)〈hI , f〉 = E[Xβ,rf |σ(rDn+2)](x)− E[Xβ,rf |σ(rD−m+1)](x)

is pointwise dominated by 2Mβ,rf(x) and converges a.e. to Xβ,rf(x) as m,n→∞. It is easy to
see that the above finite sums are measurable with respect to the triplet (x, β, r), and hence so is
the pointwise limit Xβ,rf(x).

To see that (β, r) 7→ Xβ,rf(x) is integrable for a.e. x ∈ R, and to justify the equality in (∗)
above, note that by Jensen’s inequality, Doob’s inequality, and the uniform boundedness of the
operators Xβ,r, there holds∫

R

[ ∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Mβ,r{Xβ,rf}(x)
]p

dx

≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)
∫

R

[
Mβ,r{Xβ,rf}(x)

]p dx ≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)C‖f‖pp ≤ C‖f‖pp.

In particular, this shows that∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Mβ,r{Xβ,rf}(x) <∞

for a.e. x ∈ R. So Xβ,r
−m,nf(x) is dominated by the integrable function Mβ,r{Xβ,rf}(x) and

converges to Xβ,rf(x) as m,n → ∞; hence Xβ,rf(x) is integrable and dominated convergence
proves that ∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,rf(x) = lim
m,n→∞

∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,r
−m,nf(x)

which, unravelling the definition of Xβ,r
−m,n, is the same as (∗). Finally, since the right side above

is dominated by
∫

dr/r
∫

dµ(β)Mβ,r{Xβ,rf} ∈ Lp(R), it follows from another application of
dominated convergence that the series in (∗) also converges in the Lp norm.

From the first form in (∗) it follows that

‖〈X〉f‖p ≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)‖Xβ,rf‖p

≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)(p∗ − 1)2‖f‖p = log 2 · (p∗ − 1)2‖f‖p.

4.8. Evaluation of the integral. Next, we would like to obtain a new expression for 〈X〉f in
order to relate it to the Hilbert transform. Observe that

rDβ
j = r2−j(D0

0 +
∞∑
i=1

2−iβj+i).

When each of the numbers βj is independently chosen from {0, 1}, both values having equal
probability, the binary expansion

∑∞
i=1 2−iβj+i is uniformly distributed over [0, 1), and hence∫

{0,1}Z
dµ(β)

∑
I∈rDβ

j

HI(x)〈hI , f〉 =
∫ 1

0

du
∑

I∈r2−j(D0
0+u)

HI(x)〈hI , f〉

=
∫ 1

0

du
∑
k∈Z

Hr2−j([0,1)+k+u)(x)〈hr2−j([0,1)+k+u), f〉

=
∫ ∞
−∞

Hr2−j([0,1)+v)(x)〈hr2−j([0,1)+v), f〉,
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where the second step just used the fact that D0
0 = {[0, 1) + k : k ∈ Z}, and in the last one

the order of summation and integration was first exchanged (this is easy to justify thanks to the
support properties) and the new variable v := k + u introduced.

Making the further change of variables t := 2−jr, it follows that

〈X〉f(x) =
∫ ∞

0

dt
t

∫ ∞
−∞

Ht([0,1)+v)(x)〈ht([0,1)+v), f〉dv,

where
∫∞

0
is actually the indefinite integral limm,n→∞

∫ 2m

2−n
. Recall that ht([0,1)+v)(y) = t−1/2h(y/t−

v) with h = h[0,1), and similarly for Ht([0,1)+v). For a fixed t, the integrand above is hence∫ ∞
−∞

t−1/2H
(x
t
− v
)∫ ∞
−∞

t−1/2h
(y
t
− v
)
f(y) dy dv

=
∫ ∞
−∞

1
t

∫ ∞
−∞

H
(x
t
− v
)
h
(y
t
− v
)

dvf(y) dy.

The inner integral is most easily evaluated by recognizing it as the integral of the function
(ξ, η) 7→ H(ξ)h(η) along the straight line containing the point (x/t, y/t) and having slope 1. The
result depends only on u := x/t − y/t and is the piecewise linear function k(u) of this variable,
which takes the values 0,− 1

4 , 0,
3
4 , 0,−

3
4 , 0,

1
4 , 0 at the points −1,− 3

4 , . . . ,
3
4 , 1, interpolates linearly

between them, and vanishes outside of (−1, 1). So

〈X〉f =
∫ ∞

0

kt ∗ f
dt
t

= lim
ε→0
R→∞

∫ R

ε

kt ∗ f
dt
t
,

where the limit exists in Lp(R), and the notations kt(x) := t−1k(t−1x) and

k ∗ f(x) :=
∫ ∞
−∞

k(x− y)f(y) dy =
∫ ∞
−∞

k(y)f(x− y) dy

were used. These notation will also be employed in the sequel. k ∗ f is called the convolution of
k and f .

4.9. The appearance of the Hilbert transform. Let us evaluate the integral∫ R

ε

kt(x)
dt
t

=
∫ R

ε

k(x/t)
dt
t2

=
1
x

∫ x/ε

x/R

k(u) du =
1
x

[K(x/ε)−K(x/R)], K(x) :=
∫ x

0

k(u) du.

From the fact that k is odd (k(−x) = −k(x)) it follows that K is even (K(−x) = K(x)). Since
k is supported on [−1, 1], its integral K is a constant on the complement, and in fact K(x) = −1/8
for |x| ≥ 1. Write φ(x) := x−1K(x)1[−1,1](x), which is again an odd function. Then

1
x
K
(x
ε

)
=

1
ε

ε

x

(
K
(x
ε

)
1[−1,1]

(x
ε

)
− 1

8
1[−1,1]c

(x
ε

))
= φε(x)− 1

8x
1|x|>ε,

hence
1
x

[K(x/ε)−K(x/R)] = φε(x)− φR(x)− 1
8x

1ε<|x|<R,

and finally ∫ R

ε

kt ∗ f
dt
t

= φε ∗ f − φR ∗ f −
π

8
Hε,Rf.

As ε→ 0, R→∞ this sum converges to a limit in Lp(R), in fact, to 〈X〉f . So to complete the
proof of the existence of the Hilbert transform Hf , it remains to prove that φε ∗ f and φR ∗ f also
converge in Lp(R). In fact, as will be proved below, they converge to zero. Taking this claim for
granted for the moment, it follows that

Hf = lim
ε→0
R→∞

Hε,Rf = − 8
π
〈X〉f
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in Lp(R). In particular, H is a bounded operator as a constant multiple of the average of the
bounded operators Xβ,r. In fact, one gets the estimate

‖Hf‖p =
8
π
‖〈X〉f‖p ≤

8
π

log 2 · (p∗ − 1)2‖f‖p,

but this is far from being optimal.
But, as said, it still remains to prove

lim
ε→0

φε ∗ f = lim
R→∞

φR ∗ f = 0.

This will follow from the general results below; it is easy to check that φ satisfies all the required
properties. It is an odd function, which implies

∫
φ(x) dx = 0, and since |k(x)| is bounded by 3/4,

it follows that |K(x)| ≤ 3/4 · |x| and hence x−1K(x) and then φ(x) is bounded. Finally, recall
that φ is supported on [−1, 1].

4.10. Lemma. Suppose that |φ(x)| ≤ C(1+ |x|)−1−δ for some δ > 0. Then |φε∗f(x)| ≤ C ′Mf(x),
where M is the Hardy–Littlewood maximal operator.

Proof. By making simple changes of variables and splitting the integration domain it follows that

|φε ∗ f(x)| =
∣∣∣ ∫ φ(y)f(x− εy) dy

∣∣∣
≤
∫

[−1,1]

C|f(x− εy)|dy +
∞∑
k=0

∫
2k<|y|≤2k+1

C2−k(1+δ)|f(x− εy)|dy

≤ 2C
2ε

∫ x+ε

x−ε
|f(u)|du+

∞∑
k=0

2−kδ
4C

2ε2k+1

∫ x+ε2k+1

x−ε2k+1
|f(u)|du

≤ 2CMf(x) +
∞∑
k=0

2−kδ4CMf(x) = 2C
(

1 +
2

1− 2−δ
)
Mf(x).

