1. Prove that the following functions are linear mappings and determine their matrices in standard basis.

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right], \quad S\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x+2 y \\
3 x-4 y
\end{array}\right]
$$

Determine the standard matrix of the composite map $S \circ T$ as well.
2. Use counterexamples toshow that the following functions are not linear:

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x^{2}
\end{array}\right], \quad S\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+1 \\
y-1
\end{array}\right] .
$$

3. Determine the standard matrix of the following composite linear map from \mathbb{R}^{2} to \mathbb{R}^{2} : first rotation counterclockwise by angle $\pi / 4$, then projection to y-axis and finally another rotation counterclockwise by angle $\pi / 4$.
4. Show that \vec{v} is an eigenvector for matrix A and determine the corresponding eigenvalue:
(a) $A=\left[\begin{array}{rr}-1 & 1 \\ 6 & 0\end{array}\right], \quad \vec{v}=\left[\begin{array}{r}1 \\ -2\end{array}\right] ;$
(b) $A=\left[\begin{array}{rrr}3 & 0 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 1\end{array}\right], \quad \vec{v}=\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right]$.
5. Show that λ is an eigenvalue of A and find some eigenvector related to λ.
(a) $A=\left[\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right], \quad \lambda=3$;
(b) $A=\left[\begin{array}{rrr}1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1\end{array}\right], \quad \lambda=-1$.
6. Compute the following determinants.
(a) $\left|\begin{array}{lll}1 & 0 & 3 \\ 5 & 1 & 1 \\ 0 & 1 & 2\end{array}\right|$,
(b) $\left|\begin{array}{ccc}\cos \theta & \sin \theta & \tan \theta \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right|$.
