University of Helsinki / Department of Mathematics and Statistics
SCIENTIFIC COMPUTING
Exercise 08, 10.11.2008
N.B. The files mentioned in the exercises (if any) are available on the course homepage.

1. (a) Show that for a square matrix a , if λ is an eigenvalue of a (i.e. for some $x \neq 0, a x=\lambda x)$, then $\lambda+c$ is an eigenvalue of $a+c * I$ where I is the identity matrix of the same size as a.
(b) Let a_{1} be a random $n \times n$ matrix, $a=a_{1}+a_{1}^{T}$, and define t to be the least eigenvalue of a if it is <0 and $=0$ otherwise. Show that $a-t I$ has nonnegative eigenvalues and that it is symmetric.
(c) Generate with (b) symmetric square matrices a with nonnegative eigenvalues and show that if $[u, s, v]=\operatorname{svd}(a)$ and $s s=\operatorname{sqrt}(s), c=u * s s$, then $a=c * c^{T}$.
2. The vertices of a quadrilateral are $(0,0),\left(p_{1}, p_{2}\right),(1,0),\left(q_{1}, q_{2}\right)$, where $p_{2}<0, q_{2}>0$. Generate such quadrilaterals and compute their areas. Show that Bretschneider's formula for the area holds:

$$
K=\sqrt{(s-a)(s-b)(s-c)(s-d)-a b c d \cos ^{2} \alpha}
$$

where α is the mean value of the angles at p and q and a, b, c, d are the sides, $2 s=a+b+c+d$. Hint: Use polyarea to check the formula.
3. Let B and C be $m \times n$ matrices with real entries and let $A=B+i C$. Relate the singular values of A to those of

$$
\left[\begin{array}{cc}
B & -C \\
C & B
\end{array}\right]
$$

Observe this gives an idea to reduce the computation of the SVD of complex $m \times n$ matrices to the case of real $2 m \times 2 n$ matrices.
4. Recall from linear algebra that if $\Delta \equiv a d-b c \neq 0$, then

$$
\Delta\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

FILE: ~/MME08/demo/d08/d08.tex — 3. marraskuuta 2008 (klo 9.35).

Consider the Newton method $x_{n+1}=x_{n}-J_{f}\left(x_{n}\right)^{-1} f\left(x_{n}\right)$ to solve the system

$$
\begin{cases}x_{1}^{2}+x_{2}^{2}-1 & =0 \\ x_{1}^{2}-x_{2}^{2} & =0\end{cases}
$$

with the initial point $(0.5,0.5)$. Use standard methods from linear algebra and multidimensional calculus, such as the above formula for matrix inverse, to compute the following expressions analytically and to print the numerical values $J_{f}\left(x_{n}\right), J_{f}\left(x_{n}\right)^{-1}, T\left(x_{n}\right) \equiv J_{f}\left(x_{n}\right)^{-1} f\left(x_{n}\right)$ for the first three iteration steps.
5. For $t \in R \backslash\{0\}$, the pseudo-inverse is defined by $t^{+}=1 / t$ and we set $0^{+}=0$. If s is a $m \times n$ diagonal matrix let s^{+}be the $n \times m$ diagonal matrix obtained by applying this operation elementwise: $\left(s^{+}\right)_{i, j}=s_{i, j}^{+}$. For an $m \times n$ matrix a with a SVD $a=u s v^{T}$ we define $a^{+}=v s^{+} u^{T}$. Check for a number of random matrices whether and how well a^{+}agrees with the MATLAB pseudo-inverse $\operatorname{pinv(a).~}$
6. Finding the root of a linear $n \times n$ system $a x=b$ can be considered as a minimization problem for the function $g(x)=|a * x-b|=$ norm $(a * x-b)$. Use this idea to solve the problem $a * x=b$ when a is $n \times n$ Hilbert matrix. Report for each $n=2: 9$ the residual $|a x-b|$ and $\mid x n u m$ - exact \mid when exact $=$ ones(n.1) and $b=a *$ exact.