�

4.11. Lemma. If φ ∈ Lp′(R) and f ∈ Lp(R) for p ∈ [1,∞), then

lim
R→∞

φR ∗ f = 0

pointwise. If, in addition, |φ(x)| ≤ C(1 + |x|)−1−δ, then the convergence also takes place in Lp(R)
if p ∈ (1,∞)

Proof. By Hölder’s inequality,

|φR ∗ f(x)| =
∣∣∣ ∫ φR(y)f(x− y) dy

∣∣∣ ≤ ‖φR‖p′‖f‖p
and a change of variables shows that ‖φR‖p′ = R−1/p‖φ‖p′ → 0 as R→∞.

By the additional assumption and Exercise 2.16(6), |φR ∗ f | ≤ C ′Mf ∈ Lp(R), and hence the
remaining claim follows from dominated convergence. �

4.12. Lemma. Let φ ∈ L1(R), a :=
∫
φ(x) dx and f ∈ Lp(R). Then

lim
ε→0

φε ∗ f = af

in Lp(R) for all p ∈ [1,∞) If, in addition |φ(x)| ≤ C(1 + |x|)−1−δ, then the convergence also takes
place pointwise a.e.

Proof. There holds

φε ∗ f(x)− af(x) =
∫
φ(y)[f(x− εy)− f(x)] dy,

‖φε ∗ f − af‖p ≤
∫
|φ(y)| · ‖f(· − εy)− f‖p dy.
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It remains to show that ‖f(·−εy)−f‖p → 0 as ε→ 0, since the claim then follows from dominated
convergence.

Let first g ∈ Cc(R) (continuous with compact support). Then for all 0 < ε ≤ |y|−1, g(·−εy)−g
is supported in a compact set K, bounded pointwise by 2‖g‖∞ (and hence by 2‖g‖∞1K) and
converges pointwise to zero by the definition of continuity. Thus ‖g(·−εy)−g‖p → 0 by dominated
convergence. Such functions are dense in Lp(R) for p ∈ [1,∞). Hence, given f ∈ Lp(R) and δ > 0,
there is g ∈ Cc(R) with ‖f − g‖p < δ, and hence

lim sup
ε→0

‖f(· − εy)− f‖p ≤ lim sup
ε→0

(
‖(f − g)(· − εy)‖p + ‖g(· − εy)‖p + ‖g − f‖p

)
= 2‖f − g‖p < 2δ.

Since this holds for any δ > 0, the conclusion is ‖f(· − εy)− f‖p → 0, and the proof of the norm
convergence is complete.

Concerning pointwise convergence, for g ∈ Cc(R) one has

|φε ∗ g(x)− ag(x)| ≤
∫
|φ(y)| · |g(x− εy)− g(x)|dy,

where the second factor is dominated by 2‖g‖∞ and tends to zero everywhere by continuity. In
general,

lim sup
ε→0

|φε ∗ f − af | ≤ lim sup
ε→0

(
M(f − g) + |φε ∗ g − ag|+ |ag − af |

)
= M(f − g) + |a||f − g|.

Hence

|{lim sup
ε→0

|φε ∗ f − af | > 2δ}| ≤ |{M(f − g) > δ}|+ |{|a||f − g| > δ}| ≤ Cδ−p‖f − g‖pp,

which can be made arbitrarily small. �

Now the proof of

Hf = − 8
π
〈X〉f, ‖Hf‖p ≤ C‖f‖p

is complete.

4.13. Exercises.
1. Fix x ∈ R and consider the translated dyadic system D0 + x =

⋃
j∈Z(D0

j + x) (note:
same x on every level j), where D0 is the standard system. Find β(x) ∈ {0, 1}Z so that
D0 + x = Dβ(x). Observe that β(x) has a certain special property and conclude that in
general Dβ cannot be represented in the form D0 + x.

2. In R2, consider the dyadic squares Dj := {2−j
(
[0, 1)2 + (k, `)

)
: k, ` ∈ Z}, j ∈ Z. There

is one important difference compared to the one-dimensional case: the squares I ∈ Dj are
now unions of four (rather than two) squares from Dj+1.

Find suitable intermediate partitions Dj+1/2 of R2 so that each I ∈ Di is a union of
two sets from Di+1/2 for all i ∈ 1

2Z := {. . . ,−1,− 1
2 , 0,

1
2 , 1, . . .}. Follow the computation

in Section 4.3 to find a similar representation for f ∈ Lp(R2). What do the Haar functions
look like in this case? (Note: there are a couple of different ways to do this, but it suffices
to provide one. No uniqueness here, your choice!)

3. Let ξ1, . . . , ξn ∈ C. Consider the function F : Rn → C, (tk)nk=1 7→
∑n
k=1 tkξk. Prove

that, on the unit cube [−1, 1]n, |F (t)| attains its greatest value in one of the corners,
t ∈ {−1, 1}n. (Hint: same trick as in 3.23.)

4. Let f1, . . . , fn ∈ Lp(R) and g1, . . . , gn ∈ L∞(R). Let ε1, . . . , εn be independent random
signs with P(εk = −1) = P(εk = +1) = 1/2. Prove that∫

R
E
∣∣∣ n∑
k=1

εkgk(x)fk(x)
∣∣∣p dx ≤ max

1≤k≤n
‖gk‖p∞

∫
R

E
∣∣∣ n∑
k=1

εkfk(x)
∣∣∣p dx.

(Hint: use the previous exercise for each x ∈ R and a similar trick as in 4.4.)
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4.14. References. Petermichl’s representation for the Hilbert transform as an average of the
dyadic shifts is from [9]. The precise form of the representation and its proof given above are
somewhat modified from the original ones, so that the convergence to the Hilbert transform is
obtained in a stronger sense. The proof of the Lp boundedness of the dyadic shift, and the notation
‘X’, are taken from [8]. Although Petermichl’s representation was here used just to derive the
classical Hilbert transform boundedness on Lp(R), its motivation comes from applications in the
estimation of H, or some new operators derived from it, in more complicated situations like
weighted spaces.

The Lp boundedness of the Hilbert transform is originally a classical result of M. Riesz [10].
Nowadays, there are many different proofs for this important theorem (which is perhaps most
often handled in the framework of the Calderón–Zygmund theory of singular integrals), and even
several different ways of getting it as a consequence of Burkholder’s inequality. However, most
of the martingale proofs rely on continuous-time notions like stochastic integrals and Brownian
motion and would require more extensive preliminaries.

5. Back to Burkholder’s inequality

5.1. The Fourier transform. For f ∈ L1(R) and ξ ∈ R, one defines

f̂(ξ) :=
∫

R
f(x)e−i2πx·ξ dx.

By taking absolute values inside the norm, it is clear that |f̂(ξ)| ≤ ‖f‖1 for all ξ. If ξ → ξ0, the
continuity of the exponential function implies that e−i2πx·ξ → e−i2πx·ξ0 for every x, and it follows
from dominated convergence that f̂(ξ)→ f̂(ξ0). So the function f̂ is continuous, and in particular
measurable. If f, g ∈ L1(R), then f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Important properties of the Fourier transform follow just from the knowledge of the transform
of one particular function:

5.2. Lemma. The function φ(x) := e−πx
2
satisfies φ̂ = φ.

Proof. Note that φ̂(0) is the familiar Gaussian integral,

φ̂(0)2 =
∫

R

∫
R
e−π(x2+y2) dxdy =

∫ ∞
0

∫ 2π

0

e−πr
2

dθr dr =
∫ ∞

0

2πre−πr
2

dr =
∣∣∣∞
0
− e−πr

2
= 1,

and hence φ̂(0) = 1, since it is clearly positive. Now there are (at least) two ways to finish the
proof.

(By Cauchy’s theorem for complex path integrals.) Completing the square

f̂(ξ) =
∫ ∞
−∞

e−π(x2+i2x·ξ+(iξ)2−(iξ)2) dx =
∫ ∞
−∞

e−π(x+iξ)2 dx · e−πξ
2

=
∫ ∞+iξ

−∞+iξ

e−πz
2

dz · e−πξ
2
.

By Cauchy’s theorem, it is easy to check that one can shift the integration path back to the real
axis, and this was just computed above.

(By the uniqueness theory of ordinary differential equations.) Notice that φ′(x) = −2πxφ(x).
Taking the Fourier transform of both sides and integrating by parts, it follows that i2πξφ̂(ξ) =
−iφ̂′(ξ). Hence both φ and φ̂ are solutions of the differential equation

u′(x) = −2πxu(x), u(0) = 1,

and therefore must be equal. �

By Lemma 5.2 (interchanging the roles of x and ξ)

φ(x) = φ̂(x) =
∫

R
φ(ξ)e−i2πx·ξ dξ.

