University of Helsinki / Department of Mathematics and Statistics

SCIENTIFIC COMPUTING

Exercise 11, 1.12.2008

N.B. The files mentioned in the exercises (if any) are available on the course homepage.

1. The Gram-Schmidt method also applies to orthogonalize a system of functions. Use this method to orthogonalize the system $\left\{1, x, x^{2}, x^{4}\right\}$. of the space $\mathrm{C}([-1,1])$ with the inner product $(f, g)=\int_{-1}^{1} f(x) g(x) d x$.
2. Part (b) of this problem deals with the so called Gibbs phenomenon.
(a) Show that for each fixed x the number $S_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ approaches zero when n grows to ∞, and find the extremum values of $S_{n}(x)$ with respect to x. Graph the function $S_{n}(x)$ when $\mathrm{n}=2: 2: 10$.
(b) Show that the Fourier series of $f(x)=(\pi-x) / 2$ on $(0,2 \pi)$ is $\lim _{n \rightarrow \infty} S_{n}(x)$, where $S_{n}(x)=\sum_{k=1}^{n} \frac{1}{k} \sin (k x)$. Graph S_{n} for $\mathrm{n}=10: 2: 20$ and find graphically the global maximum $x_{0} \in(0,2 \pi)$ of $S_{n}(x)$ and estimate graphically the number $\left|S_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| /\left|f\left(x_{0}\right)\right|$.

Recall the Fourier series of a continuous function $f:[0,2 \pi] \rightarrow \mathbf{R}$

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (n x) d x, n=0,1,2, \ldots
$$

and

$$
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x, n=1,2,3, \ldots
$$

3. Find the nth partial sum of the Fourier series of $f(x)=x^{2}$ on $(0<$ $x<2 \pi$) and graph it for $\mathrm{n}=4: 2: 10$.
4. Consider again the problem of fitting a "line with a break point"to a data set, as in d101. Now, instead of choosing the break point (s, t) with a mouse click as we did in d101, use the method of the program parfit to find the best break point $(s, t)=\left(\lambda_{1}, \lambda_{2}\right)$. The object function will be, with

[^0]the notation of the solution to d101, s1+s2. Apply this optimized version of d101 to the data of d101. Recall that the object function value obtained in d101, after the fitting was 2.62 . Do you get a better value this time?
5. An astronomer has the following observations about a comet approaching the Earth.

Taulukko 1: Comet coordinates

x	1.02	0.95	0.87	0.77	0.67	0.56	0.44	0.30	0.16	0.01
y	0.39	0.32	0.27	0.22	0.18	0.15	0.13	0.12	0.13	0.15

Determine the equation of the comet on the basis of this data using a quadratic function

$$
a y^{2}+b x y+c x+d y+e=x^{2}
$$

Hint: The problem yields the overdetermined system

$$
a y_{i}^{2}+b x_{i} y_{i}+c x_{i}+d y_{i}+e=x_{i}^{2}, i=1, \ldots, 10
$$

which we will solve with the LSQ method for the coefficient vector sol $=$ $(a, b, c, d, e)^{T}$. We rewrite this as $M * s o l=w$ and its solution is obtained with sol $=M \backslash w$ (or, alternatively, $\operatorname{sol}=\operatorname{pinv}(M) * w)$.
6. Write a program numdf, which computes the numerical derivative of a function at the points in a given vector, using the function numder. The program call should be of the form
numdf('myf(x)',z, 1e-4)
where $z=0: 0.05: 1$; , and myf is a function. Plot the error of the numerical derivation using the command pic('cos(x)- numdf('sin(x)', x, $1 \mathrm{e}-4)^{\prime}$). Hint: The file hlp116.m contains numder and pic.

[^0]: FILE: ~/mme08/teht/d11/d11.tex — 24. marraskuuta 2008 (klo 11.37).

