University of Helsinki / Department of Mathematics and Statistics
SCIENTIFIC COMPUTING

Exercise 04, 5.10.2009

Problem sessions will be held on Monday at 16-18, B322.
N.B. The files mentioned in the exercises (if any) are available on the course homepage

1. (a) Let X and Y be independent uniformly distributed random variables on $(0,1)$. As we know, samples of X can be generated by $x=r a n d(1,100)$; for instance. Now it is a basic fact (this need not be proven) that the new random variables

$$
U=\cos (2 \pi X) \sqrt{-2 \log Y} ; \quad V=\sin (2 \pi X) \sqrt{-2 \log Y}
$$

follow the normal distribution with parameters $(0,1)$, i.e. with mean 0 and variance 1. Use this so called Box-Müller method to generate 200 samples of normal distribution, plot the result with the command hist, compute the mean and standard deviation of the sample.
(b) The amplitude distribution of a signal sent by a mobile phone to a base station follows so called Rayleigh distribution. Suppose that X_{1}, X_{2} are zero-mean normally distributed random variables with variance σ^{2} and define a new random variable R by $R=\sqrt{X_{1}^{2}+X_{2}^{2}}$. Then R follows the Rayleigh distribution. Generate 100 samples of a Rayleigh distribution and plot the histogram.
2. Suppose that $f:[a, b] \rightarrow[0, \infty)$ is continuous and that $0 \leq f(x) \leq M$ for all $x \in[a, b]$. Use the Monte Carlo method to approximate the value of

$$
\int_{a}^{b} f(x) d x
$$

that is, choose m random points in $[a, b] \times[0, M]$ and compute the ratio p / m where p is the number of points below the graph of $f(x)$. Apply this method for the function

$$
f(x)=\sum_{j=1}^{n} c_{j}\left(1+\sin \left(d_{j} x\right)\right)
$$

FILE: ~/mme09/demo09/d04/d04.tex - 28. syyskuuta 2009 (klo 13.45).
in $[0,1]$ with $m=10 j, j=10: 10: 100$ where $n=4, \mathrm{c}=\operatorname{rand}(1, \mathrm{n}), \mathrm{d}=$ $1+3^{*}$ rand $(1, \mathrm{n})$. Compare your result to the exact value

$$
\int_{a}^{b} f(x) d x=(b-a) \sum_{j=1}^{n} c_{j}+\sum_{j=1}^{n}\left(c_{j} / d_{j}\right)\left(\cos \left(d_{j} * a\right)-\cos \left(d_{j} * b\right)\right)
$$

see Problem 3/Exercise 2.
3. The ASCII codes of capital letters $\mathrm{A}, \ldots, \mathrm{Z}$ are $65, \ldots, 90$. A simple ciphering method, so called Caesar cipher, is the following. Fix an integer $p \in[1,25]$. Each letter is replaced by another, obtained by increasing its ASCII code by the constant p. (Note that we recycle: 91 corresponds to 65 i.e. after Z come $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$). The program hlp043.m shows how this happens. Use this idea to decipher the message:

```
Q Cllllllllllllllll
```

4. We want to fit a model of the form $f(x)=a e^{b x}$ to the data set

x	1	3	4	6	9	15
y	4.0	3.5	2.9	2.5	2.75	2.0

where a and b are parameters to be determined from the data.
(a) For this purpose we introduce new transformed variables $X=x$, $Y=\log (y)$. Carry out this data transformation and print out the transformed variables.
(b) After the transformation the new model is $F(x)=\log f(x)=b x+$ $\log a$. Apply the usual LSQ method to find b and $\log a$.
(c) Print the results in the following format

```
    x(i) y(i) Y(i) a*exp(b*x(i)) y(i)-a*exp(b*x(i))
    1 4.0 ....
15 2.0
```

and plot the data and the fitted curve in the same figure.
5. For a complex $n \times n$ matrix a let $P_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right|, m_{0}=\min \left\{\left|a_{i, i}\right|-\right.$ $\left.P_{i}: i=1, \ldots, n\right\}, m=\max \left\{m_{0}, 0\right\}, M=\max \left\{\left|a_{i, i}\right|+P_{i}: i=1, \ldots, n\right\}$.

By Gerschgorin's theorem (recall Exercise 03) the eigenvalues λ_{i} of a satisfy

$$
m \leq\left|\lambda_{i}\right| \leq M ; \quad i=1, \ldots, n
$$

and it also follows that $m^{n} \leq D \leq M^{n}, D=|\operatorname{det}(a)|$. Set $m_{1}=\min \left\{\left|\lambda_{i}\right|\right.$: $i=1, \ldots, n\}$ and $m_{2}=\max \left\{\left|\lambda_{i}\right|: i=1, \ldots, n\right\}$. Write a MATLAB script that experimentally confirms these statements, by printing out the test results in the following format

```
n m m1 m2 M D - m^n M^n -D
```

Use random complex $n \times n$ matrices, $\mathrm{n}=5: 5: 50$.
Repeat the experiment for the matrices $a=2 *_{n}{ }^{*}$ eye $(n)+\operatorname{rand}(n, n)+i * \operatorname{rand}(n, n)$.
6. The arithmetic-geometric mean $\operatorname{ag}(a, b)$ of two positive numbers $a>$ $b>0$ is defined as $\operatorname{ag}(a, b)=\lim a_{n}$, where $a_{0}=a, b_{0}=b$, and

$$
a_{n+1}=\left(a_{n}+b_{n}\right) / 2, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad n=0,1,2, \ldots
$$

(a) Write a function, which takes two arguments (double), computes ag and returns the value (double).
(b) The hypergeometric function ${ }_{2} F_{1}(a, b ; c ; x)$ is defined as a sum of the series,

$$
\begin{aligned}
{ }_{2} F_{1}(a, b ; c ; x) & =1+\frac{a b}{c} \frac{x}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^{2}}{2!}+\ldots \\
& +\frac{a(a+1) \ldots(a+j-1) b(b+1) \ldots(b+j-1)}{c(c+1) \ldots(c+j-1)} \frac{x^{j}}{j!}+\ldots .
\end{aligned}
$$

This hypergeometric series converges for abs $x<1$. Gauss proved in 1799 that there is a connection between the hypergeometric function and the arithmetic-geometric mean,

$$
{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; r^{2}\right)=\frac{1}{\operatorname{ag}\left(1, \sqrt{1-r^{2}}\right)}
$$

for $0<r<1$. Tabulate the difference of the two sides of this identity for $r=0.05 k, k=1, \ldots, 19$. Use the routine on the web-page to calculate the values of the ${ }_{2} F_{1}$.