Since φ is real-valued, taking complex conjugates of both sides one can replace −i by +i in the
exponent. Substituting x/ε in place of x and changing integration variables, one further obtains

(∗) φε(x) =
1
ε
φ
(x
ε

)
=
∫

R
φ(εξ)ei2πx·ξ dξ.
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5.3. Theorem (Fourier inversion). Suppose that both f ∈ L1(R) and f̂ ∈ L1(R). Then, a.e.,

f(x) =
∫

R
f̂(ξ)ei2πx·ξ dξ.

Proof. By Lemma 4.12, φε ∗ f → f in L1(R), and hence a subsequence converges pointwise a.e.
Taking the limit along this subsequence and using the above formula (∗) for φε, it follows that

f(x) = lim
ε↘0

∫
R
φε(y)f(x− y) dy

= lim
ε↘0

∫
R

∫
R
φ(εξ)ei2πy·ξ dξf(x− y) dy

= lim
ε↘0

∫
R
φ(εξ)

∫
R
e−i2π(x−y)·ξf(x− y) dy ei2πx·ξ dξ

= lim
ε↘0

∫
R
φ(εξ)f̂(ξ)ei2πx·ξ dξ =

∫
R
f̂(ξ)ei2πx·ξ dξ,

where the second to last equality was the definition of f̂(ξ), and the last one was dominated
convergence based on the fact that φ(εξ)→ φ(0) = 1 at every ξ. �

5.4. Corollary (Uniqueness of the representation). If f ∈ L1(R) has the representation

f(x) =
∫

R
g(ξ)ei2πx·ξ dξ

for some g ∈ L1(R), then g = f̂ .

Proof. Let h(x) := g(−x). A change of variables shows that f = ĥ. Hence h, ĥ ∈ L1 and thus
g(−ξ) = h(ξ) =

∫
ĥ(x)ei2πx·ξ dx =

∫
f(x)ei2πx·ξ dx. �

5.5. The Fourier transform of the Hilbert transform. Let f ∈ L1(R) and consider the
truncated Hilbert transform Hε,Rf . This is kε,R ∗ f , where kε,R(x) = 1ε<|x|<R/πx. Hence
Ĥε,Rf(ξ) = k̂ε,R(ξ)f̂(ξ). So one should compute

πk̂ε,R(ξ) =
∫
ε<|x|<R

e−i2πx·ξ
dx
x

= − sgn(ξ)
∫
i[−R,−ε]∪i[ε,R]

e2π|ξ|z dz
z

By Cauchy’s theorem, the integration path may be shifted from the union of the two vertical line
segment to the semicircles on the left halfplane connecting their endpoints; thus the above integral
is equal to ∫ 3π/2

π/2

(
e2π|ξ|εeiθ − e2π|ξ|Reiθ)idθ.

The second term is dominated by∣∣∣ ∫ 3π/2

π/2

e2π|ξ|Reiθ dθ
∣∣∣ ≤ ∫ 3π/2

π/2

e2π|ξ|R cos θ dθ = 2
∫ π/2

0

e−2π|ξ|R sin θ dθ

≤ 2
∫ π/2

0

e−4|ξ|Rθ dθ = 2
1− e−2π|ξ|R

4|ξ|R
,

where the estimate sin θ ≥ 2/π · θ for θ ∈ [0, π/2] was used. The result is uniformly bounded by π
(since 1− e−x ≤ x) and tends to zero as R→∞.

The same upper bound applies to the first term, which clearly tends to∫ 3π/2

π/2

idθ = iπ

as ε↘ 0. So the conclusion is that

k̂ε,R(ξ) = −i sgn(ξ)mε,R(ξ),

where |mε,R(ξ)| ≤ 2 and mε,R(ξ)→ 1 as ε↘ 0 and R↗∞.
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Suppose then that f, f̂ ∈ L1(R). Then clearly Hε,Rf = kε,R ∗ f and Ĥε,Rf = k̂ε,Rf̂ belong to
L1(R) as well. Hence

Hε,Rf(x) =
∫

R
Ĥε,Rf(ξ)ei2πx·ξ dξ =

∫
R
−i sgn(ξ)mε,R(ξ)f̂(ξ)ei2πx·ξ dξ.

As ε ↘ 0, R ↗ ∞, one can use dominated convergence on the right, and the convergence
Hε,Rf → Hf on the left to conclude that

Hf(x) =
∫

R
−i sgn(ξ)f̂(ξ)ei2πx·ξ dξ

for all f ∈ L1 with f̂ ∈ L1, and so

(∗) Ĥf(ξ) = −i sgn(ξ)f̂(ξ)

by the uniqueness of the representation. For such functions f , it also follows that

Hf =

{
−if, if {f̂ 6= 0} ⊆ [0,+∞),
+if, if {f̂ 6= 0} ⊆ (−∞, 0].

5.6. Theorem (Conjugation of trigonometric polynomials). Let f(x) :=
∑
k 6=0 a(k)ei2πxk be a

trigonometric polynomial (a finite sum) and g(x) :=
∑
k 6=0−i sgn(k)a(k)ei2πxk its conjugate poly-

nomial. Then ‖g‖p ≤ α‖f‖p, where the Lp norms are taken on [0, 1), and α is the norm of the
Hilbert transform on Lp(R).

Proof. Let φ 6≡ 0 be a function on R with |φ(x)| ≤ C(1 + |x|)−1−δ and {φ̂ 6= 0} ⊂ [−R,R] for
some R, δ > 0. (See the exercises for the existence of such a φ.) Let fε(x) := f(x)φ(εx). Then
fε ∈ L1(R) and

f̂ε(ξ) =
∑
k 6=0

a(k)
∫

R
φ(εx)ei2πx(k−ξ) dx =

∑
k 6=0

a(k)
1
ε
φ̂
(ξ − k

ε

)
,

so that also f̂ε ∈ L1(R). One defines gε similarly and makes the same observations.
Now φ̂((ξ − k)/ε) 6= 0 only if |ξ − k| ≤ εR, which implies in particular that ξ and k have the

same sign if εR < 1. Hence one finds that

−i sgn(ξ)f̂ε(ξ) =
∑
k 6=0

−i sgn(k)a(k)
1
ε
φ̂
(ξ − k

ε

)
= ĝε(ξ),

and thus Hfε = gε. It follows that ‖gε‖p ≤ α‖fε‖p, where

‖fε‖pp =
∫

R
|f(x)|p|φ(εx)|p dx =

1
ε

∫ 1

0

|f(x)|p
(∑
k∈Z

ε|φ(ε(x+ k))|p
)

dx

using the periodicity f(x+ k) = f(x) of f . The quantity in parentheses is bounded uniformly in ε
and x and, as a Riemann sum, converges to

∫
R |φ(y)|p dy as ε↘ 0. Similar observations hold for

gε, and hence
∫ 1

0
|g(x)|p dx ≤ αp

∫ 1

0
|f(x)|p dx, as claimed. �

5.7. Back to Burkholder’s inequality. Suppose now that we had not proved Burkholder’s in-
equality but that we know the Lp boundedness of the Hilbert transform. The aim is to give another
proof of Burkholder’s inequality based on this information. The formula (∗) from Section 5.5 gives
some hope by showing that H can be viewed as a kind of a sign transformation, too.

Recall (Lemmas 3.3 and 3.4) that it suffices to prove Burkholder’s inequality in the case that
(dk)∞k=0 is a simple martingale difference sequence on a finite measure space (Ω,F , µ). Since
one can take the filtration to be Fk := σ(d0, . . . , dk), it can be assumed simple, too. Replacing
the measure µ by µ̃(E) := µ(E)/µ(Ω), one may further assume without loss of generality that
µ(Ω) = 1.

Here are some further reductions:

5.8. Lemma (Reduction to zero-start). It suffices to prove Burkholder’s inequality in the case
when f0 = d0 = 0.
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Proof. Consider the new space Ω̃ := Ω × {−1,+1} with the product σ-algebra and measure,
where {−1,+1} is equipped with ν({−1}) = ν({+1}) = 1/2. Let G0 := σ({−1,+1}) and G1 :=
σ({−1}, {+1}). A new filtration is given by F̃k := Fk ×G1 for k = 0, . . . , n and F̃−1 := F0×G0,
and a new martingale by f̃k(ω, η) := ηfk(ω) for k = 0, . . . , n, ω ∈ Ω and η ∈ {−1,+1}, and
f̃−1(ω, η) := 0. The martingale property E[f̃k|Fk−1] is follows from the martingale property of
(fk)nk=0 for k = 1, . . . , n and from

∫
{−1,+1} η dν(η) = 0 for k = 0. Moreover,∥∥∥ n∑

k=−1

εkd̃k

∥∥∥
p

=
∥∥∥η n∑

k=0

εkdk

∥∥∥
p

=
∥∥∥ n∑
k=0

εkdk

∥∥∥
p
,

so Burkholder’s inequality for (d̃k)nk=−1 implies the same result for (dk)nk=0. Of course one can
shift the indexing of d̃k so as to start from zero. �

5.9. Lemma (Reduction to one-by-one increments). It suffices to prove Burkholder’s inequality in
the case when Fk = σ(Ak), where Ak is a partition of Ω with the number of elements #A = k+1
for every k.

Proof. Things have already been reduced to the situation where each Fk is finite, and then it is
of the form Fk = σ(Ak), where the partition Ak consists of the minimal non-empty sets in Fk.
Moreover, since f0 = 0 is a constant, F0 = σ(f0) is trivial and hence A0 = {Ω}, which already
satisfies the requirement #A0 = 1. The idea of the proof is very simple: one just adds finitely
many new σ-algebras between Fk−1 and Fk in order to satisfy the condition that the underlying
partitions only grow by one set at a time. Here are the details:

Let Ak := {A1, . . . , AN(k)}, and

Fk−1,r := σ(Fk−1, A1, . . . , Ar), r = 0, . . . , N(k).

Then
Fk−1 = Fk−1,0 ⊆ Fk−1,1 ⊆ Fk−1,2 ⊆ Fk−1,N(k) = Fk

and Fk−1,r+1 = σ(Fk−1,r, Ar+1). If Ak−1,r is the collection of minimal non-empty sets in Fk−1,r,
then depending on whether Ar+1 ∈ Fk−1,r = σ(Ak−1,r) or not, there holds

#Ak−1,r+1 −#Ak−1,r ∈ {0, 1}.

So the doubly-indexed filtration (Fk−1,r : k = 1, . . . , n; r = 0, . . . , N(k)) (where the pairs
(i, j) are ordered so that (i, j) < (i′, j′) iff i < i′ or [i = i′ and j < j′]) has the property
that the associated partitions increase by at most one at the time. By relabelling this filtration
as (Gj)Mj=0, where all the repetitions of the same σ-algebra have been removed, one obtains a
filtration with the required property. The original σ-algebras form a subfiltration, Fk = GJ(k) for
some 0 = J(0) ≤ J(1) ≤ . . . ≤ J(n) = M .

Then one can simply define a new martingale by gj := E[fn|Gj ], and observe that (recalling
f0 = g0 = 0)

n∑
k=1

εk(fk − fk−1) =
n∑
k=1

εk

J(k)∑
j=J(k−1)+1

(gj − gj−1) =
M∑
j=1

ε′j(gj − gj−1),

where ε′j := εk for j ∈ (J(k − 1), J(k)]. �

5.10. From an abstract space to [0, 1)n. In order to make use of the Hilbert transform, one
still has to be able to reduce martingales on an abstract measure space (Ω,F , µ) to ones involving
a real variable. But this is easily done after the reductions in Lemmas 5.8 and 5.9. Recall the
situation: There are finite partitions Ak = {Ak0, . . . , Akk} of Ω, and Ak is a refinement of Ak−1;
also d0 = 0. The refinement property can be stated as follows: for all k ∈ {1, . . . , n}, there are
r, s ∈ {0, . . . , k}, t ∈ {0, . . . , k − 1} and a bijection π : {0, . . . , k} \ {r, s} → {0, . . . , k − 1} \ {t}
such that

Akj = Ak−1,π(j), j /∈ {r, s}, Akr ∪Aks = Ak−1,t (disjoint union).
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One defines a sequence of sets with the same measure-theoretic properties as follows:

Q10 := I10 :=
[
0, µ(A10)

)
, Q11 := I11 :=

[
µ(A10), 1

)
,

and then inductively

Qkj := Qk−1,π(j) × [0, 1), j /∈ {r, s},

Qkr := Qk−1,t × Ikr := Qk−1,t ×
[
0,

µ(Akr)
µ(Ak−1,t)

)
,

Qks := Qk−1,t × Iks := Qk−1,t ×
[ µ(Akr)
µ(Ak−1,t)

, 1
)
.

Thus Qkj ⊆ [0, 1)k is a Cartesian product of intervals, and by induction one checks (Qkj)kj=0 is a
partition of [0, 1)k with |Qkj | = µ(Akj). Let further Rkj := Qkj × [0, 1)n−k, so that (Rkj)kj=0 is a
partition of [0, 1)n which refines (Rk−1,j)k−1

j=0 .
Now consider a martingale difference sequence (dk)nk=0 on (Ω,F , µ), adapted to (Fk)nk=0, where

Fk = σ(Ak). By Fk-measurability,

dk =
k∑
j=0

akj1Akj = 1Ak−1,t

(
akr1Akr + aks1Aks

)
+

∑
j /∈{r,s}

akj1Ak−1,π(j) .

The condition that E[dk|Fk−1] = 0 says that akj = 0 for j /∈ {r, s} and akrµ(Akr)+aksµ(Aks) = 0,
so that

dk = akr1Akr + aks1Aks .

Defining new functions on [0, 1)n by

d̃k := akr1Rkr + aks1Rks ,

these have exactly the same measure-theoretic properties as the dk, so proving Burkholder’s in-
equality amounts to showing that ∥∥∥ n∑

k=1

εkd̃k

∥∥∥
p
≤ C

∥∥∥ n∑
k=1

d̃k

∥∥∥
p
.

Here

d̃k(x) = akr1Rkr (x) + aks1Rks(x)

= 1Qk−1,t(x1, . . . , xk−1)
(
akr1Ikr (xk) + aks1Iks(xk)

)
=

k∏
j=1

φkj(xj),

where the φkj are indicators of some intervals for j = 1, . . . , k − 1, and
∫
φkk(t) dt = 0.

So Burkholder’s inequality will follow from:

5.11. Theorem (Bourgain). Let φkj ∈ Lp(0, 1) for 1 ≤ j ≤ k ≤ n and εk ∈ {−1,+1}. Then for
all p ∈ (1,∞),∥∥∥ n∑

k=1

εk

k∏
j=1

φkj(xj)
∥∥∥
p
≤ α2

∥∥∥ n∑
k=1

k∏
j=1

φkj(xj)
∥∥∥
p
, if

∫ 1

0

φkk dt = 0.

where α = αp is the norm of the Hilbert transform on Lp(R).

Note that this does not recover the optimal constant in Burkholder’s inequality, even if one
used the (known) best constant for the Hilbert transform.

Essentially the same proof would show that the estimate holds more generally for functions of the
form φk0(x1, . . . , xk−1)φkk(xk), where φk0(x1, . . . , xk−1) need not split as a product

∏k−1
j=1 φkj(xj)

but, as observed above, the above formulation suffices for the proof of Burkholder’s inequality.
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5.12. Reduction to trigonometric polynomials. By known density results, one may find
trigonometric polynomials φ̃kj so that ‖φ̃kj − φkj‖p < δ. One may further choose φ̃kk to have
vanishing integral. Indeed, since

∫
φkk = 0, it follows that∣∣∣ ∫ 1

0

φ̃kk dt
∣∣∣ =

∣∣∣ ∫ 1

0

(φ̃kk − φkk) dt
∣∣∣ ≤ ‖φ̃kk − φkk‖p < δ,

so φ̃kk −
∫ 1

0
φ̃kk dt is still a good approximation to φkk.

Finally, one observes that∥∥∥ k∏
j=1

φkj(xj)−
k∏
j=1

φ̃kj(xj)
∥∥∥
p
≤

k∑
r=1

∥∥∥ r−1∏
j=1

φkj(xj)×
(
φkr(xr)− φ̃kr(xr)

)
×

k∏
j=r+1

φ̃kj(xj)
∥∥∥
p

=
k∑
r=1

r−1∏
j=1

‖φkj‖p × ‖φkr − φ̃kr‖p ×
k∏

j=r+1

‖φ̃kj‖p,

and this can made arbitrarily small by making δ small.
Hence it suffices to prove Theorem 5.11 for trigonometric polynomials.

5.13. Bourgain’s transformation. The inequality to be proved still involves n real variables,
whereas the Hilbert transform (or the analogous conjugation operation from Theorem 5.6) acts on
functions of a single variable. Thus, for fixed x ∈ [0, 1)n and y ∈ Zn, one defines a new periodic
function of t ∈ R by

f(t) :=
n∑
k=1

k∏
j=1

φkj(xj + yjt).

Since

φkj(u) =
∑

−M≤m≤M

akj(m)ei2πmu, akk(0) =
∫ 1

0

φkk du = 0,

(one can choose a fixed M , since there are only finitely many φkj) it follows that

f(t) =
n∑
k=1

∑
−M≤mk1,...,mkk≤M

( k∏
j=1

akj(mkj)ei2πxjmkj
)
ei2π(

Pk
j=1 yjmkj)t.

The conjugate trigonometric polynomial g(t) is obtained by multiplying each term in the multi-
ple sum by −i sgn(

∑k
j=1 yjmkj). Note that here mkk 6= 0, since akk(0) = 0. Also |

∑k−1
j=1 yjmkj | ≤

M
∑k−1
j=1 |yj |. Now choose the yk’s inductively so that (e.g.) |y1| = 1 and

(∗) |yk| > M

k−1∑
j=1

|yj |, k > 1.

This ensures that sgn(
∑k
j=1 yjmkj) = sgn(ykmkk) = sgn(yk) sgn(mkk). Thus the conjugate func-

tion g(t) factorizes into the form

g(t) =
n∑
k=1

sgn(yk)
k−1∏
j=1

φkj(xj + yjt)ψkk(xk + ykt),

where

ψkk(u) =
∑

−M≤m≤M

−i sgn(m)akk(m)ei2πmu

is the conjugate function of φkk.
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5.14. Completion of the proof. By Theorem 5.6 there holds ‖g‖p ≤ α‖f‖p, i.e.,∫ 1

0

∣∣∣ n∑
k=1

sgn(yk)
k−1∏
j=1

φkj(xj + yjt)ψkk(xk + ykt)
∣∣∣p dt

≤ αp
∫ 1

0

∣∣∣ n∑
k=1

k−1∏
j=1

φkj(xj + yjt)φkk(xk + ykt)
∣∣∣p dt.

Integrate this with respect to dx over [0, 1)n, change the order of integration (bringing the dx
integral inside) and make the change of variables xj + yjt ↔ xj . By periodicity, integration over
xj ∈ [yjt, yjt + 1) gives the same result as over xj ∈ [0, 1), so the t-dependence disappears, and
one is left with ∫

[0,1)n

∣∣∣ n∑
k=1

sgn(yk)
k−1∏
j=1

φkj(xj)ψkk(xk)
∣∣∣p dx

≤ αp
∫

[0,1)n

∣∣∣ n∑
k=1

k−1∏
j=1

φkj(xj)φkk(xk)
∣∣∣p dx.

Since one is free to choose the signs sgn(yk), it follows that

(∗)
∥∥∥ n∑
k=1

εk

k−1∏
j=1

φkj(xj)ψkk(xk)
∥∥∥
p
≤ α

∥∥∥ n∑
k=1

k−1∏
j=1

φkj(xj)φkk(xk)
∥∥∥
p
.

This is not yet the claim, but one can repeat the same argument with εkψkk in place of φkk. As
one immeadiately checks, the conjugate function of ψkk is −φkk. Hence there also holds∥∥∥ n∑

k=1

ε′k

k−1∏
j=1

φkj(xj)(−εk)φkk(xk)
∥∥∥
p
≤ α

∥∥∥ n∑
k=1

k−1∏
j=1

φkj(xj)εkψkk(xk)
∥∥∥
p
.

Writing the two inequalities in a row (with εk as in the claim and ε′k = −1), the assertion of
Theorem 5.11 follows.

5.15. Exercises.
1. Let f ∈ Lp(R), p ∈ (1,∞), and Habf be its truncated Hilbert transform. Consider the

limit where a, b→ 0 in such a way that a ≤ b ≤ 2a. Prove that |Habf | ≤ CMf for all such
a, b, where M is the Hardy–Littlewood maximal operator. Show that Habf → 0 pointwise
a.e. in the considered limit. (Hint: prove the pointwise limit for continuous functions first
and obtain the general case with the help of density and the pointwise domination by the
maximal function.)

2. In the proof of Theorem 5.6, one needed an auxiliary function φ 6≡ 0 such that |φ(x)| ≤
C(1 + |x|)−1−δ and {φ̂ 6= 0} ⊆ [−R,R]. Check that the following φ provides an example
of such a function, even with the additional (and sometimes useful) property that φ̂ ≡ 1
close to the origin:

φ(x) =
sin(3πx) sin(πx)

(πx)2
, φ̂(ξ) = min

{
1,max{0, 2− |ξ|}

}
.

3. Prove Plancherel’s theorem in the case of functions f, f̂ ∈ L1(R): ‖f‖2 = ‖f̂‖2. (Hint:
both sides are equal to a double integral involving both f and f̂ .)

4. Suppose that the functions φkk, k = 1, . . . , n, in Theorem 5.11 have the special form
φkk(u) =

∑M
m=1 akk(m)ei2πmu (i.e., trigonometric polynomials with only positive frequen-

cies). Prove that in this case the inequality of the mentioned theorem holds with the
constant α instead of α2 on the right.

5.16. References. The basic Fourier analysis presented in this chapter is standard material. The
core result is Bourgain’s theorem from [1].
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Appendix A. Solutions to exercises

A.1. Conditional expectation.
1. E.g. Ω = R, F = Borel σ-algebra, G = {∅,R} and µ = Lebesgue measure. Another

possibility is e.g. G = {∅, (−∞, 0), [0,∞),R}, which shows that G need not be the trivial
σ-algebra.

2. Denote hn := 2g − |f − fn|, so that 0 ≤ hn ∈ L1
σ(F , µ) ja hn → 2g ∈ L1

σ(F , µ). By the
conditional Fatou’s lemma

E[2g|G ] ≤ lim inf
n→∞

E[hn|G ] = E[2g|G ]− lim sup
n→∞

E[|f − fn| |G ],

which implies lim supn→∞ E[|f − fn| |G ] ≤ 0. Finally |E[fn|G ]− E[f |G ]| ≤ E[|fn − f | |G ].
3. Let H ∈ H 0 ⊆ G 0. Using the definition of the conditional expectation three times, it

follows that∫
H

E
(
E[f |G ]

∣∣H )
dµ =

∫
H

E[f |G ] dµ =
∫
H

f dµ =
∫
H

E[f |H ] dµ,

and Lemma 1.2 completes the argument.
4. The familiar inequality from the hint follows e.g. from Jensen’s inequality φ(x/p+y/p′) ≤
φ(x)/p + φ(y)/p′ applied to the convex function φ(x) = ex and the values x := log ap,
y =: log bp

′
. Another possibility is to move all the terms on one side of the inequality and

investigate the resulting expression, say, as a function of a ∈ [0,∞) for a fixed b. Checking
the non-negativity is a high school level exercise in differentiation — the extremal values
are reached at the endpoints of the interval or at the zeros of the derivative.

From the hint it follows directly that

|E[f · g|G ]| ≤ E[|f | · |g| |G ] ≤ 1
p

E[|f |p|G ] +
1
p′

E[|g|p
′
|G ].

If one replaces f by the function λ · f and g by g/λ, where λ > 0 is a constant, the left
side of the previous inequality stays invariant, but the right side becomes

λp

p
E[|f |p|G ] +

λ−p
′

p′
E[|g|p

′
|G ].

By minimizing this expression with respect to λ at each ω ∈ Ω, the claimed upper bound
for E[f · g|G ] follows.

A.2. Discrete-time martingales and Doob’s inequality.
1. We may assume that I 6= ∅. For all j ∈ Z, let N(j) := {i ∈ I : i ≥ j}. This is empty for

some j if and only if I is bounded from above, i.e., there exists max I. Set n(j) := minN(j)
if N(j) 6= ∅, and n(j) := max I otherwise. With the help of the tower rule one easily
checks that Fj := Fn(j) is a filtration and fj := fn(j) a martingale adapted to it. Clearly
n(i) = i if i ∈ I, so this is an extension of the original one.

2. For the filtration of the hint, there holds

E[f |F−n](x) =
1
nδ

∫ nδ

0

f(y) dy, x ∈ (0, nδ],

so the corresponding Doob’s maximal function satisfies, for x ∈ ((n− 1)δ, nδ],

Mf(x) ≥ 1
nδ

∫ nδ

0

f(y) dy ≥ 1
x+ δ

∫ x

0

f(y) dy =: Fδ(x).

By Doob’s inequality ‖Fδ‖p ≤ p′‖f‖p, and the claim follows from monotone convergence
as δ ↘ 0.

3. Let f(x) := 1(0,1](x) · xα. This is in Lp(R+) if and only if α > −1/p. Now

F (x) :=
1
x

∫ x

0

f(y) dy =
xα

1 + α
= (1 + α)−1f(x), x ∈ (0, 1].
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Hence, if Hardy’s inequality holds with some constant C, then C ≥ ‖F‖p/‖f‖p ≥ (1+α)−1.
In the limit α↘ −1/p, there follows that C ≥ (1− 1/p)−1 = p′.

4. One has to show that σ(Dβ
k ) ⊆ σ(Dβ

k+1). It suffices to prove that every J ∈ Dβ
k is a

(necessarily countable) union of some sets in Dβ
k+1. By definition, J = I +

∑
j>k 2−jβj

for some I = 2−k[`, `+ 1) ∈ Dk. Clearly I = I0 ∪ I1, where

Ii := 2−k[`+ i/2, `+ (i+ 1)/2) = 2−(k+1)[2`+ i, 2`+ i+ 1) ∈ Dk+1.

Now J = J0 ∪ J1, if we set

Ji := Ii +
∑
j>k

2−jβj = (Ii + 2−(k+1)βk+1) +
∑
j>k+1

2−jβj

∈ Dk+1 +
∑
j>k+1

2−jβj = Dβ
k+1.

5. Consider the endpoints of the intervals I ∈ D0
k ∪Dβ

k . They have the form 2−k` or 2−k`+∑
j>k 2−jβj = 2−k

(
` +

∑
j>k 2k−jβj

)
, where ` ∈ Z. Depending on the parity of k, there

holds one of∑
j>k

2k−jβj =

{∑
j=1,3,5,... 2

−j = 2−1
∑∞
j=0 4−j = 2/3,∑

j=2,4,5,... 2
−j = 4−1

∑∞
j=0 4−j = 1/3.

Thus the endpoints have the form 2−k` and either 2−k(`+ 1/3) or 2−k(`+ 2/3); in either
case, the minimal distance of two endpoints is 2−k/3.

Let then J be some finite subinterval of R. Choose the unique k ∈ Z with 3|J | < 2−k ≤
6|J |. Since |J | < 2−k/3, the interval J can contain at most one endpoint of one interval
I ′ ∈ D0

k ∪ Dβ
k . If I ′ ∈ D0

k , then J does not contain any endpoints of intervals in Dβ
k . On

the other hand, Dβ
k covers all of R, so in particular all of J . Since J is a connected interval

and does not contain endpoints of Dβ
k , it must be completely contained in a single interval

I ∈ Dβ
k . Symmetrically, if I ′ ∈ Dβ

k , then there exists I ∈ D0
k , which contains J .

In any case J ⊂ I ∈ D0
k ∪Dβ

k and |I| = 2−k ≤ 6|J |.
6. Let M0 and Mβ be Doob’s maximal operators related to the filtrations (σ(D0

k ))k∈Z and
(σ(Dβ

k ))k∈Z. Let x ∈ R and J 3 x be a finite subinterval of R. By the previous exercise,
there exists I ∈ D0 ∪Dβ , such that I ⊃ J and |I| ≤ 6|J |. Hence

1
|J |

∫
J

|f(y)|dy ≤ 6
|I|

∫
I

|f(y)|dy ≤

{
6M0|f |(x), I ∈ D0,

6Mβ |f |(x), I ∈ Dβ .

Taking the supremum over all J 3 x on the left, we obtain

MHLf(x) ≤ 6M0|f |(x) + 6Mβ |f |(x)

and then by Doob’s inequality

‖MHLf‖p ≤ 6‖M0|f | ‖p + 6‖Mβ |f | ‖p ≤ 12p′‖f‖p.

A.3. Burkholder’s inequality.
1. Since dk = E[fn|Fk]− E[fn|Fk−1] for 1 ≤ k ≥ n and d0 = E[fn|F0], it follows that

gn = ε0E[fn|F0] +
n∑
k=1

εk
(
E[fn|Fk]− E[fn|Fk−1]

)
=: Tεfn.

The conditional expectation operators are selfadjoint. In fact, if f ∈ Lp(F , µ) and
h ∈ Lp′(F , µ) and G ⊆ F is a sub-σ-algebra with Gj ∈ G 0 such that Gj ↗ Ω, then∫

Ω

E[f |G ] · hdµ = lim
j→∞

∫
Gj

E[f |G ] · hdµ = lim
j→∞

∫
Gj

E{E[f |G ] · h|G }dµ

= lim
j→∞

∫
Gj

E[f |G ] · E{h|G } dµ = lim
j→∞

∫
Gj

E[f · E{h|G }|G ] dµ =
∫

Ω

f · E{h|G }dµ,
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where Theorem 1.15 (“pulling out” a G -measurable function) was used twice.
By the linearity of taking the adjoint operator, it follows that T ∗ε = Tε. Hence

‖Tεf‖p′ = sup
{∫

Ω

Tεf · hdµ : ‖h‖p ≤ 1
}

= sup
{∫

Ω

f · Tεhdµ : ‖h‖p ≤ 1
}

≤ ‖f‖p′ sup
{
‖Tεh‖p : ‖h‖p ≤ 1

}
≤ ‖f‖p′ · βp.

Taking the supremum over all appropriate filtrations, functions f and sign sequences ε, it
follows that βp′ ≤ βp. By symmetry, also βp ≤ βp′ .

2. By the construction of the conditional expectation of L2 functions, there holds dk =
fk − fk−1 ⊥ L2(Fk−1, µ) ⊃ {d0, . . . , dk−1} for all 1 ≤ k ≤ n. Hence the sequence (dk)nk=0,
and then also (εkdk)nk=0, is orthogonal in L

2(F , µ). Thus by Pythagoras’ Theorem,∥∥∥ n∑
k=0

εkdk

∥∥∥2

2
=

n∑
k=0

‖εkdk‖22 =
n∑
k=0

‖dk‖22 =
∥∥∥ n∑
k=0

dk

∥∥∥2

2
.

3. A G -measurable function on [0, 1]2 is one which is constant with respect to the second
variable, but otherwise arbitrary. So E[1A|G ](x, y) = g(x) for some Borel function g on
[0, 1]. This function must satisfy∫

G

g(x) dx =
∫
G×[0,1]

E[1A|G ] dx dy =
∫
G

∫ 1

0

1A(x, y) dy dx =
∫
G

φ(x) dx

for all Borel sets G ⊆ [0, 1]. This holds if and only if g(x) = φ(x) a.e.
Since φ was arbitrary, it is seen that E[1A|G ] need not be simple.

4. By the assumption that β is a constant for Doob’s inequality,
∫
F (f∞,max{f∗, 0}) dt =∫

(f∗)p dt− βp
∫
|f∞|p dt ≤ 0. Since U(0, 0) is the supremum over all such quantities with

f0 = 0, also U(0, 0) ≤ 0.
Martingales g starting from αx and martingales f starting from x are in the obvious one-

to-one correspondence via g = αf . Then F (g∞,max{g∗, αy}) = F (αf∞, αmax{f∗, y}) =
αpF (f∞,max{f∗, y}). Integrating over [0, 1) and taking the supremum over all f , equiv-
alently all g, it follows that U(αx, αy) = αpU(x, y).

If f0 ≡ x, then f∗ ≥ |f0| = x, and hence max{f∗,max{|x|, y}} = max{f∗, |x|, y} =
max{f∗, y}. Substituting into

∫ 1

0
F (f∞, ·) dt and taking the appropriate supremum gives

U(x,max{|x|, y}) = U(x, y).
Finally, the concavity. Let y ∈ [0,∞), x1, x2 ∈ R, α ∈ (0, 1), x = αx1 + (1− α)x2, and

mi < U(xi, y) for i = 1, 2. Then one can find simple martingales f i with f i0 ≡ xi so that∫ 1

0
F (f i∞,max{f i∗, y}) dt > mi. By augmenting zero steps if necessary, we may assume

that the f i = (f ik)nk=0 with the same n. A new martingale f is defined by

f0(t) := x, fk+1(t) :=

{
fk(t/α), t ∈ [0, α),
fk
(
(t− α)/(1− α)

)
, t ∈ [α, 1).

Then f∗(t) = max{f1∗(t/α), |x|} for t ∈ [0, α) and f∗(t) = max{f2∗((t−α)/(1−α)
)
, |x|}

for t ∈ [α, 1). Substituting and changing variables,

U(x, y) >
∫ 1

0

F (f∞,max{f∗, y}) dt

= α

∫ 1

0

F (f1
∞,max{f1∗, |x|, y}) dt+ (1− α)

∫ 1

0

F (f2
∞,max{f2∗, |x|, y}) dt

Since F is increasing in its second argument, there holds

F (f i∞,max{f i∗, |x|, y}) ≥ F (f i∞,max{f i∗, y}),

and hence U(x, y) > αm1 + (1− α)m2. With mi ↗ U(xi, y), this gives concavity.
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5. The claim is equivalent to logαp ≥ 0, where logαp = log p+ (p− 1) log(1− 1/p) =: g(p).
Now g′(p) = 1/p+ log(1− 1/p) + (p− 1)(1− 1/p)−1 · 1/p2 = 2/p+ log(1− 1/p) =: h(1/p)
and h′(t) =

(
2t + log(1 − t)

)′ = 2 − (1 − t)−1 = (1 − 2t)/(1 − t) ≥ 0 for t ∈ [0, 1/2].
Hence h(t) ≥ h(0) = 0 for t ∈ [0, 1/2], i.e., g′(p) = h(1/p) ≥ 0 for p ∈ [2,∞), and then
g(p) ≥ g(2) = log 2 + log(1/2) = 0 for p ∈ [2,∞).

6. One still gets f (k)(x) = 0 iff |x+ 1| = βp/(p−k)|x− 1| =: βk|x− 1| and |x| > 1 when k = 1.
Again 1 ≤ β0 ≤ β1, but now β2 ∈ (0, 1] since p/(p − 2) < 0. Hence, as before, f has the
zeros x0 and 1/x0 while f ′ has the unique zero 1/x1, where xk = (βk − 1)/(βk + 1), but

f ′′(x) = 0⇔ |x− 1| = βp/(2−p)|x+ 1| =: β̃|x+ 1|

⇔ x ∈ {x2, 1/x2}, x2 = − β̃ − 1
β̃ + 1

∈ (−1, 0].

So the points of interest are 1/x2 < x2 ≤ 0 ≤ x0 < 1/x1 ≤ 1/x0, and f is positive on
(x0, 1/x0), increasing on (−∞, 1/x1) and convex on (1/x2, x2), with opposite properties
in the interior of the complement.

7. There holds 0 = f(x0) ≤ w(x0) and 1 = f(1) ≤ w(1). By concavity, w(−1)+w(1) ≤ 2w(0),
and w(0) ≤ 0 by the observation made in 3.13; hence w(−1) ≤ −w(1) ≤ −1. For
x ∈ (−1, 0),

w(x)− w(−1)
x− (−1)

=
|x|pw(1/x)− w(−1)

x− (−1)
=
|x|p

−x
w(1/x)− w(−1)

(−1)− 1/x
+
|x|p − 1
−(|x| − 1)

w(−1),

so letting x ↘ −1, one gets D+w(−1) = −D−w(−1) − pw(−1). By concavity, for all
x ∈ (−1, x0),

−w(−1)
x0 − (−1)

≤ w(x0)− w(−1)
x0 − 1

≤ w(x)− w(−1)
x− (−1)

≤ D+w(−1) ≤ 1
2

(D+ +D−)w(−1) = −p
2
w(−1).

(∗)

Dividing by −w(−1) > 0, it follows that p/2 ≥ 1/(x0 + 1) = (β+ 1)/2β ⇔ β ≥ 1/(p−1).
8. If β = 1/(p− 1), then equality holds at every step in (∗) above. Thus for all x ∈ (−1, x0)

(and by continuity at the endpoints),

w(x) = w(−1) + w′(−1)(x+ 1) = −w(−1)
(
p/2 · x+ (p/2− 1)

)
.

Let α̃p := −w(−1). Since w ≥ f and w(x0) = 0 = f(x0), by Lemma 3.18 there holds

w′(x0) = α̃p
p

2
= f ′(x0) =

p

2

((1
p

)p−1 +
( 1
p− 1

)p(p− 1
p

)p−1
)

=
p

2
p

p− 1
(1
p

)p−1
,

and hence α̃p = p′ · p1−p.
9. To prove that w ≥ f on [−1, x0], note that f ′′ > 0 on (−1, x2) and f ′′ < 0 on x2, x0; thus
f ′ is increasing on the first and decreasing on the latter interval, and hence

f ′ ≥ min{f ′(−1), f ′(x0)} = min{p
2
βp, w′(x0)} =

p

2
min{βp, α̃p} =

p

2
αp ≡ w′,

provided that βp ≥ α̃p. Assuming this, it follows that (f − w)′ ≥ 0, hence f − w ≤
f(x0)− w(x0) = 0.

To finish, one must show
( 1
p− 1

)p ≥ p

p− 1
(1
p

)p−1, equivalently pp−2 ≥ (p− 1)p−1, or

(p− 2) log p− (p− 1) log(p− 1) ≥ 0, p ∈ (1, 2].

Proof. Write g(p) for the left side. Then g(1) = 0 = g(2),

g′(p) = log p− log(p− 1)− 2
p
, g′′(p) =

p− 2
p2(p− 1)

≤ 0.

Thus g is concave and hence attains its minimum at the endpoints. �
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10. The condition w(x) = |x|pw(1/x) determines w on the intervals (−∞,−1] (by its values
on [−1, 0)) and on [1/x0,∞) (by the values on (0, x0]). The expression is

w(x) = α̃p ×


(
− p

2 |x|
p−1 −

(
1− p

2

)
|x|p

)
, x ∈ (−∞,−1],(

p
2x

p−1 −
(
1− p

2

)
xp
)
, x ∈

[
1
x0
,∞
)

=
[
p

2−p ,∞
)
.

The concavity of w on these two intervals is verifies from the condition w′′ ≤ 0 (where
one uses p ∈ (1, 2)). One also checks that Dw(−1) = α̃pp/2 = D+w(−1), whence w is
concave on (−∞, x0]. The domination w ≥ f on (−∞,−1] ∪ [1/x0,∞) follows from the
corresponding property on [−1, x0] and the fact that both w and f satisfy the property
w(x) = |x|pw(1/x).

The function f itself is concave on [x0, 1/x0]. It was checked that f(x0) = w(x0) and
f ′(x0) = w′(x0) which, as in the case p > 2, imply the corresponding equalities at 1/x0.
Hence the function

w̃(x) :=

{
w(x), x /∈ [x0, 1/x0] =

[
2−p
p , p

2−p
]
,

f(x), x ∈ [x0, 1/x0],

satisfies the required properties, and is the smallest possible such function.
Remark. There are other solutions. One can check that on [x0, 1/x0]C, w(x) is given by

w(x) = α̃p

{
(p− 1)

∣∣∣x+ 1
2

∣∣∣− ∣∣∣x− 1
2

∣∣∣}max{1, |x|}p−1

= αp

{∣∣∣x+ 1
2

∣∣∣− 1
p− 1

∣∣∣x− 1
2

∣∣∣}(∣∣∣x+ 1
2

∣∣∣+
∣∣∣x− 1

2

∣∣∣)p−1

,

where αp := (p − 1)α̃p = p(1/p)p−1 = p(1 − 1/p∗)p−1 for p ∈ (1, 2), where the final
expression agrees with the definition of αp for p ∈ (2,∞). Taking the above formula as
the definition of w(x) for all x ∈ R, one can check that this is also a concave function with
w ≥ f and w(x) = |x|pw(1/x).

A.4. Petermichl’s dyadic shift and the Hilbert transform.

1. Write the binary expansion x = sgn(x)
∑
j∈Z αj2

−j , where αj = αj(x) ∈ {0, 1} for all
j ∈ Z and αj = 0 for 2−j > |x|. Then

Dj + x = Dj + sgn(x)
∑
i>j

αi2−i =

{
Dj +

∑
i>j αi2

−i, x > 0
Dj +

∑
i>j(1− αi)2−i, x < 0.

For the case x < 0 one observed that
∑
i>j 2−i = 2−j and Dj + 2−j = Dj .

Thus it follows that D +x = Dβ(x), where βj(x) = αj(x) if x > 0 and βj(x) = 1−αj(x)
if x < 0. In both cases, the sequence (βj(x))j≤j0(x) is a constant (in the first case, zero;
in the second, one) for some j0(x). Hence any Dβ , for which limj→−∞ βj does not exist,
cannot be of the form D + x for any x ∈ R.

2. Write (in this exercise) D1
j for the one-dimensional dyadic intervals of lenght 2−j . Then

Dj = D1
j × D1

j , and one can define (e.g.) Dj+1/2 := D1
j+1 × D1

j . Then, denoting Fj =
σ(Dj),

f =
∞∑

j=−∞

∑
Q∈Dj

1Q
(
E[f |Fj+1]− E[f |Fj+1/2] + E[f |Fj+1/2]− E[f |Fj ]

)
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For Q = I × J ∈ Dj , write Qs := Is × J and Qst := Is × Jt, s, t ∈ {−,+}. Note that
|Q| = 2|Qs| = 4|Qst|. Then

1Q
(
E[f |Fj+1]− E[f |Fj+1/2] + E[f |Fj+1/2]− E[f |Fj ]

)
=

∑
s∈{+,−}

( ∑
t∈{+,−}

1Qst
|Qst|

∫
Qst

f − 1Qs
|Qs|

∫
Qs

f
)

+
∑

s∈{+,−}

1Qs
|Qs|

∫
Qs

f − 1Q
|Q|

∫
Q

f

=
∑

s∈{+,−}

∑
t∈{+,−}

1Qst
|Qs|

(∫
Qst

f −
∫
Qs,−t

f
)

+
∑

s∈{+,−}

1Qs
|Qs|

(∫
Qs

f −
∫
Q−s

f
)

=
∑

s∈{+,−}

1Qs− − 1Qs+
|Qs|

(∫
Qs−

f −
∫
Qs+

f
)

+
1Q− − 1Q+

|Q|

(∫
Q−

f −
∫
Q+

f
)

=
∑

s∈{+,−}

hQs

∫
hQsf + hQ

∫
hQf,

where

hQ(x, y) :=
1

|Q|1/2
(
1Q− − 1Q+

)
(x, y) = hI(x)

1J(y)
|J |1/2

hQ±(x, y) :=
1

|Q±|1/2
(
1Q±− − 1Q±+

)
(x, y) =

1I±(x)
|I±|1/2

hJ(y).

3. As in 3.23, one can represent any tk ∈ [−1, 1] in the form tk =
∑∞
j=1 2−jεkj with εkj ∈

{−1,+1}. Let M be the maximum of F (t) for t ∈ {−1, 1}n. Then for any t ∈ [−1, 1]n,

|F (t)| =
∣∣∣ n∑
k=1

tkξk

∣∣∣ ≤ ∞∑
j=1

2−j
∣∣∣ n∑
k=1

εkjξk

∣∣∣ ≤ ∞∑
j=1

2−jM = M,

so M is the maximum in the whole cube [−1, 1]n.
4. Without loss of generality, max1≤k≤n ‖gk‖∞ = 1. Then for each fixed x ∈ R, (gk(x))nk=1 ∈

[−1, 1]n, and hence (using the previous exercise with ξk = εkfk(x) and tk = gk(x))∣∣∣ n∑
k=1

εkgk(x)fk(x)
∣∣∣ ≤ ∣∣∣ n∑

k=1

εkηkfk(x)
∣∣∣

for some ηk ∈ {−1, 1}n. Taking the pth power and expectations of both sides, it follows
that

E
∣∣∣ n∑
k=1

εkgk(x)fk(x)
∣∣∣p ≤ E

∣∣∣ n∑
k=1

εkηkfk(x)
∣∣∣p = E

∣∣∣ n∑
k=1

εkfk(x)
∣∣∣p

since (εkηk)nk=1 and (εk)nk=1 have the same distribution. It remains to integrate over R.

A.5. Back to Burkholder’s inequality.
1. Since a ≤ b ≤ 2a,∣∣∣ ∫

a<|y|<b

1
πy
f(x− y) dy

∣∣∣ ≤ 1
πa

∫
|y|<b

|f(x− y)|dy ≤ 2
πb

∫ x+b

x−b
|f(y)|dy ≤ 4

π
Mf(x).

If g ∈ Cc(R), then similarly

|Habg(x)| =
∣∣∣ ∫
a<|y|<b

1
πy

[g(x− y)− g(x)] dy
∣∣∣ ≤ 4

π
max
|y−x|<b

|g(y)− g(x)|,

which tends to zero as b→ 0.
For a general f ∈ Lp(R), let g ∈ Cc(R) with ‖f − g‖p < δ. Then

lim sup
ε→0

|Habf | ≤ lim sup
ε→0

(
|Hab(f − g)|+ |Habg|

)
≤ 4
π
M(f − g).
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Hence for any ε > 0,

|{lim sup
ε→0

|Habf | > ε}| ≤ |{ 4
π
M(f − g) > ε}| ≤ Cε−p‖f − g‖pp ≤ C(δ/ε)p.

Since δ and ε were arbitrary, this proves that lim supε→0 |Habf | = 0 a.e.
2. Clearly {φ̂ 6= 0} ⊆ [−2, 2] and φ̂ = 1 on [−1, 1]. Also φ(x) decays like |x|−2 as |x| → ∞, and

it is bounded on compact intervals as a continuous function (recall that limx→0 sinx/x =
1). By Corollary 5.4, it suffices to check that∫ ∞

−∞
φ̂(ξ)ei2πxξ dξ = φ(x).

So one computes∫ ∞
−∞

φ̂(ξ)ei2πxξ dξ = 2 Re
(∫ 1

0

ei2πxξ dξ +
∫ 2

1

(2− ξ)ei2πxξ dξ
)

= 2 Re
(∣∣∣1

0

ei2πxξ

i2πxξ
+
∣∣∣2
1
(2− ξ)e

i2πxξ

i2πx
−
∣∣∣2
1
(−1)

ei2πxξ

(i2πx)2

)
= 2 Re

(ei2πx − 1
i2πx

− ei2πx

i2πx
+
ei4πx − ei2πx

(i2πx)2

)
= 2 Re

ei3πx(eiπx − e−iπx

−(2πx)2
= 2 Re

ei3πx · 2i sin(πx)
−(2πx)2

=
sin(3πx) sin(πx)

(πx)2
.

3. By the inversion formula, Fubini’s theorem, and the definition of the Fourier transform,∫
R
f(x)f(x) dx =

∫
R

∫
R
f̂(ξ)ei2πxξ dξf(x) dx

=
∫

R
f̂(ξ)

∫
R
f(x)e−i2πxξ dxdξ =

∫
R
f̂(ξ)f̂(ξ) dξ,

where the left side is ‖f‖22 while the right one is ‖f̂‖22.
4. One repeats the same proof as in the general case until formula (∗) of Section 5.14. There

one observes that, thanks to the special form of the functions φkk, the conjugate functions
are ψkk = −iφkk. Substituting this into the mentioned inequality, one has the asserted
result.

Appendix B. English–Finnish-vocabulary

adapted – mukautettu
conditional – ehdollinen
dilation – venytys
dyadic – dyadinen
expectation – odotusarvo
filtration – suodatus
martingale – martingaali
martingale difference – martingaalierotus

maximal function – maksimifunktio
shift – siirto
stopping time – pysäytysaika
transform – muunnos
translation – siirto
zigzag martingale – siksakmartingaali
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